
John Pennycook, Charlene Yang, Jack Deslippe
john.pennycook@intel.com, cjyang@lbl.gov, jrdeslippe@lbl.gov

Quantitatively Assessing
Performance Portability with

Roofline

IDEAS Jan 23 2019

NERSC: Mission HPC for DOE Office of Science

Bio	Energy,		Environment Computing

Particle	Physics,	Astrophysics

Largest funder of physical
science research in U.S.

Nuclear	Physics

7,000 users, 750 projects, 700 codes, 48 states, 40 countries, universities & national labs

Materials,	Chemistry,	Geophysics

Fusion	Energy,	Plasma	Physics

NERSC’s Challenge

How to Enable NERSC’s diverse community
of 7,000 users, 750 projects, and 700 codes
to run on advanced architectures like Cori
(KNL), Perlmutter (GPUs) and Beyond

What was different about Cori?

Edison (“Ivy Bridge):

● 24 physical cores per node
● 2.4 - 3.2 GHz

● 8 double precision ops/cycle

● 64 GB of DDR3 memory (2.5 GB per
physical core)

● ~100 GB/s Memory Bandwidth
● L1/L2/L3 Caches

Cori (“Knights Landing”):

● 68 physical cores per node
● 1.4 - 1.6 GHz

● 32 double precision ops/cycle

● 16 GB of fast memory
96GB of DDR4 memory

● Fast memory has 400 - 500 GB/s
● L1/L2 Cache, No L3 Cache

Perlmutter:	A	System	Optimized	for	Science

GPU-accelerated	and	CPU-only	nodes	
meet	the	needs	of	large	scale	simulation	
and	data	analysis	from	experimental	
facilities

NERSC’s	Goal	is	to	provide	a	transition	
path	from	Cori	to	Perlmutter	to	NERSC-
10

Performance Challenges For Scientists

Science teams need a simple way to wrap their heads around performance and
(performance portability) when main focus is scientific productivity:

1. Need a sense of absolute performance when optimizing applications.
- How Do I know if My Performance is Good?
- Why am I not getting peak performance advertised
- How Do I know when to stop?

2. Many potential optimization directions:
- How do I know which to apply?
- What is the limiting factor in my app’s performance?
- Again, how do I know when to stop?

3. How improve performance portably?
- Users are scientists. Have accounts on many system. Don’t want yearly rewrite

Framing the Optimization Conversation

Optimizing Code for Cori/Perlmutter is Like:
A Staircase ?
B Labyrinth ?
C Space Elevator?

(More)	
Optimized	Code

Energy-Efficient Processors Have Multiple Hardware Features
to Optimize Against:

- Many (Heterogeneous) Cores
- Big WARPS/Vectors
- New ISA
- Multiple Memory Tiers

It is easy for users to get bogged down in the weeds:
- How do you know what KNL hardware feature to target?
- How do you know how your code performs in an absolute

sense and when to stop?

- 8 -

MPI/OpenMP
Scaling	Issue

IO	bottlenecks

Use	Edison	to	
Test/Add	OpenMP	
Improve	Scalability.	

Help	from	
NERSC/Cray	COE	

Available.

Utilize	High-Level	
IO-Libraries.	

Consult	with	NERSC	
about	use	of	Burst	

Buffer.

Utilize	
performant	/	
portable	
libraries

The	Dungeon:
Simulate	kernels	on	KNL.	
Plan	use	of	on	package	

memory,	vector	
instructions.

The	Ant	Farm!
Communication	
dominates	beyond	
100	nodes

Code	shows	no	
improvements	
when	turning	on	
vectorization

OpenMP	
scales	only	to	
4	Threads

large	cache	
miss	rate

50%	Walltime	
is	IO

Compute	intensive	
doesn’t	vectorize

Can	you	
use	a	

library?
Create	micro-kernels	or	
examples	to	examine	

thread	level	
performance,	

vectorization,	cache	
use,	locality.

Increase	
Memory	
Locality

Memory	bandwidth
bound	kernel

Evolution of The Story

9

Framing Performance Portability

Everyone knows “roughly” what performance portability is. But, in order to
make progress, it pays to be precise and quantifiable

DOE SC Facility Definition

An application is performance portable if it achieves a consistent ratio of
the actual time to solution to either the best-known or the theoretical best
time to solution on each platform with minimal platform specific code
required.

Measuring Performance Portability

Bad Ways

1. Compare time-to-solution on one system vs another.
2. Compare ratio of actual app performance to peak system performance

Good Ways

1. Compare time-to-solution on each system against a well-known optimal
implementation

2. Compare performance on each system against a relevant roofline-model
ceiling on each system (We’ve included instructions for KNL and GPU)

Roofline Facilitates PP Analysis
Focus: Architectural Efficiency 𝑒"(𝑎, 𝑝) and Roofline

𝐹" Peak GFLOP/s, 	𝐵" Peak Bandwidth, 𝐼"(𝑎, 𝑝) Arithmetic Intensity (AI)

Three Messages:
• Use empirical Roofline ceilings
• Appropriately account for divides in FLOPs
• Roofline can capture nuances of performance analysis such as changes in AI,

instruction mix, instruction issue/exec bandwidth, memory access pattern, etc

𝜱 𝑎, 𝑝,𝑯 = /
|𝑯|

∑ 2
34(5,6)

�
"∈𝑯

		if	𝑖	is	supported,	∀𝑖 ∈ 𝑯	

0												otherwise																		
𝑒" 𝑎, 𝑝 =

𝑃"(𝑎, 𝑝)
min	(𝐹", 	𝐵"	×	𝐼"(𝑎, 𝑝))

These all
affect your
PP score!

