
1
1

Programming Irregular
Applications with OpenMP*

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.

Alice Koniges
Berkeley Lab/NERSC

AEKoniges@lbl.gov

Tim Mattson
Intel Corp.

timothy.g.mattson@ intel.com

Clay Breshears
PAPPS

clay.breshears@gmail.com

Jeremy Kemp
University of Houston

 jakemp@uh.edu

2

Preliminaries: Part 1

• Disclosures
– The views expressed in this tutorial are those of the

people delivering the tutorial.
– We are not speaking for our employers.
– We are not speaking for the OpenMP ARB

• We take these tutorials VERY seriously:
– Help us improve … tell us how you would make this

tutorial better.

Hands-on Instructions
•  We have reserved 200 nodes of Cori and 100 nodes of

Edison at NERSC for this tutorial
•  Please be sure to send a “THANKS NERSC” email if you

appreciate this
•  Your training accounts will give you access to our

reservation
•  Please type your password very carefully, because you will

get cut off after 3 tries
•  For Cori we have Haswell nodes of Cori Phase 1
– Cori is a brand new XC40

•  Edison is a Cray XC30 with a peak performance of more
than 2 petaflops. Edison features the Cray Ariesinterconnect,
Intel Xeon processors, 64 GB of memory per node.

•  For details, see NERSC Web
3

Finding the web pages

•  For the instructions, please go to the following:
– www.nersc.gov
– users
–  software
– programming-models
– openmp
–  sc16-openmp-tutorial

•  https://www.nersc.gov/users/software/programming-models/
openmp/sc16-openmp-tutorial/

4

5

Preliminaries: Part 2

• Our plan for the day .. Active learning!
– We will mix short lectures with short exercises.
– You will use your laptop to connect to a multiprocessor

server.
• Please follow these simple rules
– Do the exercises that we assign and then change things

around and experiment.
– Embrace active learning!

– Don’t cheat: Do Not look at the solutions before you
complete an exercise … even if you get really frustrated.

 Outline
• OpenMP overview
• Introducing Explicit Tasks in OpenMP
• Working with Tasks
• Tasks and the conceptual core of OpenMP
• Break
• Working with tasks: the divide and conquer
pattern

• Advanced tasking features

6

7

OpenMP* overview:

omp_set_lock(lck)

#pragma omp parallel for private(A, B)

#pragma omp critical

C$OMP parallel do shared(a, b, c)

C$OMP PARALLEL REDUCTION (+: A, B)

call OMP_INIT_LOCK (ilok)

call omp_test_lock(jlok)

setenv OMP_SCHEDULE “dynamic”

CALL OMP_SET_NUM_THREADS(10)

C$OMP DO lastprivate(XX)

C$OMP ORDERED

C$OMP SINGLE PRIVATE(X)

C$OMP SECTIONS

C$OMP MASTER C$OMP ATOMIC

C$OMP FLUSH

C$OMP PARALLEL DO ORDERED PRIVATE (A, B, C)

C$OMP THREADPRIVATE(/ABC/)

C$OMP PARALLEL COPYIN(/blk/)

Nthrds = OMP_GET_NUM_PROCS()

!$OMP BARRIER

OpenMP: An API for Writing Multithreaded
Applications

§ A set of compiler directives and library routines for
parallel application programmers

§ Greatly simplifies writing multi-threaded (MT) programs
in Fortran, C and C++

§ Standardizes established SMP practice + vectorization and
heterogeneous device programming

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.

8

OpenMP Execution Model:
Fork-Join pattern:

u Master thread spawns a team of threads as needed.

u Parallelism added incrementally until performance goals
are met: i.e. the sequential program evolves into a
parallel program.

Parallel Regions
Master
Thread
in green

A Nested
Parallel
region

Sequential Parts

9

Thread Creation: Parallel Regions

•  You create threads in OpenMP* with the parallel construct.
•  For example, To create a 4 thread Parallel region:

double A[1000];
omp_set_num_threads(4);
#pragma omp parallel
{

 int ID = omp_get_thread_num();
 pooh(ID,A);
}

l Each thread calls pooh(ID,A) for ID = 0 to 3!

Each thread
executes a
copy of the
code within
the
structured
block

Runtime function to
request a certain
number of threads

Runtime function
returning a thread ID

* The name “OpenMP” is the property of the OpenMP Architecture Review Board

Thread Creation: Parallel Regions

•  Each thread executes
the same code
redundantly.

	double A[1000];
#pragma omp parallel num_threads(4)
{

 int ID = omp_get_thread_num();
 pooh(ID, A);
}
 printf(“all done\n”);

omp_set_num_threads(4)

pooh(1,A) pooh(2,A) pooh(3,A)

printf(“all done\n”);

pooh(0,A)

double A[1000];

A single
copy of A is
shared
between all
threads.

Threads wait here for all threads to finish
before proceeding (i.e. a barrier)

* The name “OpenMP” is the property of the OpenMP Architecture Review Board

OpenMP: what the compiler does

#pragma	omp	parallel	num_threads(4)	
{	
				foobar	();	
}	

void	thunk	()	
{	
				foobar	();	
}	
	
pthread_t	tid[4];	
for	(int	i	=	1;	i	<	4;	++i)	
	pthread_create	(

								&tid[i],0,thunk,	0);	
thunk();	
	
for	(int	i	=	1;	i	<	4;	++i)	
				pthread_join	(tid[i]);	

§  The OpenMP compiler generates code
logically analogous to that on the right
of this slide, given an OpenMP pragma
such as that on the top-left"

§  All known OpenMP implementations
use a thread pool so full cost of threads
creation and destruction is not incurred
for reach parallel region."

§  Only three threads are created because
the last parallel section will be invoked
from the parent thread. "

OpenMP data environment - motivation
When operating in parallel – proper sharing, or NOT sharing is
essential to correctness and performance.

12

#pragma omp parallel for
{

 for(i=0; i<n; i++){
 tmp= 2.0*a[i];
 a[i] = tmp;
 b[i] = c[i]/tmp;
 }

}

By default, all threads share a common address space. Therefore, all threads will be
modifying tmp simultaneously in the code on the LEFT.

On the RIGHT –private clause directs that each thread
will have an (uninitialized) private copy.

Initialization is possible with “firstprivate” and grabbing the last value is possible with
“lastprivate.” Reductions are important enough to have a special clause, and defaults can
be set (including to “none.”)

#pragma omp parallel for private(temp)
{

 for(i=0; i<n; i++){
 tmp= 2.0*a[i];
 a[i] = tmp;
 b[i] = c[i]/tmp;
 }

}

OpenMP data environment - summary

13

Data scope attribute clause description

private clause: declares the variables in the list to be private (not shared) to each thread.

firstprivate clause: declares variables in the list to be private plus the private variables are initialized
to the value of the variable when the construct is encountered (”entered”).

lastprivate clause: declares variables in the list to be private plus the value of from the sequentially
last iteration of the associated loops, or the lexically last section construct, is assigned to the original
list item(s) after the end of the construct.

shared clause: declares the variables in the list to be shared among all the threads in a team. All
threads within a team access the same storage area for shared variables. Synchronization is generally
advised if variables are updated.

reduction clause: performs a reduction on the scalar variables that appear in the list, with a specified
operator.

default clause: allows the user to affect the data-sharing attribute of the variables appeared in the
parallel construct.

