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What is different about Cori? | NERSC/ YEARS
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e Cori will begin to transition the workload to lll"""" '" ' 1]
more energy efficient architectures 7.

e Cray XC system with over 9300 Intel Knights
Landing (Xeon-Phi) compute nodes

— Self-hosted, (not an accelerator) manycore processor
with over 60 cores per node

— On-package high-bandwidth memory

e Data Intensive Science Support
— NVRAM Burst Buffer to accelerate applications
— 28PB of disk and >700 GB/sec I/O bandwidth

System named after Gerty Cori,

GER\ U.S. DEPARTMENT OF Office of Biochemist and first American woman to
ENERGY Science receive the Nobel prize in science.




What is different about Cori?

YEARS
atthe

FOREFRONT

Edison (lvy-Bridge):

e 12 Cores Per CPU
e 24 Virtual Cores Per CPU

o 24-32GHz

e Can do 4 Double Precision
Operations per Cycle (+ multiply/add)

e 2.5GB of Memory Per Core

e ~100 GB/s Memory Bandwidth
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Cori (Knights-Landing):

60+ Physical Cores Per CPU
240+ Virtual Cores Per CPU

Much slower GHz

Can do 8 Double Precision
Operations per Cycle (+ multiply/add)

< 0.3 GB of Fast Memory Per Core
< 2 GB of Slow Memory Per Core

Fast memory has ~ 5x DDR4
bandwidth
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What is different about Cori? | NERSC/ 8 < JEARS
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Two Big Changes:

1. More on node parallelism. More cores, bigger vectors

High-bandwidth In-Package Memory

Far Memory

2. Small amount of very fast memory.
(similar-ish amounts of traditional DDR)

/CPU Package
3;_;,';*""‘\'3,‘;1 U.S. DEPARTMENT OF Office of % 2 ;
ENERGY Science Source: http://newsroom.intel.com




Key Concepts
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MPI Vs. OpenMP For Multi-Core Programming KRS/ JoaRs

FOREFRONT

MPI — OpenMP
CPU CPU
Core
\ y CPU CPU CPU CPU
Core Core Core Core
Private
Arrays Network
Interconnect

Memory, Shared Arrays etc.

CPU CPU
Core Core Typically less memory overhead/duplication.
\ y \ y Communication ofte_n implicit, through cache
coherency and runtime
| Memory | Memory
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PARATEC Use Case For OpenMP m el
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wwFFT "DGEMM" —MPI

2000
PARATEC computes parallel 1800 A

FFTs across all processors. 1600
1400 ‘ \ E—

1200 \\ -
P \ 4.

Reducing the number of MPI 600 \ R | -
tasks in favor OpenMP 400 o~

threads makes large 200 \‘
improvement in overall 0

runtime. 1 2 3 6 12

Involves MPI all-to-all
communication (small
messages, latency bound).

Time/s

768 384 256 128 64
OpenMP threads / MPI tasks

U.S. DEPARTMENT OF Office of

=
ENERGY orere il




Vectorization
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There is a another important form of on-node parallelism

do i =1, n
a(i)
enddo

a, b, C
=| ... |+
al’l bn Cl’l

Vectorization: CPU does identical operations on different data; e.g., multiple iterations of the

above loop can be done concurrently.
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Vectorization m YEARS
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There is a another important form of on-node parallelism

do i =1, n
a(i)
enddo

aj b, ¢
L : o 00 + L
Intel Xeon Sandy-Bridge/Ivy-Bridge: 4 Double Precision Ops Concurrently
Vectori! Intel Xeon Phi: 8 Double Precision Ops Concurrently 5 of the
above | NVIDIA Kepler GPUs: 32 SIMT threads
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Things that prevent vectorization in your code KRS/ g
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Compilers want to “vectorize” your loops whenever possible. But sometimes they
get stumped. Here are a few things that prevent your code from vectorizing:

Loop dependency:
do i =1, n
a(i) = a(i-1) + b(1i)
enddo
Task forking:
do i =1, n
1f (a(i) < x) cycle
if (a(i) > x)
enddo
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Memory Bandwidth
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Consider the following loop:

doi=1,n
doj=1,m
c =c + a(i) * b()
enddo
enddo

WY, U.S. DEPARTMENT OF Oﬁlce Of

7 ENERGY Science

Assume, n & m are very large such that a & b don't fit into
cache.

Then,

During execution, the number of loads From DRAM is

n*m+n

BEREL EYERS



Memory Bandwidth | NERSC/ &

FOREFRONT

Consider the following loop: Assume, n & m are very large such that a & b don't fit into cache.