A Primer on Roofline
• An application’s maximum attainable performance on a machine is:

• 𝐹	: peak FLOP/s
• 𝐵	: peak bandwidth
• 𝐼		: arithmetic intensity (AI) = FLOPs / Bytes

• Hierarchical Roofline
– DRAM/HBM/L2/L1 bandwidths
– vector/scalar/etc compute peaks

• Log-Log scale, easy to extrapolate

Peak FLOP/s

A
tta

in
ab

le
 F

LO
P/

s

Arithmetic Intensity (FLOPs:Bytes)

Bandwidth-bound Compute-bound

𝑃5LL5"M5NO3 = min	(𝐹, 𝐵	×	𝐼)

How to Collect Roofline Data
• Methodology to build a Roofline for an application

– Measure empirical compute and bandwidth ceilings:
• Empirical Roofline Toolkit (ERT)
• https://bitbucket.org/berkeleylab/cs-roofline-toolkit/

– Measure application performance:
• SDE and LIKWID on KNL
• NVPROF on V100

Arithmetic	Intensity	=	
SDE	or	𝒏𝒗𝒑𝒓𝒐𝒇	FLOPs

LIKWID	or	𝒏𝒗𝒑𝒓𝒐𝒇	Data	Movement

A
tta

in
ab

le
 F

LO
P/

s

Arithmetic Intensity (FLOPs:Bytes)

Peak FLOP/s

(X	coordinate:	FLOPs/Byte)

Application	Performance	=	
SDE	or	𝒏𝒗𝒑𝒓𝒐𝒇	FLOPs

Runtime
		

(Y	coordinate:	GFLOP/s)

How to Plot Roofline Data
• Use Python, gnuplot, or other tools to plot Roofline

– Example: plot_roofline.py data.txt

– https://github.com/cyanguwa/nersc-roofline/tree/master/Plotting

data.txt
all data is space delimited
memroofs 828.758
mem_roof_names 'HBM’
comproofs 7068.86 3535.79
comp_roof_names 'FMA' ’No-FMA’

omit the following if only plotting roofs
AI 2.584785579
GFLOPs 2085.756683
labels ‘FMA, nw=1’

Message 1: Empirical vs. Theoretical
• Discrepancy between empirically measured peaks and arch specs
• You may be closer to the ‘realistic’ performance bounds than you think you are!

10%3%

10%22%

Message 2: Account for Divides
• Operations such as div, exp, log and trigonometric functions usually take more

than one instructions

• Gap between canonical and empirical FLOPs:
– Empirical: each divide counts as multiple FLOPs
– Canonical: each counts as 1 FLOP

Message 2: Account for Divides
• Operations such as div, exp, log and trigonometric functions usually take more

than one instructions

• GPP (General Plasmon Pole) kernel from BerkeleyGW (Material Science)
– Tensor-contraction, abundant parallelism, large reductions
– Low FMA counts, divides, complex double data type

[1] General Plasmon Pole Kernel. [Online]. Available: https://github.com/cyanguwa/BerkeleyGW-GPP
[2] BerkeleyGW Code. [Online]. Available: https://berkeleygw.org

do band = 1, nbands #threadblocks
do igp = 1, ngpown

do ig = 1, ncouls #threads
do iw = 1, nw #unrolled

compute; reductions

Message 2: Account for Divides
Highly parameterizable:
• Varying nw from 1 to 6 to increase arithmetic intensity

– increasing FLOPs, same HBM data movement

do band = 1, nbands #threadblocks
do igp = 1, ngpown

do ig = 1, ncouls #threads
do iw = 1, nw #unrolled

compute; reductions

Message 2: Account for Divides
Highly parameterizable:
• Varying nw from 1 to 6 to increase arithmetic intensity

– increasing FLOPs, same HBM data movement
• Striding ig loop to analyze impact of strided memory access

– Split ig loop to two loops and place the ’blocking’ loop outside

do band = 1, nbands #threadblocks
do igp = 1, ngpown

do igs = 0, stride - 1 #threads
do ig = 1, ncouls/stride

do iw = 1, nw #unrolled
compute; reductions Stride 2

Message 2: Account for Divides
• Gap between canonical and empirical FLOPs:

– Empirical: each divide counts as multiple FLOPs
– Canonical: each counts as 1 FLOP

• Kernel performance will move diagonally up!
– Increased GFLOP/s and arithmetic intensity (FLOPs/Byte)

Count
(GFLOPs)