1.  Variables are shared by default.
2.  Global variables are shared by default.
3.  Automatic variables within subroutines called from within a parallel region are private

(reside on a stack private to each thread), unless scoped otherwise.
4.  Default scoping rule can be changed with default clause.

14

A recurring example:
Numerical integration

∫ 	4.0
(1+x2) dx = π

0

1

∑ F(xi)Δx ≈ π
i = 0

N

Mathematically, we know that:

We can approximate the integral as a
sum of rectangles:

Where each rectangle has width Δx and
height F(xi) at the middle of interval i.

F(
x)

 =
 4

.0
/(1

+x
2)

4.0

2.0

1.0
X 0.0

15

Serial PI program

static long num_steps = 100000;
double step;
int main ()
{ int i; double x, pi, sum = 0.0;

 step = 1.0/(double) num_steps;

 for (i=0;i< num_steps; i++){
 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }
 pi = step * sum;

}

See OMP_exercises/pi.c

16

Example: Pi with a loop and a reduction
#include <omp.h>
static long num_steps = 100000; double step;
void main ()
{ int i; double x, pi, sum = 0.0;
 step = 1.0/(double) num_steps;
 #pragma omp parallel
 {
 double x;
 #pragma omp for reduction(+:sum)

 for (i=0;i< num_steps; i++){
 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }

 }
 pi = step * sum;

}

Create a scalar local to each thread to hold
value of x at the center of each interval

Create a team of threads …
without a parallel construct, you’ll
never have more than one thread

Break up loop iterations
and assign them to
threads … setting up a
reduction into sum. Note
… the loop index is local to
a thread by default.

Results*: pi with a loop and a reduction

17

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW
thread) Intel® CoreTM i5 processor at 1.7 GHz and 4 Gbyte DDR3 memory at 1.333 GHz.

•  Original Serial pi program with 100000000 steps ran in 1.83 seconds.

threads PI Loop

1 1.91

2 1.02

3 0.80

4 0.68

Exercise: matrix multiplication

•  We have provided a simple matrix multiplication program
matmult.c

•  Build and run this serial program
– Make matmult
–  ./matmult 100 200 300

•  Parallelize the program using OpenMP.

18

 Outline
• OpenMP overview
• Introducing Explicit Tasks in OpenMP
• Working with Tasks
• Tasks and the conceptual core of OpenMP
• Break
• Working with tasks: the divide and conquer
pattern

• Advanced tasking features

19

20

Not all programs have simple loops OpenMP
can parallelize

•  Consider a program to traverse a linked list:

 p=head;
 while (p) {

 processwork(p);
 p = p->next;
 }

•  OpenMP can only parallelize loops in a basic standard form
with loop counts known at runtime

21

Linked lists with parallel loops

 while (p != NULL) {
 p = p->next;

 count++;
 }
 p = head;
 for(i=0; i<count; i++) {
 parr[i] = p;
 p = p->next;
 }
 #pragma omp parallel
 {
 #pragma omp for schedule(static,1)
 for(i=0; i<count; i++)
 processwork(parr[i]);
 }

Count number of items in the linked list

Copy pointer to each node into an array

Process nodes in parallel with a for loop

Default schedule Static,1
One Thread 48 seconds 45 seconds
Two Threads 39 seconds 28 seconds

Results on an Intel dual core 1.83 GHz CPU, Intel IA-32 compiler 10.1 build 2

22

Linked lists with parallel loops

 while (p != NULL) {
 p = p->next;

 count++;
 }
 p = head;
 for(i=0; i<count; i++) {
 parr[i] = p;
 p = p->next;
 }
 #pragma omp parallel
 {
 #pragma omp for schedule(static,1)
 for(i=0; i<count; i++)
 processwork(parr[i]);
 }

Count number of items in the linked list

Copy pointer to each node into an array

Process nodes in parallel with a for loop

Default schedule Static,1
One Thread 48 seconds 45 seconds
Two Threads 39 seconds 28 seconds

Results on an Intel dual core 1.83 GHz CPU, Intel IA-32 compiler 10.1 build 2

There has got to be a better way!!!

What are tasks?

•  Tasks are independent units of work
•  Tasks are composed of:
–  code to execute
– data to compute with

•  Threads are assigned to perform the
work of each task.
– The thread that encounters the task construct

may execute the task immediately.
– The threads may defer execution until later Serial Parallel

What are tasks?

•  The task construct includes a structured
block of code

•  Inside a parallel region, a thread
encountering a task construct will
package up the code block and its data
for execution

•  Tasks can be nested: i.e. a task may
itself generate tasks.

Serial Parallel

Task Directive

25

#pragma omp parallel
{
 #pragma omp master
 {
 #pragma omp task
 fred();
 #pragma omp task
 daisy();
 #pragma omp task
 billy();
 }
}

Thread 0 packages
tasks

Create some threads

Tasks executed by
some thread in some
order

All tasks complete before this barrier is released

#pragma omp task [clauses]

 structured-block

Exercise: Simple tasks
•  Write a program using tasks that will “randomly” generate one of two

strings:
–  I think race cars are fun
–  I think car races are fun

•  Hint: use tasks to print the indeterminate part of the output (i.e. the “race
cars” or “car races” part).

•  This is called a “Race Condition”. It occurs when the result of a program
depends on how the OS schedules the threads.

•  NOTE: A “data race” is when threads “race to update a shared variable”.
They produce race conditions. Programs containing data races are
undefined (in OpenMP but also ANSI standards C++’11 and beyond).

#pragma omp parallel
#pragma omp task
#pragma omp master
#pragma omp single

26

 Outline
• OpenMP overview
• Introducing Explicit Tasks in OpenMP
• Working with Tasks
• Tasks and the conceptual core of OpenMP
• Break
• Working with tasks: the divide and conquer
pattern

• Advanced tasking features

27

28

When/where are tasks complete?