Assume, n & m are very large such that a & b don't fit into

doi=1,n cache.
doj=1,m
¢ = ¢ + afi) * b() Then,
enddo During execution, the number of loads From DRAM is
enddo
n*m +n

Requires 8 bytes loaded from DRAM per FMA (if supported). Assuming 100 GB/s bandwidth on
Edison, we can at most achieve 25 GFlops/second (2 Flops per FMA)

Much lower than 460 GFlops/second peak on Edison node. Loop is memory bandwidth bound.
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Roofline Model For Edison m [yeaRs
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Edison Node Roofile Based on Stream of 89GB/s and Peak Flops of 460 GFlop/Sec

. - "Roofline —
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, U.S. DEPARTMENT OF Office of
B

ERGY Science BE;E;H‘E




Improving Memory Locality

Resc/Al
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Improving Memory Locality. Reducing bandwidth required.

doi=1,n
doj=1,m
c =c + a(i) * b()
enddo

enddo

Loads From DRAM:

n*m + n

WY, U.S. DEPARTMENT OF Offlce Of

ENERGY Science

do jout = 1, m, block
doi=1,n
do j = jout, jout+block
c =c + a(i) * b()
enddo
enddo
enddo

Loads From DRAM:

m/block * (n+block)
= n*m/block + m

BERKELEY LA



Improving Memory Locality Moves you to the Right on the Roofline m .
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Edison Node Roofile Based on Stream of 89GB/s and Peak Flops of 460 GFlop/Sec
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Optimization Strategy
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Optimizing Code For Cori is like:  NERSC/ jears
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A. A Staircase? (More)

Optimized Code

B. A Labyrinth ?

1
C. A Space Elevator?

Office of
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OpenMP

scales only to 4

\
IIIAVM/NMAVM/NMAVM/NIIAVM/NIIAVM/NIMVM/NIMVMI/NIIAVMI

Threads

Utilize
performant /
portable
libraries

large cache
miss rate

Communication
dominates beyond
100 nodes

Compute intensive
doesn’t vectorize

MPI/OpenMP
Scaling Issue

Use Edison to
Test/Add OpenMP
Improve Scalability.

Help from NERSC/Cray

COE Available.

Code shows no
improvements
when turning on
vectorization

An Ant Farm!

50% Walltime
islO

(.
i,

Memory bandwidth 1O bottlenecks

bound kernel
Increase

Memory . .
Can you Locality Utilize High-Level
use a |O-Libraries. Consult
library? with NERSC about

Create micro-kernels or
examples to examine
thread level
performance,
vectorization, cache use,
locality.

use of Burst Buffer.

The Dungeon:
Simulate kernels on KNL.
Plan use of on package
memory, vector
instructions.



The Ant Farm Flow Chart
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Use IPM to Measure Communication Time
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Use IPM and Darshan to
Measure and Remove
Communication and 10
Bottlenecks from Code

https://www.nersc.qgov/users/software/debugging-and-profiling/ipm/

I# wallclock

953.272 29.7897 29.6092 29.9752 I
| # user 837.25 26.1641 25.71 26.92 |
# system 60.6 1.89375 1.52 2.59 I
4 mpi 264.267 8.25834 7.73025 8.70985
| # %comm 27.7234 25.8873 29.3705 |
I# [time] [calls] <%mpi> <%$wall> I
| # MPI_Send 188.386 639616 71.29 19.76 |
| # MPI Wait 69.5032 639616 26.30 7.29 I
# MPI_Irecv 6.34936 639616 2.40 0.67
| # MPI_Barrier 0.0177442 32 0.01 0.00 |
0.00540609 32 0.00 0.00 ]

I# MPI_Reduce
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https://www.nersc.gov/users/software/debugging-and-profiling/ipm/
https://www.nersc.gov/users/software/debugging-and-profiling/ipm/
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Use Darshan to Measure 10 Time/Performance

https://www.nersc.gov/users/software/debugging-and-profiling/darshan

rimated I/O Rate (Read+Written, MB/Second)

Il Measured

Theoratical Peak
30,000

I 3 084.7
15k 20k 25k 30k 35k

Jk Sk 10k
Rate (MB/Second)

Percentage time spent on 1/0O

1/0: 2.528 %
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https://www.nersc.gov/users/software/debugging-and-profiling/darshan
https://www.nersc.gov/users/software/debugging-and-profiling/darshan

