ACME – Accelerated Climate Modeling For Energy

Marcia Branstetter Katherine Evans **John Harney** Benjamin Mayer Daniel Ricciutto Galen Shipman Brian Smith Chad Steed Peter Thornton

What is ACME?

- Multi-institutional, multi-disciplined, BER funded climate science effort
- Proposal accepted June 1 for 3 years
- Mission:

Build and test a next-generation earth modeling system that can be run on future generations of exascale computing systems at Office of Science computing facilities

What is ACME?

• Science Drivers:

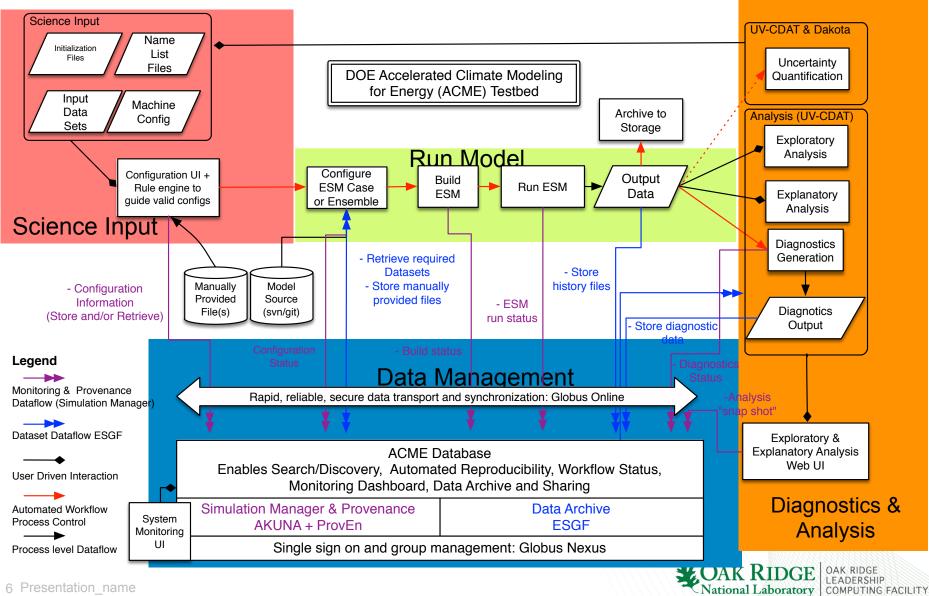
- How do the hydrological cycle and water resources interact with the climate system on local to global scales?
- How do biogeochemical cycles interact with global climate change?
- How do rapid changes in cryospheric systems interact with the climate system?

Science Needs:

- Support of wide range of model runs and workflow types
- Capture of model runs, settings and data during development
- Quickly evaluate and validate model behavior

ACME Solutions

Science Needs	Solution
Support of wide range of model runs and workflow types across the project	Define use cases: 1) Model Development (DEV); (2) Exploratory Model Runs (EXP); (3) Production Model Runs (PROD) Hi-res and low-res
Capture and record suites of runs and their settings during model development	Automated provenance and archiving throughout the life cycle of the model
Quickly evaluate coupled model behavior	Advanced diagnostics of the coupled system within one software system



Major challenges for the ACME end-toend system

Challenges	Description
Installation	Software must adapted to multiple hardware platforms and operating systems located throughout the ACME
Heterogeneous Data Sets	The same infrastructure must also allow scientists to access and compare data sets from multiple sources, including from observational satellite and instrument sources
Analysis, Diagnostics, and Visualizations	The generation of new and improved analysis, diagnostics, and visualization techniques for the better model development and evaluation
Server-side and In Situ Computing	Server-side and in situ computation is necessary as the increase in data size and complexity of algorithms lead to data-intensive, compute-intensive challenges for ACME diagnostics, UQ, analysis, model metrics, and visualization