•  At thread barriers (explicit or implicit)
– applies to all tasks generated in the current parallel region up to the

barrier

•  At taskwait directive
–  i.e. Wait until all tasks defined in the current task have completed.
– Fortran: !$OMP TASKWAIT
– C/C++: #pragma omp taskwait

– Note: applies only to tasks generated in the current task, not to
“descendants” .
– The code executed by a thread in a parallel region is considered a task

here

Example

29

#pragma omp parallel
{
 #pragma omp master
 {
 #pragma omp task
 fred();
 #pragma omp task
 daisy();
 #pragma taskwait
 #pragma omp task
 billy();
 }
}

fred() and daisy()
must complete before
billy() starts

The task construct (OpenMP 4.5)

30

if([task :]scalar-expression)
untied
default(shared | none)
private(list)
firstprivate(list)
shared(list)
final(scalar-expression)
mergeable
depend(dependence-type : list)
priority(priority-value)

#pragma omp task [clause[[,]clause]...]
 structured-block

where clause is one of the following:

OpenMP 3.0 (May’08)

OpenMP 3.1 (Jul’11)

OpenMP 4.0 (Jul’13)

OpenMP 4.5 (Nov’15)

The evolution of the task construct

Generates an
explicit task

The task construct (OpenMP 4.5)

31

if([task :]scalar-expression)
untied
default(shared | none)
private(list)
firstprivate(list)
shared(list)
final(scalar-expression)
mergeable
depend(dependence-type : list)
priority(priority-value)

#pragma omp task [clause[[,]clause]...]
 structured-block

where clause is one of the following:

OpenMP 3.0

OpenMP 3.1

OpenMP 4.0

OpenMP 4.5

The evolution of the task construct

Generates an
explicit task

Consider the data
environment associated
with a task

Data scoping with tasks
•  Variables can be shared, private or firstprivate with respect to

task
•  These concepts are a little bit different compared with

threads:
–  If a variable is shared on a task construct, the references to it inside

the construct are to the storage with that name at the point where the
task was encountered
–  If a variable is private on a task construct, the references to it inside

the construct are to new uninitialized storage that is created when the
task is executed
–  If a variable is firstprivate on a construct, the references to it inside the

construct are to new storage that is created and initialized with the
value of the existing storage of that name when the task is
encountered

32

33

Data scoping defaults
•  The behavior you want for tasks is usually firstprivate, because the task

may not be executed until later (and variables may have gone out of
scope)
–  Variables that are private when the task construct is encountered are firstprivate by

default

•  Variables that are shared in all constructs starting from the innermost
enclosing parallel construct are shared by default

#pragma omp parallel shared(A) private(B)
{
 ...
#pragma omp task
 {
 int C;
 compute(A, B, C);
 }
}

A is shared
B is firstprivate
C is private

Example: Fibonacci numbers

•  Fn = Fn-1 + Fn-2

•  Inefficient O(n2) recursive
implementation!

int fib (int n)
{
 int x,y;
 if (n < 2) return n;

 x = fib(n-1);
 y = fib (n-2);
 return (x+y);
}

Int main()
{
 int NW = 5000;
 fib(NW);
}

Parallel Fibonacci

35

•  Binary tree of tasks

•  Traversed using a recursive
function

•  A task cannot complete until all
tasks below it in the tree are
complete (enforced with taskwait)

•  x,y are local, and so by default
they are private to current task

–  must be shared on child tasks so they
don’t create their own firstprivate
copies at this level!

int fib (int n)
{ int x,y;
 if (n < 2) return n;

#pragma omp task shared(x)
 x = fib(n-1);
#pragma omp task shared(y)
 y = fib (n-2);
#pragma omp taskwait
 return (x+y);
}

Int main()
{ int NW = 5000;
 #pragma omp parallel
 {
 #pragma omp master
 fib(NW);
 }
}

36

Using tasks
•  Getting the data attribute scoping right can be quite tricky
– default scoping rules different from other constructs
– as ever, using default(none) is a good idea

•  Don’t use tasks for things already well supported by OpenMP
– e.g. standard do/for loops
– the overhead of using tasks is greater

•  Don’t expect miracles from the runtime
– best results usually obtained where the user controls the

number and granularity of tasks

37

Exercise: Traversing linked lists

•  Consider the program linked.c
– Traverses a linked list, computing a sequence of Fibonacci numbers

at each node

•  Parallelize this program using OpenMP tasks

#pragma omp parallel
#pragma omp task
#pragma omp taskwait
#pragma omp master
#pragma omp single

38

Linked lists with tasks

#pragma omp parallel
{
 #pragma omp single
 {
 p=head;
 while (p) {

 #pragma omp task firstprivate(p)
 processwork(p);
 p = p->next;
 }
 }
}

Creates a task with its
own copy of “p”
initialized to the value
of “p” when the task is
defined

39

Thread 0:

p = listhead ;
while (p) {
< package up task >
 p=next (p) ;
}

while (tasks_to_do){
 < execute task >
}

< barrier >

Other threads:

while (tasks_to_do) {
< execute task >
}

< barrier >

Parallel linked list traversal

40

Parallel pointer chasing on multiple lists

#pragma omp parallel
{
 #pragma omp for private(p)
 for (int i =0; i <numlists; i++) {
 p = listheads[i] ;
 while (p) {
 #pragma omp task firstprivate(p)
 {
 process(p);
 }
 p=next(p);
 }
 }
}

All threads package
tasks

 Outline
• OpenMP overview
• Introducing Explicit Tasks in OpenMP
• Working with Tasks
• Tasks and the conceptual core of OpenMP
• Break
• Working with tasks: the divide and conquer
pattern

• Advanced tasking features

41

The OpenMP specification

•  A specification is written for implementers, not users.
•  There is a great deal of low level detail in a spec that helps

prevent ambiguity even in strange “corner cases” most users
never encounter.
– Users can usually ignore such “corner cases”, implementers cannot.

•  The OpenMP specification opens with a jargon-rich
discussion that confuses most users and hence is ignored in
OpenMP tutorials.

•  But as you move from OpenMP-novice to OpenMP-expert,
you need to absorb that content.

42

Execution model jargon
•  A program begins execution as a single thread … the initial

thread.
•  Initial thread executes sequentially within an implicit parallel

region which defines a task region called the initial task region
•  When a parallel region is encountered:
– The task region of the thread encountering the parallel construct is

suspended.
– Team of threads is created with the thread encountering the parallel

construct becoming the master of the new team.
– Each thread in the team runs an implicit task (one per thread, a tied task)
– When the team of threads complete, the task region associated with the

master continues as that thread (and only that thread) proceeds beyond
the barrier.

43

Yuck … why all this complicated jargon? Because now we can define the data
environment precisely in terms of task regions and we cleanly cover all the corner cases

within a single, task based structure.

Data Environments and Tasks

•  The data environment consists of:
– Variables: a named data storage block the value of which can change

as a program runs
–  Internal control variables: Conceptual variables that specify runtime

behavior of threads and tasks
– Thread private variables: a variable replicated with one instance per

thread which provides access to a different block of storage per
thread.

•  A task is … a specific instance of executable code and its
data environment

44

By defining OpenMP constructs in terms of tasks, we only have to define the data
environment concepts once … not separately for each type of construct.

This brings a level of consistency that greatly helps people who must implement
OpenMP.

 Outline
• OpenMP overview
• Introducing Explicit Tasks in OpenMP
• Working with Tasks
• Tasks and the conceptual core of OpenMP
• Break
• Working with tasks: the divide and conquer
pattern

• Advanced tasking features

45

Divide and Conquer Pattern

•  Divide and conquer is an important design pattern with two
distinct phases
– Use when a method to divide problem into subproblems and to

recombine solutions of subproblems into a global solution is available

•  Divide phase:
– Breaks down problem into two or more sub-problems of the same (or

related) type
– Continue division until these sub-problems become simple enough to

be solved directly

•  Conquer phase
– Executes the computations on each of the “indivisible” sub-problems.
– May also combine solutions of sub-problems until the solution of the

original problem is reached.