Measuring Your Memory Bandwidth Usage (VTune

atthe
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@ rppications Places system @) & [ ) Thuoct 2. 130:59PM  mic
= <no current project> - Intel VTune Amplifier x

[ =)
# Bandwidth Bandw viewpoint (

ollection Log| | @ Analysis Target| | © Anal

Measure memory e
bandwidth usage in e

VTu ne- NeXt Talk H frato2r wmzv-v;:::;

lpackage_0

jat.021

lpackage_1

Compare to Stream b | e— " N

ik CPU Time:

Read Bandwidth,

GBs. i T ‘ i
If 90% of stream, you are i

CPU Time

memory bandwidth

Grouping: | FunconCal Stack

b d Function / Call Stack CP.w® Instructions Retired  CPI Rate Module Function (Full) Sou... Sta g
ound. DMAN sompsporaie, or6400

57,796,086,694 2.502 ffkernel.new2.x MAIN_ sompsparallel_fo... ffke ... 0x4
D__kmp_wait_sleep_template 5.6% 7.248,010,872 1.187 libiomps.s0 __kmp_wait_sleep_temp... kmp.. 0x4 3
DMAIN_sompsparallel_for@549 2.5% 2,754,004,131 1.476 ffkernel.new2.x MAIN__sompsparallel_fo... ffke... 0x4.
D[Outside any known module] 2.3% 556,000,834 6.737 [Outside any known mo [ | |
b_kmp_x86_pause 12% 3.362,005,043 0.616 libiompS.s0 _kmp_x86_pause ox9
DMAIN_sompsparallel_for@324 0.5% 1,050,001,575. 0.724 fikernel.new2.x MAIN__sompsparallel_fo... ffke... 0x4.
tkernel 03% 196,000294 2480 flkernel.new.x fikernel ke .. oxa
eSS, more 1ests nee b_mp.yied 076 143000223 0255 iblompsse .y
’ DMAIN_sompsparallel_for@251 0.1% 252,000,378 0.770 fikernel.new2.x MAIN__sompsparallel_fo... ffke... 0x4.
b_scned_yield 0.0% 90,000,135 0.267 libc-2.12.50 _ sched_yield 03
to be d one DHAN. sompsparateor@é0 oo% 16,000,027 1.000| ferneLnewx WA sompsparaie fo_ ke oxt
. b_sumi_loga_e9 0.0% 8,000,012, 0.750 ffkernel.new2.x __svml_log4_e9 oxa.
Pfunc@oxpcso 0.0% 0 0.000 libittnotify_collector.so  func@0xbcB0 0xb.
R : Selected 1 rowts) | 89.4%  57.796,086,693 3503 - . =
o D)
o iers are appies Ay rocess -m Threas V-w odle b o
| @ mic@localhost:~/BGw. [mic] [% Notes (~) - gedit [ t<no current project> ... || 2] (<no current project> ... || g <no current project>.
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Are you memory or compute bound? Or both? ml-ﬁ““i
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Are you memory or compute bound? Or both? Nifesc/ JEins

FOREFRONT

R“U” Example ,i’n If you run on only half of the cores on a node, each core you do run
Half Packed has access to more bandwidth
Mode
aprun-n24-N12-S6 ... VS aprun -n 24 -N 24 -S 12 ...

If your performance changes, you are at least partially memory bandwidth bound

WY, U.S. DEPARTMENT OF Oﬁlce of
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Are you memory or compute bound? Or both? Nifesc/ JEins
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Run Example Reducing the CPU speed slows down computation, but doesn’t reduce

at "Half Clock” memory bandwidth available.
Speed
aprun --p-state=2400000 ... VS aprun --p-state=2200000 ...

If your performance changes, you are at least partially compute bound

WY, U.S. DEPARTMENT OF Oﬁlce of
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So, you are Memory Bandwidth Bound?

W I l at to d O ] Edison Node Roofile Based on Stream of 89GB/s and Peak Flops of 460 GFlop/Sec

] ] Roofline —
Unbalanced Ceiling —
Lhbalanced N.o SIMD Ceiling ——

-y
o
o
o

Attainable GFlops/Sec
[ | [ |

1.  Try to improve memory locality,
cache reuse

100

1 10
Operational Intensity (Flops/Byte)

2. Identify the key arrays leading to high memory bandwidth usage and make sure they are/will-
be allocated in HBM on Cori.

Profit by getting ~ 5x more bandwidth GB/s.

2%, U.S. DEPARTMENT OF Oﬁlce of
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So, you are Compute Bound? m. Joons

What to do?