End-to-end workflow

Science Input & Run Model – Streamlining CESM

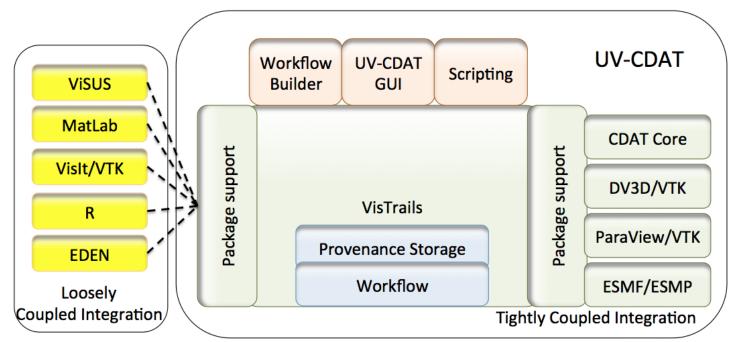
- Model development tasks (configure, interpolation, run, build) are tedious and time-consuming
- ACME partners developers and scientists to define and iteratively implement in (semi-)automated endto-end science workflow. Ideally reduces:
 - Scientist effort to setup/run an experiment
 - Time to solution by automating running of CESM
 - Queue wait times
 - Delays of human intervention
- Implement so automation "just happens" or can be used as helper scripts by hand

Science Input & Run Model – Workflow automation

- Workflow progress on compute resources is reported back by each workflow component via AMQP messaging broker
 - Leverage existing DOE technology to consume messages (e.g. Akuna from PNNL)
- Create central place to see progress of simulations
 - Current progress (e.g. 23 / 50 years)
 - Current status of data (simulation progress, HPSS, etc)
- Direct links to archives and diags framework

Diagnostics and Analysis

- Diagnostics
 - Used to quickly evaluate models and validate their results
 - Traditional CESM NCL scripts from NCAR produce static HTML and plots (gif, jpg, etc)

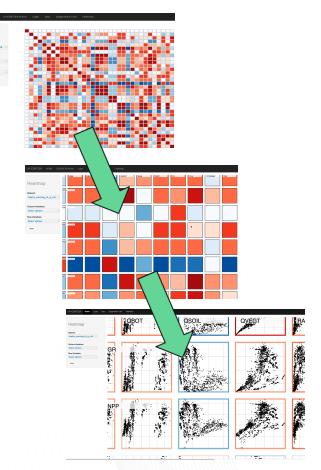


 Need a more scalable, dynamic and intuitive diags package so results can be ascertained and validated quickly

Diagnostics and Analysis - UVCDAT

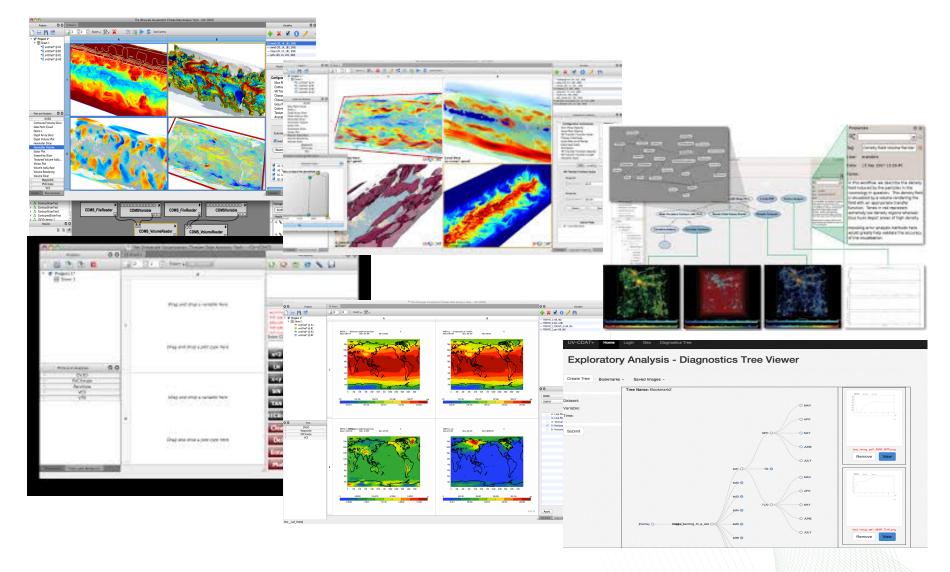
• What is UV-CDAT:

□ A seamless environment for open-source data analysis and visualization packages


• What is UV-CDAT purpose:

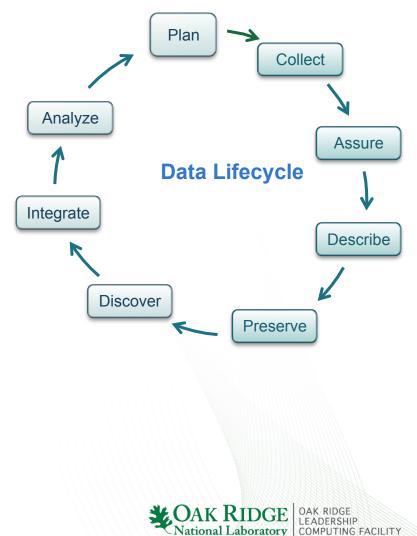
□ Bring together robust tools for climate data processing and reproducibility

- □ Integration heterogeneous data sources (e.g., simulations, observation, re-analysis)
- ❑ Local and remote data access and visualization


Diagnostics and Analysis – Web-based Visual Analytics

- Attractive alternative to standalone, thick client
 - Democratizes advanced visual analytics capacities
 - Greater efficiencies through distributed architecture
 - Runs in a web browser (D3, django, jquery)
 - Supports social collaboration
 - Compatibility with UVCDAT
 - Multiple views developed so far:
 - Interactive geospatial-temporal view
 - Diagnostics Tree Viewer
 - Heatmap variable correlation

E.g. Web-based Heatmap Correlation


Diagnostics and Analysis – Examples

Actional Laboratory

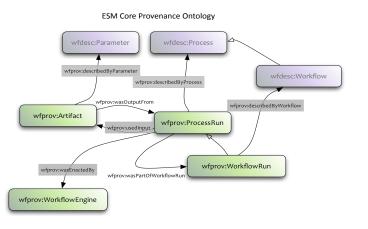
Data Management

- Output from completed models enter the ACME data management life cycle which supports:
 - Data Collection and Publication
 - Archiving and stewardship
 - Search and Discovery
 - Provenance Capture (i.e. Data/Algorithm reproducibility)
 - Fast/secure acquisition of data (downloads, transfers, etc)

Data Management – Data Services

Earth System Grid Federation (ESGF)

- Distributed enterprise system that deploys software infrastructure for the management, collaboration, dissemination, and analysis of climate model output and observational data
- Over 30k published federation-wide datasets (over 1PB) in over 20 climate institutions worldwide
- Peer-to-Peer design for increased scalability and fault tolerance
- Solr search engine designed for optimal metadata cataloging and dataset retrieval
- Secure file access and group-based authorization services

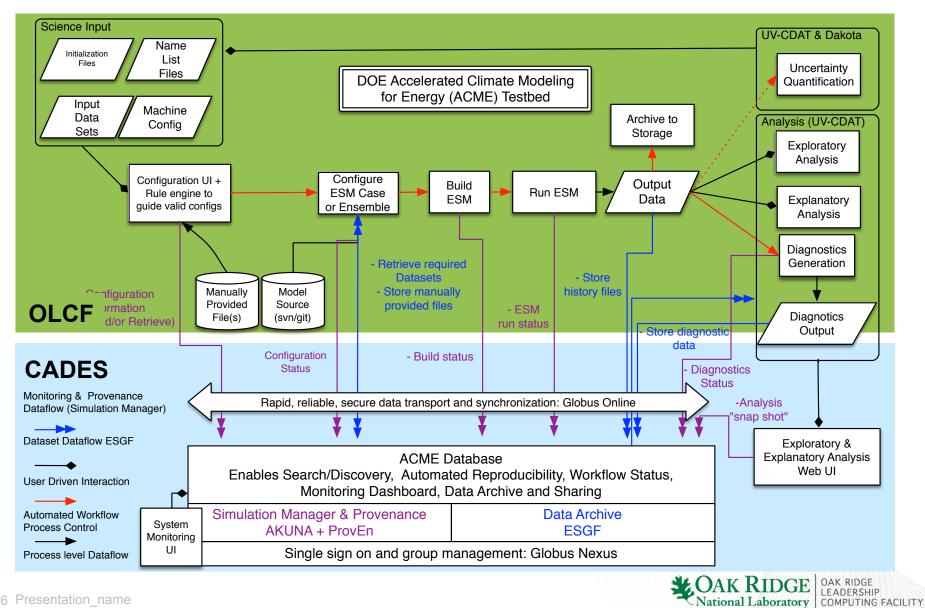


Data Management – Data Services

Globus Online

- Reliable, secure, high-performance file transfer and synchronization
- "Fire-and-forget" transfers
- Automatic fault recovery
- Fully integrated with ESGF services
- Key technology in transferring large datasets (e.g. high resolution)