46

Divide and Conquer Pattern

•  Implementation is typically done with recursive algorithms
– The nature of recursion forms smaller sub-problems that are very

much like the larger problem being solved
– The return from recursive calls can be used to combine partial

solutions into an overall solution

•  Coding Solution
– Define a split operation
– Continue to split the problem until subproblems are small enough to

solve directly
– Recombine solutions to subproblems to solve original global problem

•  Note:
– Computing may occur at any operation phase (split, direct solution,

recombination)

Divide and conquer

•  Split the problem into smaller sub-problems; continue until
the sub-problems can be solve directly

n  3 Options:
¨  Do work as you split

into sub-problems
¨  Do work only at the

leaves
¨  Do work as you

recombine

Quicksort

•  Serial Quicksort algorithm is implemented recursively
•  Given: Unsorted array of elements (each with assoc. key)
•  Goal: Sorted array of elements
•  Divide phase:
–  In each unsorted sub-array, choose an element from as the “pivot”

element
– Partition the array contents such that the pivot item ends up at the

point that divides the array into elements that are less than or equal to
the pivot item and elements that are greater than the pivot item

•  Conquer Phase:
– Pivot element has been placed in sorted position after each partition

•  Worst case complexity: O(n2)
•  Average case complexity: O(n log n)

49

Quicksort Algorithm

• Partition() compares all items against “pivot”
– Linear search through array (serial)
– Moves items less than pivot, greater than pivot

50

void QuickSort(int *A, int p, int r)
{
 if (p < r) {
 int q = Partition(A, p, r);
 QuickSort (A, p, q-1);
 QuickSort (A, q+1, r);
 }
}

Quicksort Illustration

51

485 041 340 526 188 739 489 387

041 188 340 387 485 498 526 739

041 340 188 387 485 739 489 526

041 340 188 387 485 526 489 739

041 188 340 387 485 489 526 739

041 188 340 387 485 489 526 739

Quicksort Code

52

void QuickSort(int *A, int p, int r)
{
 if (r-p <= 1)
 return; /* List of length one or zero */
 else {
 int q = Partition(A, p, r); /* Find pivot */
#pragma omp task
 QuickSort (A, p, q-1);
#pragma omp task
 QuickSort (A, q+1, r);
 }
}

. . .

#pragma omp parallel
{
#pragma omp single
 QuickSort(A, 0, N-1);
}

Exercise: Akari

•  Japanese logic puzzle from Nikoli
•  Goal: Place chess rooks on open squares such that
– No two rooks attack each other
– Numbered squares surrounded by specified number of rooks
– All open squares are “covered” by one or more rooks
– Black squares block attack of rooks

53

Rooks Application

•  Input: board size and list of number and black squares
•  Place rooks around all “4” squares (placeFour())
•  Using backtracking:
– Get next numbered square in list
– Try all rook combinations around square, via recursive call
–  “3” square => 4 combinations (placeThree())
–  “2” square => 6 combinations (placeTwo())
–  “1” square => 4 combinations (placeOne())

–  If no more numbered squares, compile list of all open squares
– Using backtracking:
–  Try rook in/out next open square from list
–  Solution reached when no more open squares

54

Search Tree

55

56

Exercise: Rooks with tasks

•  Build the serial code with make rooks command.
•  Run the serial code with one of the small test files (rooks15.txt, rooks60.txt).

 > ./rooks rooks60.txt
•  Run the serial code with the larger data file and note the execution time:

 > ./rooks rooks111.txt
•  Edit the solveboard.c source file. Decide which level of the search should

generate tasks for the recursive calls by restoring the pragma lines within one or
more functions.

•  Rebuild the parallel version of the application.
•  Set a number of OpenMP threads and run/time the new executable. How does

this compare to the serial code run time?
•  If there is time, you can experiment with more or fewer parts of the code to

generate tasks for the recursive calls to solveBoard() or change the number of
threads used. How do these runs compare to the serial execution time?

 Outline
• OpenMP overview
• Introducing Explicit Tasks in OpenMP
• Working with Tasks
• Tasks and the conceptual core of OpenMP
• Break
• Working with tasks: the divide and conquer
pattern

• Advanced tasking features

57

Task dependencies

!$omp task depend(type:list)
where type is in, out or inout and list is a list of variables.
–  list may contain subarrays: OpenMP 4.0 includes a syntax for C/C++
–  in: the generated task will be a dependent task of all previously

generated sibling tasks that reference at least one of the list items in
an out or inout clause
–  out or inout: the generated task will be a dependent task of all

previously generated sibling tasks that reference at least one of the
list items in an in, out or inout clause

58

Task dependencies example

#pragma omp task depend (out:a)
 { ... } //writes a
#pragma omp task depend (out:b)
 { ... } //writes b
#pragma omp task depend (in:a,b)
 { ... } //reads a and b

•  The first two tasks can execute in parallel
•  The third task cannot start until the first two are complete

59

1D Stencil Example

The heat equation:

60

double k = 0.5; // heat transfer coefficient
double dt = 1.; // time step
double dx = 1.; // grid spacing

double heat(double left, double mid, double right)
{
 return mid+(k*dt/dx*dx)*(left-2*mid+right);
}

1D Stencil Example

Application of the heat equation to a 1D array

61

void heat_part(int size, double* next,
 double* left,
 double *mid, double *right)
{
 next[0] = heat(left[size-1], mid[0], mid[1]);

 for (int i = 1; i < size-1; ++i)
 next[i] = heat(mid[i-1], mid[i], mid[i+1]);

 next[size-1] = heat(mid[size-2], mid[size-1],
 right[0]);
}

1D Stencil Example

Dividing the work into partitions of the array

62

for (int i = 0; i < np; ++i) {
 heat_part(nx, &next[i*nx],
 ¤t[idx(i-1, np)*nx],
 ¤t[i*nx],
 ¤t[idx(i+1, np)*nx]);
}

//idx does the wrapping here
int idx(int i, int size)
{
 return (i < 0) ? (i + size) % size : i % size;
}

1D Stencil Example

Reads and writes need to be done on separate arrays

63

U[0] = malloc(np*nx * sizeof(double));
U[1] = malloc(np*nx * sizeof(double));

double* current = U[0];
double* next = U[1];

1D Stencil Example

Each iteration alternates between arrays

64

for(int t = 0; t < nt; t++) {
 for (int i = 0; i < np; ++i) {
 heat_part(nx, &next[i*nx],
 ¤t[idx(i-1, np)*nx],
 ¤t[i*nx],
 ¤t[idx(i+1, np)*nx]);
 }
 current = U[(t+1) % 2];
 next = U[t % 2];
}

1D Stencil Example

Because of the partitioning, one task directive is needed

65

for(int t = 0; t < nt; t++) {
 for (int i = 0; i < np; ++i) {
#pragma omp task untied depend(out: next[i*nx]) \
 depend(in: current[idx(i-1, np)*nx],\
 current[i*nx], current[idx(i+1, np)*nx])
 heat_part(nx, &next[i*nx],
 ¤t[idx(i-1, np)*nx],
 ¤t[i*nx],
 ¤t[idx(i+1, np)*nx]);
 }
 current = U[(t+1) % 2];
 next = U[t % 2];
}
#pragma omp taskwait

 Outline
•  OpenMP overview

-  Brief summary of OpenMP and the server we’ll be using for this tutorial.
-  Hands-on: Parallel Loops, matrix multiply.