1. Make sure you have good OpenMP scalability. Look at VTune to see thread activity for major
OpenMP regions.
0.45s

0.36s

0.27s

Elapsed Time

0.18¢

Target Concurrency

0.09s

N
&
1=

0s 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 256 272

Ok m

Simultaneously Utilized Logical CPUs

2. Make sure your code is vectorizing. Look at Cycles per Instruction (CPI) and VPU utilization in
vtune.

See whether intel compiler vectorized loop using compiler flag: -qopt-report=5

258, U.S. DEPARTMENT OF Office of
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So, you are neither compute nor memory bandwidth bound?

You may be memory latency bound (or you may be spending all your time in IO and Communication).

If running with hyper-threading on Edison improves performance, you *might* be
latency bound:

aprun-j2-n48 .... VS aprun-n 24 ....

If you can, try to reduce the number of memory requests per flop by accessing
contiguous and predictable segments of memory and reusing variables in cache as
much as possible.

On Cori, each core will support up to 4 threads. Use them all.

ER. U.S. DEPARTMENT OF Ofﬁce Of
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BerkeleyGW Case Study

| -
b |
4 'YEARS
| at the
FOREFRONT
» U.S. DEPARTMENT OF Oﬁlce Of r;rrrrr 'k

) ENERGY J™oo° )



BerkeleyGW Use Case moﬂ“‘s

Big systems require more memory. Cost scales as N_,__ "2 to store the data.

In an MPI GW implementation, in practice, to avoid communication, data is duplicated and
each MPI task has a memory overhead.

% Users sometimes forced to use 1 of 24 available cores, in order to provide MPI tasks with

enough memory. 90% of the computing capability is lost.

* %

Overhead Data Overhead Data

Overhead Data

MPI Task 2 MPI Task 3

MPI Task 1

| Office of
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Targeting Intel Xeon Phi Many Core Architecture

1. Target more on-node parallelism. (MPI model already failing users)
2. Ensure key loops/kernels can be vectorized.

Example: Optimization steps for Xeon Phi Coprocessor

Sigma Summation Optimization Process Add OpenM P

—
Refactor to Have 3 “ 5 ey e
Loop Structure: 01
3007
Outer: MPI T~
Middle: OpenMP £
Inner: Vectorization g
bl Ensure
1007 ‘/ Vectorization
504
o
Rev. 4770 Rev. 4896 Rev. 5338 Rev. 5349
Revision Number

FRd. U.S. DEPARTMENT OF Ofﬂce Of

& ENERGY science




o U YEARS

Final Loop Structure =

ngpown typically in
' 100’s to 1000s. Good |
. for many threads. ;

_________________________________________________________________________________________

'SOMP DO reduction (+:achtemp)
do my igp = 1, ngpown <

do iw=1,3 '
scht=0D0
wxt = wx_array (iw)

' Original inner loop. !
Too small to vectorize! !

do ig = 1, ncouls

'if (abs(wtilde_ array(ig,my_ igp) * ep igp)) .lt. TOL) cycle

ncouls typically in
1000s - 10,000s.
Good for vectorization.

delw = wtilde array(ig,my igp) / wdiff

|

scha(ig) = mygpvarl * agsntemp(ig) * delw * eps(ig,my_igp)
scht = scht + scha(ig)

enddo ! loop over g
sch_array(iw) = sch_array(iw) + 0.5D0O*scht

Attempt to save work
breaks vectorization
and makes code
slower.

enddo

i wdiff = wxt - wtilde array(ig,my_igp)
i achtemp(:) = achtemp(:) + sch array(:) * vcoul (my igp)

______________________________



Hybrid MPI-OpenMP Scaling Improvements. m o

5000 BGW=1.0 ==
. BGW=1.1 1 Thread ==e=
4000 EpSIIOn COde BGW-1.1 2 Threads
BGW-1.1 6 Threads ==
’g BGW-1.1 12 Threads —#—
9 3000
Qo z
S ]
= :
T
=
0 1776 3552 7104 14208 10000 BGW-1.0 ==
Number of CPU cores per g-point BZ%VY]T;‘;TI?;Z‘?E pe
T RS S S S S S : 5000 BGW-1.1 4 Threads ==
' * Major Improvement between 1.0 and 1.1 | 3 o
. * Trading MPI tasks for OpenMP threads, yields i E 6000
- improved performance (mostly in MPI ! = ool Sigma Code
- communication costs) and allows scaling to higher ! 2
. core counts. : 2000 \‘
U.S. DEPARTMENT OF Office of 0 588 1 17-6 2352
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The End
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