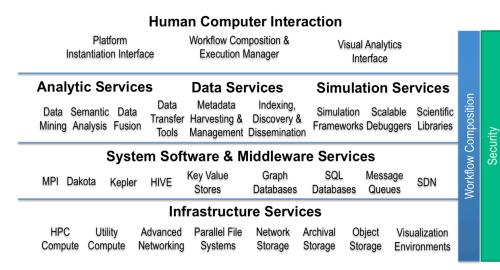
ransfer Files			Get Globus Connect Turn your computer into a	in endpoint.
Endpoint ucrcc#midway Go Peth /~/share/ Go		Endpoint Path	xsede#ranch	
select all none tup one folder C refresh list	=		p one folder C refresh list	=
terfolder 0 0-033_0WS-4_Security_ERpdf	Folder 1.08 MB	Cashariy cashariy gobachine FEADME FEADME set to set to	filter component	Fol Fol 4,74 2 2

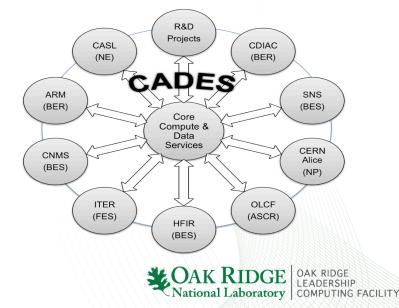


PROVEN

- Capture historical information from any native source necessary to describe the origin of the dataset
- Store this information in a cross-referenced form through the use of internationally recognized standards W3C, Dublin Core, CF
- Use this cross-referenced information to provide finished products to different kinds of consumers
- Will be integrated with ESGF in future release

End-to-end workflow and data infrastructure architecture





CADES provides core compute and data services required by major science facilities, large projects, small teams, and single principal investigators

CADES is a cross-cutting center: it shares both data infrastructure and compute & data science expertise with and among many projects

A rich set of flexibly composable services coupled with experts in data science partnering with domain scientists on their challenges

Experiences and Lessons Learned (so far)

- Communication and Relationships (scientistsdevelopers, lab-lab, component-component, etc)
- Unstructured grids and interpolation
- Messaging across heterogeneous security enclaves
- High Resolution data issues
 - Storage (HPSS)
 - Movement (Globus and security policy)

Questions?

CADES integration with OLCF

 The CADES cloud infrastructure is a new resource that has been added to the existing services of CADES

ESNet,

Internet2,

XSEDE

ational Laboratory

COMPUTING FACILITY

This platform will enable new CADES services

OpenStack IaaS & Parallel Compute/Data Environment

Scalable I/O Backplane Shared home Integration with Utility compute Scalable High Databases extreme scale storage performance Web Servers 27 Petaflops - Titan Workflow Engines Lustre, Cinder, Swift, Data Mining, Fusion & 200 Petabytes - HPSS Other Persistent RADOS Analytics 30 Petabytes - Lustre Services Modeling & Simulation

Testing and execution framework tailored for ACME

Features	Description	Impact
Infrastructure	Creates a flexible, extensible infrastructure for future ACME efforts and related DOE projects, automates laborious, repetitive simulation data tasks to improve productivity	Heightens productivity and user experience
Data Sharing	Supports broad data sharing within ACME project teams and with scientific collaborations; including NGEE, ARM, CDIAC, etc.	Accelerates model development and result dissemination
Provenance	Enables reproducibility, archiving and reuse of high-volume simulation data, provenance captures set up, execution and analysis details coupled with standard metadata creation, annotation, and forums for group discussions and sharing of any part of a workflow	Increases reproducibility, productivity and credibility of collaboration
Model set up and execution	Rule based support for model setup, specialized collaborative portal with a checklist for approvers of new model setups before job launching, Links to User interface and infrastructure for job submission	Enables new users to be effective quickly, allows control over model set ups in distributed, collaborative teams
User Interface	Specialized software when needed to enable web job submission, running, monitoring, and debugging capabilities on several HPC centers	One stop shop to all needed capabilities, increases productivity, reproducibility
Ensemble and Automated Runs	Job launching interface for submission of hundreds of production runs and enabling specialized monitoring of multiple ensemble, automated runs	Increases productivity