•  Introducing Explicit Tasks in OpenMP
-  Define the task construct
-  Hands-on: The “Racy Car output exercise”.

•  Working with Tasks
-  Task data environment, default rules plus private, shared and firstprivate
-  Task synchronization: barrier and task wait
-  Hands-on: traversing a linked list

•  Tasks and the conceptual core of OpenMP
•  How tasks relate to the conceptual core of OpenMP (implicit parallel regions, implicit tasks, task

completion, and other low level details from the task-concepts/execution model section of the spec)
•  Break
•  Working with tasks: the divide and conquer pattern

-  Divide and conquer design pattern
-  Hands-on: Recursive pi programs
-  Cache oblivious algorithms
-  Hands on: recursive matrix multiply

•  Advanced tasking features
-  Task dependencies
-  Hands-on coMD

•  Advanced Tasking features
-  Task Groups, task-loops, thread-switching, tied vs. untied tasks, mergable, final

66

Task definitions
•  Task: a specific instance of executable code and its data

environment.
•  Task region: all the code encountered during the execution of

a task.
•  When a task construct is encountered by a thread, the

generated task may be:
– Deferred: executed by some thread independently of generating task.
– Undeferred: completes execution before the generating task continues.
–  Included: Undeferred and executed by the thread that encounters the

task construct.

•  Tasks once started may suspend, wait, and restart.
– Tied tasks: if a thread is suspended, the same thread will restart the

thread at a later time.
– Untied tasks: if a task is suspended, any thread in the binding team may

restart the thread at a later time.
67

The task construct (OpenMP 4.5)

68

if([task :]scalar-expression)
untied
default(shared | none)
private(list)
firstprivate(list)
shared(list)
final(scalar-expression)
mergeable
depend(dependence-type : list)
priority(priority-value)

#pragma omp task [clause[[,]clause]...]
 structured-block

where clause is one of the following:

OpenMP 3.0

OpenMP 3.1

OpenMP 4.0

OpenMP 4.5

The evolution of the task construct

Generates an
explicit task

The task construct: the newer/rarely used clauses

69

final(scalar-expression)

OpenMP 3.0 OpenMP 3.1 OpenMP 4.0 OpenMP 4.5

The created task, if suspended, can be executed by
a different thread

If the scalar-expression is true, generated tasks are
undeferred and execute immediately by the
encountering thread.

The task is mergable if it is undeferred and
included (i.e. uses the parent tasks data
environment).

Gives a hint to the compiler to schedule tasks with
a larger priority value (>0) before tasks with a
lower value.

untied

mergeable

priority(priority-value)

Waiting for tasks to complete

70

#pragma omp taskwait

Causes current task region to suspend and wait for completion of all the child
tasks created before the taskwait to complete
•  A standalone directive
•  Defines a task scheduling point

#pragma omp taskgroup
 structured-block

A thread encounters the taskgroup construct. It executes the code in the
structured block.
That thread suspends and waits at the end of the taskgroup region until all child
tasks and any of their descendant tasks are complete.

OpenMP 3.0

OpenMP 4.0

 #pragma omp single
 {
 for (i=0; i<ONEZILLION; i++)
 #pragma omp task
 process(item[i]);
 }

•  Consider the following example ... Where the program may generate so
many tasks that the internal data structures managing tasks overflow.

71

Task switching

•  Solution … Task switching; Threads can switch to other tasks at certain
points called thread scheduling points.

•  With Task switching, a thread can
–  Execute an already generated task … to “drain the task pool”
–  Execute the encountered task immediately (instead of deferring task

execution for later)

Explicit task scheduling

72

#pragma omp taskyield

Tells the OpenMP runtime that the current task can be suspended in favor of
execution of a different task
•  A standalone directive
•  Defines an explicit task scheduling point

OpenMP 3.1

#include <omp.h>
void something_useful (void);
void mutual_excl_op(void);
void foo (omp_lock_t * lock, int n)
{ for (int i = 0; i < n; i++)
 #pragma omp task
 { something_useful();
 while (!omp_test_lock(lock)) {
 #pragma omp taskyield
 }
 mutual_excl_op();
 omp_unset_lock(lock);
 }
}

Grab a lock if you can,
return if you can’t

Tell the runtime it can
suspend current task and

schedule another

Release the lock that protected
mutual_excl_op()

 A function that
only one task at

a time can
execute (mutual

exclusion)

Task scheduling Points
•  Task switching can only occur at Task Scheduling points.
•  Task scheduling points happen …
– After generation of an explicit task
– After completion of a task region
–  In a taskyield region
–  In a taskwait region
– At the end of a taskgropup or barrier
–  In and around regions associated with target constructs (not

discussed here).

•  At a task scheduling point, any of the following can happen
for any tasks bound to the current team
– Begin execution of a tied or untied task
– Resume any suspended task (tied or untied)

73

Task Scheduling Details

•  An included task is executed immediately after generation of
the task

•  Scheduling of new tied tasks is constrained by the set of task
regions that are currently tied to the thread, and that are not
suspended in a barrier region.
–  If this set is empty, any new tied task may be scheduled.
– Otherwise, a new tied task may be scheduled only if it is a descendent

task of every task in the set.

•  A dependent task shall not be scheduled until its task
dependences are fulfilled.

•  When an explicit task is generated by a construct containing an
if clause for which the expression evaluated to false, and the
previous constraints are already met, the task is executed
immediately after generation of the task.

74

Task Execution around task scheduling points

•  Think of a task as a set of “task regions” between task
scheduling points

•  Each “task region” executes uninterrupted from start to end in
the order they are encountered.

•  A correct program must behave correctly and consistently with
all conceivable scheduling sequences that are compatible with
the rules above.
–  If multiple “task regions” between scheduling points modify values in

threadprivate storage, a data race is produced and the state of
threadprivate storage is not defined.
– Lock acquire and release in different task regions may break program-

order lock protocols and deadlock.

75

The taskloop construct (OpenMP 4.5)

76

if([taskloop :]scalar-expr)

 shared(list)

private(list)

firstprivate(list)

lastprivate(list)

default(shared | none)

grainsize(grain-size)

num_tasks(num-tasks)

collapse(n)

final(scalar-expr)

priority(priority-value)

untied

mergeable

nogroup

#pragma omp taskloop [clause[[,]clause]...]
 structured-block

where clause is one of the following:

•  The structured block contains loops in
the standard form

•  Loop iterations are turned into tasks
that execute within a taskgroup (unless
the nogroup clause is present)

•  Grainsize specifies the number of
iterations per task

•  Num_tasks stipulates the number of
tasks to create (unless there are too
few loop iterations)

Conclusion

•  OpenMP was created to handle loop-level programs and basic
multi-threading programs with the Single Program Multiple
Data (SPMD) pattern.