KNL V100

𝑛𝑤 = 1 𝑛𝑤 = 3 𝑛𝑤 = 6 𝑛𝑤 = 1 𝑛𝑤 = 3 𝑛𝑤 = 6
Canonical 921.4 2354.7 4504.6 895.8 2329.1 4350.9
Empirical 1055.8 2834.5 5502.7 1151.6 3096.8 5886.5
Difference 15% 20% 22% 29% 33% 35%

Message 2: Account for Divides

• Your code may be in a different regime or closer to the ceiling than you realize!

nw=6 nw=6

Message 3: Roofline Capabilities
Again, test with different variants of the GPP kernel:
• Vary AI by varying nw from 1 to 6
• Enable/Disable FMA by compiling with -fmad=true/false
• Change memory access pattern by striding the ig loop

Platforms: Intel KNL and NVIDIA V100

Architectural Efficiency à Performance Portability Score

𝜱 𝑎, 𝑝,𝑯 = /
|𝑯|

∑ 2
34(5,6)

�
"∈𝑯

		if	𝑖	is	supported,	∀𝑖 ∈ 𝑯	

0												otherwise																		
𝑒" 𝑎, 𝑝 =

𝑃"(𝑎, 𝑝)
min	(𝐹", 	𝐵"	×	𝐼"(𝑎, 𝑝))

• Varying AI: bottleneck shifts at 𝑛𝑤 = 2 from KNL to V100
• Easier to achieve no-FMA ceiling on V100 than KNL

– KNL issues 2 instr./cycle and executes 2 instr./cycle
– V100 issues 4 warps/cycle and executes 1 warp/cycle (32 FP64 cores)

Message 3: Roofline Capabilities

• With increasing 𝑛𝑤 (and AI):
– No-FMA performance portability score is consistently > 80%
– FMA benefit is far less than 2x at high 𝑛𝑤’s. Architectural efficiency suffers

and so does performance portability.
• At high 𝑛𝑤’s, increasing FMA instruction percentage is key on both platforms!

Architectural Efficiency 𝑛𝑤 = 1 𝑛𝑤 = 2 𝑛𝑤 = 3 𝑛𝑤 = 4 𝑛𝑤 = 5 𝑛𝑤 = 6

No-FMA
KNL 82.06% 72.95% 73.74% 78.72% 81.28% 82.81%
V100 92.88% 92.88% 97.43% 98.91% 1 99.73%

Performance Portability 87.14% 81.72% 83.95% 87.67% 89.93% 90.49%

FMA
KNL 84.98% 77.50% 66.77% 55.28% 46.56% 39.65%
V100 97.36% 91.50% 76.70% 65.44% 65.07% 66.38%

Performance Portability 90.76% 83.92% 71.39% 59.93% 54.28% 49.65%

Message 3: Roofline Capabilities

Message 3: Roofline Capabilities
• Strided memory access pattern

– Transaction size: 64B on KNL vs. 32B on V100
– Data: 16B per complex number

FMA FMA

Message 3: Roofline Capabilities
• With increasing stride size

– GPP becomes more and more bandwidth bound on both architectures,
eventually all saturating HBM

• Even though performance in GFLOP/s drops, architecture efficiency grows and
so does performance portability score.

• Stride-𝑛 performance is bound by a lower ceiling than stride-1 performance.

Architectural Efficiency Original Stride 2 Stride 4 Stride 8 Stride 16

KNL 38.40% 75.24% 98.39% 99.20% 98.00%
V100 65.64% 85.43% 98.81% 99.89% -

Performance Portability 48.46% 80.01% 98.60% 99.55% -

Summary and Conclusions
• Why performance portability is important and past attempts to define it and

quantify it à PP Metric proposed by Pennycook et al.
• Methodology to collect Roofline data for performance port analysis
• Roofline is very powerful in capturing nuances of performance analysis such

as changes in AI, instruction mix, instruction issue/exec bandwidth and
memory access pattern.

• It is imperative to use empirical Roofline ceilings, account for complex
instructions such as divides appropriately, and select relevant ceilings to
compare performance with, in order to assess architectural efficiency more
accurately and also perform performance portability analysis more
accurately.

Reference

1. S. Williams, A. Waterman, and D. Patterson, “Roofline: An insightful visual
performance model for multicore architectures,” Communications of the ACM, vol.
52, no. 4, pp. 65–76, 2009.

2. S. J. Pennycook, J. D. Sewall, and V. W. Lee, “A metric for performance
portability,” arXiv:1611.07409, 2016.

3. S. J. Pennycook, J. D. Sewall, and V. W. Lee, “Implications of a metric for
performance portability,” Future Generation Computer Systems, 2017.

4. C. Yang, R. Gayatri, T. Kurth, P. Basu, Z. Ronaghi, A. Adetokunbo, B. Friesen, B.
Cook, D. Doerfler, L. Oliker, J. Deslippe, and S. Williams, “An Empirical Roofline
Methodology for. Quantitatively Assessing Performance Portability,” P3HPC
workshop, 2018.

5. S. Williams, and T. Koskela, “Using the Roofline Model and Intel Advisor,” IDEAS
webinar, Aug 16 2017.

Thank You!

