Process and Thread Affinity with OpenMP

Zhengji Zhao
NERSC User Services Group

October 7, 2013
Outline

• Motivation
• How to compile and run
• Default process/thread affinity
• Aprun options to manipulate affinity
• Recommendations to users
• Hands on
Motivation

• What is process/thread affinity?
• In proper process/thread affinity could slow down code performance significantly
• Learn about default process/thread affinity on Edison and how to manipulate process/thread affinity to avoid performance penalty
Note: This diagram is for illustration purpose only, the actual core distribution on the node may be different from this diagram.
How to compile hybrid MPI + OpenMP codes

• **Intel compiler:**
 – PrgEnv-intel is the default
 – cc -openmp -o xthi.intel xthi.c

• **GNU compiler:**
 – module swap PrgEnv-intel PrgEnv-gnu
 – cc -fopenmp -o xthi.gnu xthi.c

• **Cray compiler:**
 – module swap PrgEnv-intel PrgEnv-cray
 – cc -o xthi.cray xthi.c
How to run hybrid MPI/OpenMP jobs

#!/bin/bash

#PBS -l
#PBS -q regular
#PBS -l mppwidth=240
#PBS -l walltime=12:00:00
#PBS -N my_job
#PBS -j oe

cd $PBS_O_WORKDIR

export OMP_NUM_THREADS=12

for executables compiled with Intel compiler
aprun -n20 -N 2 -S 1 -d 12 -cc numa_node ./a.out

for codes compiled with Cray or GNU compilers
aprun -n20 -N2 -S1 -d12 ./a.out
Edison default is to pin each process/thread to a specific core (in a compact way). Most of the cases, the default process/thread affinity works fine, but not always.

http://portal.nersc.gov/project/training/EdisonPerformance2013/affinity/
Default process/thread affinity

• Intel compiler
 – Pure MPI codes, the process affinity works fine if running on fully packed nodes
 – There is issues with thread affinity - all threads from an MPI task are pined to a single core where the MPI task is placed.

• GNU compiler
 – Works fine

• Cray compiler
 – Works fine
Manipulate process/thread affinity

- S, -sn, -sl, -cc, and -ss options control how your application uses the NUMA nodes.
 - -n Number of MPI tasks.
 - -N (Optional) Number of MPI tasks per Edison Node. Default is 24.
 - -S (Optional) Number of tasks per NUMA node. Values can be 1-12; default 12
 - -sn (Optional) Number of NUMA nodes to use per Edison node. Values can be 1-2; default 2
 - -ss (Optional) Demands strict memory containment per NUMA node. The default is the opposite - to allow remote NUMA node memory access.
 - -cc (Optional) Controls how tasks are bound to cores and NUMA nodes. The default setting on Edison is -cc cpu which restricts each task to run on a specific core.

- These options are important on Edison if you use OpenMP or if you don't fully populate the Edison nodes.

http://portal.nersc.gov/project/training/EdisonPerformance2013/affinity
Recommended process/thread affinity

- Running on unpacked nodes
 #PBS –l mppwidth=48 #2 nodes
 aprun –n 24 –N 12 –S 6 ./a.out

- Running with OpenMP threads
 #for threads per task <= 12
 setenv OMP_NUM_THREADS 12
 #for binaries compiled with Intel compilers
 aprun –n 4 –N 2 -S 1 –d 12 –cc numa_node ./a.out
 # for binaries compiled with gnu or cray compilers.
 aprun -n 4 -N 2 -S1 -d 12 ./a.out

 #for threads per task <= 24
 export OMP_NUM_THREADS=24
 #for binaries compiled with Intel compilers
 aprun –n 2 –N 1 –d 24 –cc none ./a.out
 # for binaries compiled with gnu or cray compilers.
 aprun –n 2 –N 1 -d 24 ./a.out
Default OMP_NUM_THREADS

- Intel compiler:
 - Default to the number of cpu slots available

- GNU compiler:
 - Default to the number of cpu slots available

- Cray compiler:
 - Default: OMP_NUM_THREADS=1
Hands on

```
cp -pr /project/projectdirs/training/EdisonPerformance2013/affinity/affinity.tar $HOME
```

- Compile and run
 - Compile.sh
 - qsub –l –l mppwidth=48 –q debug

- Set OMP_NUM_THREADS
 - aprun -n4 -N4 -S2 -d6 -cc numa_node xthi.intel|sort +3 +5 +11 –n

- Try with OMP_NUM_THREADS not set
 - aprun -n4 -N4 -S2 -d6 -cc numa_node xthi.intel|sort +3 +5 +11 –n

Thank you for your attention!