•  With OpenMP 3.0, the task construct was added to support
irregular programs:
– While loops or loops whose iteration limits are not known at compiler

time.
– Recursive algorithms
– divide and conquer problems.

•  The task construct has expanded over the years with new
features to support irregular problems with tasks in each new
release of OpenMP

77

78
78

Programming Irregular
Applications with OpenMP*

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.

Thank You
for attending

Please fill out your
tutorial evaluations

Backup slides to keep around …
important raw material

79

BLAS 3 based Gaussian Elimination
A = LU

80

A(end+1:n,end+1:n)

Completed part of U
C

om
pl

et
ed

 p
ar

t o
f L

A(ib:end,end+1:n)

b

end ib

ib

end

b

A(ib:end,ib:end)

Mergesort

•  Prototypical Divide and Conquer via recursive algorithm
•  Given: Unsorted array of elements (each with assoc. key)
•  Goal: Sorted array of elements
•  Divide Phase:
– Split the unsorted array into two unsorted sub-arrays
– Continue splitting each sub-array until a single element is reached
–  At this point, each sub-array contains a sorted list

•  Conquer phase:
– Take two adjacent sorted sub-arrays and uses merge to create a

larger sorted sub-array
–  The recursive solution provides a means to automatically retrace the

divide computations in the reverse order

81

Mergesort Illustration

82

485 041 340 526 188 739 489 387

485 041 340 526 188 739 489 387

485 041 340 526 188 739 489 387

485 041 340 526 188 739 489 387

041 485 340 526 188 739 387 489

041 340 485 526 188 387 489 739

041 188 340 387 485 498 526 739

Parallel Mergesort Questions

•  Very regular pattern of array division
•  In parallel:
– Where do merge results get stored?
–  Serial Merge deposits elements from sorted lists A and B into third array C

(size equal to A+B)
–  Alternating scheme via parameters? (ala recursive Towers of Hanoi)

–  If tasks used, how do they coordinate to not overwrite other task
results?
–  Allocate new storage for each merge result?
–  In-place merge algorithm?

83

Program: OpenMP tasks (divide and conquer pattern)
#include <omp.h>
static long num_steps = 100000000;
#define MIN_BLK 10000000
double pi_comp(int Nstart,int Nfinish,double step)
{ int i,iblk;
 double x, sum = 0.0,sum1, sum2;
 if (Nfinish-Nstart < MIN_BLK){
 for (i=Nstart;i< Nfinish; i++){
 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }
 }
 else{
 iblk = Nfinish-Nstart;
 #pragma omp task shared(sum1)
 sum1 = pi_comp(Nstart, Nfinish-iblk/2,step);
 #pragma omp task shared(sum2)
 sum2 = pi_comp(Nfinish-iblk/2, Nfinish, step);
 #pragma omp taskwait
 sum = sum1 + sum2;
 }return sum;
}

 int main ()
 {
 int i;
 double step, pi, sum;
 step = 1.0/(double) num_steps;
 #pragma omp parallel
 {
 #pragma omp single
 sum =

 pi_comp(0,num_steps,step);
 }
 pi = step * sum;
 }

Results*: pi with tasks

85

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW thread)
Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

•  Original Serial pi program with 100000000 steps ran in 1.83 seconds.

threads 1st SPMD SPMD
critical

PI Loop Pi tasks

1 1.86 1.87 1.91 1.87

2 1.03 1.00 1.02 1.00

3 1.08 0.68 0.80 0.76

4 0.97 0.53 0.68 0.52

Cache Oblivious algorithms
•  Linear algebra libraries are

expected to deliver peak
performance.

•  Library developers go to great
lengths to divide their problems
into blocks that fit into the
caches on a particular system.

•  This works great, but (1) it
requires skills few
programmers have, and (2)
code may need to change in
response to small chances in a
memory hierarchy.

86
Source: Field G. Van Zee and Robert van de Geijn, BLIS: A framework for Rapidly Instantiating BLAS
functionality, submitted to ACM TOMS, 2013.

•  An Alternative approach: Cache Oblivious algorithms. Use divide and
conquer to naturally decompose a problem into small subproblems that fit
a memory hierarchy. No explicit cache blocking required!!

Blocked Matrix Multiply with BLIS

Cache Oblivious matrix multiplication using a
recursive algorithm

•  Quarter each input matrix and output matrix
•  Treat each submatrix as a single element and multiply
•  8 submatrix multiplications, 4 additions

A B C

A1,1 A1,2

A2,1 A2,2

B1,1 B1,2

B2,1 B2,2

C1,1 C1,2

C2,1 C2,2

C1,1 = A1,1·B1,1 + A1,2·B2,1

C2,1 = A2,1·B1,1 + A2,2·B2,1

C1,2 = A1,1·B1,2 + A1,2·B2,2

C2,2 = A2,1·B1,2 + A2,2·B2,2

87

Recursive matrix multiplication
 How to multiply submatrices?

•  Use the same routine that is computing the full matrix
multiplication
– Quarter each input submatrix and output submatrix
– Treat each sub-submatrix as a single element and multiply

A B C

A1,1 A1,2

A2,1 A2,2

B1,1 B1,2

B2,1 B2,2

C1,1 C1,2

C2,1 C2,2

C111,1 = A111,1·B111,1 + A111,2·B112,1 +
 A121,1·B211,1 + A121,2·B212,1

C1,1 = A1,1·B1,1 + A1,2·B2,1

88

A1,1

A111,1 A111,2

A112,1 A112,2

B1,1

B111,1 B111,2

B112,1 B112,2

C1,1

C111,1 C111,2

C112,1 C112,2

C1,1 = A1,1·B1,1 + A1,2·B2,1

C2,1 = A2,1·B1,1 + A2,2·B2,1

C1,2 = A1,1·B1,2 + A1,2·B2,2

C2,2 = A2,1·B1,2 + A2,2·B2,2

Recursive matrix multiplication
 Recursively multiply submatrices

•  Also need stopping criteria for recursion
89

void matmultrec(int mf, int ml, int nf, int nl, int pf, int pl,

 double **A, double **B, double **C)

{// Dimensions: A[mf..ml][pf..pl] B[pf..pl][nf..nl] C[mf..ml][nf..nl]

// C11 += A11*B11

 matmultrec(mf, mf+(ml-mf)/2, nf, nf+(nl-nf)/2, pf, pf+(pl-pf)/2, A,B,C);

// C11 += A12*B21

 matmultrec(mf, mf+(ml-mf)/2, nf, nf+(nl-nf)/2, pf+(pl-pf)/2, pl, A,B,C);

 . . .

}

l  Need range of indices to define each submatrix to be used

Exercise: Parallel recursive matrix multiply

•  Source code implementing this algorithm is provided in the
file matmul_recur.c

•  Parallelize this program using OpenMP tasks
#pragma omp parallel
#pragma omp task
#pragma omp taskwait
#pragma omp master
#pragma omp single
double omp_get_wtime()
int omp_get_thread_num();
int omp_get_num_threads();

90

#define THRESHOLD 32768 // product size below which simple matmult code is called

void matmultrec(int mf, int ml, int nf, int nl, int pf, int pl,
 double **A, double **B, double **C)

// Dimensions: A[mf..ml][pf..pl] B[pf..pl][nf..nl] C[mf..ml][nf..nl]

{
 if ((ml-mf)*(nl-nf)*(pl-pf) < THRESHOLD)
 matmult (mf, ml, nf, nl, pf, pl, A, B, C);
 else
 {
#pragma omp task firstprivate(mf,ml,nf,nl,pf,pl)
{
 matmultrec(mf, mf+(ml-mf)/2, nf, nf+(nl-nf)/2, pf, pf+(pl-pf)/2, A, B, C); // C11 += A11*B11
 matmultrec(mf, mf+(ml-mf)/2, nf, nf+(nl-nf)/2, pf+(pl-pf)/2, pl, A, B, C); // C11 += A12*B21
}
#pragma omp task firstprivate(mf,ml,nf,nl,pf,pl)
{
 matmultrec(mf, mf+(ml-mf)/2, nf+(nl-nf)/2, nl, pf, pf+(pl-pf)/2, A, B, C); // C12 += A11*B12
 matmultrec(mf, mf+(ml-mf)/2, nf+(nl-nf)/2, nl, pf+(pl-pf)/2, pl, A, B, C); // C12 += A12*B22
}
#pragma omp task firstprivate(mf,ml,nf,nl,pf,pl)
{
 matmultrec(mf+(ml-mf)/2, ml, nf, nf+(nl-nf)/2, pf, pf+(pl-pf)/2, A, B, C); // C21 += A21*B11
 matmultrec(mf+(ml-mf)/2, ml, nf, nf+(nl-nf)/2, pf+(pl-pf)/2, pl, A, B, C); // C21 += A22*B21
}
#pragma omp task firstprivate(mf,ml,nf,nl,pf,pl)
{
 matmultrec(mf+(ml-mf)/2, ml, nf+(nl-nf)/2, nl, pf, pf+(pl-pf)/2, A, B, C); // C22 += A21*B12
 matmultrec(mf+(ml-mf)/2, ml, nf+(nl-nf)/2, nl, pf+(pl-pf)/2, pl, A, B, C); // C22 += A22*B22
}
#pragma omp taskwait

 }
}

Recursive matrix multiplication

91

•  Could be executed in parallel as 4 tasks
–  Each task executes the two calls for the same output submatrix of C

•  However, the same number of multiplication operations needed

Extra: LU Example

92

LU Decomposition

93

•  The matrix is divided into NxN
blocks, and a task operates on
one block.

•  Each iteration the working
matrix gets one block smaller
in each dimension, resulting in
a task graph resembling the
one to the right.

LU Decomposition

94

For Comparison, the tasking
version without dependencies
resembles a fork join
programming model, similar to
a worksharing version.

LU Decomposition
There are 4 different

operations (diag, row, col,
and inner), and the the
dependencies between
these operations are shown
in the graph to the right.

95 Source: CS164 lecture Fall 2014, Kurt Keutzer of UC Berkeley

LU Decomposition

96

void diag_op(const block &B) {

 for(int i = 0; i < B.width; i++)

 for(int j = i+1; j < B.width; j++) {

 B.start[j*B.stride+i] /= B.start[i*B.stride+i];

 for(int k = i+1; k < B.width; k++)

 B.start[j*B.stride+k] -= B.start[j*B.stride+i] * B.start[i*B.stride+k];

}}

void col_op(const block &B1, const block &B2) {

 for(int i=0; i < B2.width; i++)

 for(int j=0; j < B1.height; j++) {

 B1.start[j*B1.stride+i] /= B2.start[i*B2.stride+i];

 for(int k = i+1; k < B2.width; k++)

 B1.start[j*B1.stride+k] += -B1.start[j*B1.stride+i] * B2.start[i*B2.stride+k];

}}

void row_op(const block &B1, const block &B2) {

 for(int i=0; i < B2.width; i++)

 for(int j=i+1; j < B2.width; j++)

 for(int k=0; k < B1.width; k++)

 B1.start[j*B1.stride+k] += -B2.start[j*B2.stride+i] * B1.start[i*B1.stride+k];

}

void inner_op(const block &B1, const block &B2, const block &B3) {

 for(int i=0; i < B3.width; i++)

 for(int j=0; j < B1.height; j++)

 for(int k=0; k < B2.width; k++)

 B1.start[j*B1.stride+k] += -B3.start[j*B3.stride+i] * B2.start[i*B2.stride+k];

}

•  Each operation is put into a function, and the core logic
(without tasks) is shown below

LU Decomposition

97

void LU(int num_blocks) {

 for(int i=0; i<num_blocks; i++) {
 diag_op(block_list[i][i]);
 for(int j=i+1; j<num_blocks; j++){
 row_op(block_list[i][j], block_list[i][i]);
 col_op(block_list[j][i], block_list[i][i]);
 }
 for(int j=i+1; j<num_blocks; j++) {
 for(int k=i+1; k<num_blocks; k++) {
 inner_op(block_list[j][k], block_list[i][k],
 block_list[j][i]);
 }
 }
 }
}

•  Now to add the directives that create tasks and establish
dependencies.

LU Decomposition

98

for(int i=0; i<num_blocks; i++) {
#pragma omp task depend(inout: block_list[i][i])
 diag_op(block_list[i][i]);

 for(int j=i+1; j<num_blocks; j++) {
#pragma omp task depend(in : block_list[i][i]) \
 depend(inout: block_list[i][j])
 row_op(block_list[i][j], block_list[i][i]);
#pragma omp task depend(in : block_list[i][i]) \
 depend(inout: block_list[j][i])
 col_op(block_list[j][i], block_list[i][i]);
 }
 for(int j=i+1; j<num_blocks; j++) {
 for(int k=i+1; k<num_blocks; k++) {
#pragma omp task depend(in: block_list[i][k], block_list[j][i]) \
 depend(inout: block_list[j][k])
 inner_op(block_list[j][k], block_list[i][k],
 block_list[j][i]);
 }
 }
}
#pragma omp taskwait

LU Decomposition
Recursive Cache Oblivious Algorithm

99

•  This approach forces the amount of work per task and the
blocking size for the targeted cache to be the same.

•  This becomes an issue on larger matrix sizes, and on
architectures with smaller caches. Either the number of
tasks gets very large and increases overhead, or the tasks
don’t take advantage of Cache.

•  A cache oblivious algorithm provides a way to control the
number of tasks while still optimizing for one or more levels
of cache within each task.

LU Decomposition
Recursive Cache Oblivious Algorithm

100

B0,2

B0,3

B1,2 B1,3

B0,0 B0,1

B1,0

B1,1

B2,2 B2,3

B3,2

B3,3

B2,0 B2,1

B3,0 B3,1

•  To start with an
example, take a matrix
divided into 4x4 blocks

LU Decomposition
Recursive Cache Oblivious Algorithm

101

Row Row

Inner Inner

Diag Row

Col Inner

Inner Inner

Inner Inner

Col Inner

Col Inner

•  The first version would
go through the first
iteration and create
tasks for these blocks,
then move on to the next
iteration.

LU Decomposition
Recursive Cache Oblivious Algorithm

102

Row

Col

Diag

Inner

•  The recursive version
starts by calling Diag to
divide the whole matrix
into quadrants.

•  Each of these quadrants
is processed, and then
Diag is called again on
the output of Inner,
which handles the
second half of iterations.

LU Decomposition
Recursive Cache Oblivious Algorithm

103

Diag Row

Col Inner

Row

Col Inner

•  Within diag, the blocks
are processed as shown.

LU Decomposition
Recursive Cache Oblivious Algorithm

104

Diag Row

Col Diag

Row

Col Inner

•  Then, like mentioned
earlier, diag is called
again to handle the next
iteration.

LU Decomposition
Recursive Cache Oblivious Algorithm

105

Diag Row

Col Diag

Col Inner

•  Similarly, row and inner
are called for the first
iteration.

Row Row

Inner Inner

LU Decomposition
Recursive Cache Oblivious Algorithm

106

Diag Row

Col Diag

Col Inner

•  Then row is called again
for the second iteration. Row Row

Row Row

LU Decomposition
Recursive Cache Oblivious Algorithm

107

Diag Row

Col Diag

Inner

•  Once the row quadrant
is finished, the col
quadrant is similarly
processed.

Row Row

Row Row

Col Inner

Col Inner

LU Decomposition
Recursive Cache Oblivious Algorithm

108

Diag Row

Col Diag

Inner

•  And again, col is
processed for the
second iteration.

Row Row

Row Row

Col Col

Col Col

LU Decomposition
Recursive Cache Oblivious Algorithm

109

Diag Row

Col Diag

•  Each of the blocks in
inner is processed using
row and column 0 for the
first iteration. Then
processed again using
row and column 1 for the
second iteration.

Row Row

Row Row

Col Col

Col Col

Inner Inner

Inner Inner

LU Decomposition
Recursive Cache Oblivious Algorithm

110

Diag Row

Col Diag

•  Now the Inner quadrant
is done and ready to be
passed to diag, and
perform what would be
the third iteration.

Row Row

Row Row

Col Col

Col Col

Diag Row

Col Inner

LU Decomposition
Recursive Cache Oblivious Algorithm

111

Diag Row

Col Diag

•  And the final step is diag
on the last block, for the
fourth iteration.

Row Row

Row Row

Col Col

Col Col

Diag Row

Col Diag

LU Decomposition
Recursive Cache Oblivious Algorithm

And now code for the serial version Diag Row

Col Inner
void rec_diag(int iter, int mat_size) {
 int half = mat_size/2;
 if(mat_size == 1) {
 diag_op(block_list[iter][iter]);
 } else {
 rec_diag (iter, half);
 rec_row (iter, iter+half, half);
 rec_col (iter, iter+half, half);
 rec_inner(iter, iter+half, iter+half, half);
 rec_diag (iter+half, half);
 }
}

LU Decomposition
Recursive Cache Oblivious Algorithm

113

void rec_row(int iter, int i, int mat_size) {
 int half= mat_size/2;
 if(mat_size == 1) {
 row_op(block_list[iter][i],
 block_list[iter][iter]);
 } else {
 //left side
 rec_row (iter, i, half);
 rec_inner(iter, iter+half, i, half);
 rec_row (iter+half, i, half);
 //right side
 rec_row (iter, i+half, half);
 rec_inner(iter, iter+half, i+half, half);
 rec_row (iter+half, i+half, half);
 }
}

Row Row

Inner Inner

LU Decomposition
Recursive Cache Oblivious Algorithm

114

void rec_col(int iter, int i, int mat_size) {
 int half= mat_size/2;
 if(mat_size == 1) {
 col_op(block_list[i][iter],
 block_list[iter][iter]);
 } else {
 //top half
 rec_col (iter, i, half);
 rec_inner(iter, i, iter+half, half);
 rec_col (iter+half, i, half);
 //bottom half
 rec_col (iter, i+half, half);
 rec_inner(iter, i+half, iter+half, half);
 rec_col (iter+half, i+half, half);
 }
}

Col Inner

Col Inner

LU Decomposition
Recursive Cache Oblivious Algorithm

115

void rec_inner(int iter,
 int i, int j, int mat_size) {
 int half = mat_size/2;
 int offset_i = i+half;
 int offset_j = j+half;
if(mat_size == 1){
 inner_op(block_list[i][j],
 block_list[iter][j],
 block_list[i][iter]);
 } else {
 rec_inner(iter, i, j, half);
 rec_inner(iter, i, offset_j, half);
 rec_inner(iter, offset_i, j, half);
 rec_inner(iter, offset_i, offset_j, half);

 rec_inner(iter+half, i, j, half);
 rec_inner(iter+half, i, offset_j, half);
 rec_inner(iter+half, offset_i, j, half);
 rec_inner(iter+half, offset_i, offset_j, half);
 }
}

Inner Inner

Inner Inner

LU Decomposition
Recursive Cache Oblivious Algorithm

116

•  Adding only tasking directives with depend the clause to this
serial version would result in the program creating the same
tasks as the previous version.

•  In order to get the locality benefits of the cache oblivious
algorithm, a cutoff is needed.

LU Decomposition
Recursive Cache Oblivious Algorithm

117

void rec_diag(int iter, int mat_size) {
 int half = mat_size/2;
 if(half == nesting_size_cutoff) {
#pragma omp task depend(inout: block_list[iter][iter])
 rec_diag (iter, half);
#pragma omp task depend(in: block_list[iter][iter]) \
 depend(inout: block_list[iter][iter+half])
 rec_row (iter, iter+half, half);
#pragma omp task depend(in: block_list[iter][iter]) \
 depend(inout: block_list[iter+half][iter])
 rec_col (iter, iter+half, half);
#pragma omp task depend(in: block_list[iter][iter+half], block_list[iter
+half][iter]) \
 depend(inout: block_list[iter+half][iter+half])
 rec_inner(iter, iter+half, iter+half, half);
#pragma omp task depend(inout: block_list[iter+half][iter+half])
 rec_diag (iter+half, half);
 } else if(mat_size == 1) {
 diag_op(block_list[iter][iter]);
 } else {
 rec_diag (iter, half);
 rec_row (iter, iter+half, half);
 rec_col (iter, iter+half, half);
 rec_inner(iter, iter+half, iter+half, half);
 rec_diag (iter+half, half);
 }
}

LU Decomposition
Recursive Cache Oblivious Algorithm

 The recursive cache version improves performance
substantially.

LU Decomposition
Recursive Cache Oblivious Algorithm

 The recursive cache version improves performance
substantially.

119

