
Jack Deslippe

Optimization
Strategies for Cori

NERSC User Services
Wednesday Feb 25, 2015

Introduction to Cori

What is different about Cori?

What is different about Cori?

Edison (Ivy-Bridge):
● 12 Cores Per CPU
● 24 Virtual Cores Per CPU

● 2.4-3.2 GHz

● Can do 4 Double Precision
Operations per Cycle (+ multiply/add)

● 2.5 GB of Memory Per Core

● ~100 GB/s Memory Bandwidth

Cori (Knights-Landing):
● 60+ Physical Cores Per CPU
● 240+ Virtual Cores Per CPU

● Much slower GHz

● Can do 8 Double Precision
Operations per Cycle (+ multiply/add)

● < 0.3 GB of Fast Memory Per Core
 < 2 GB of Slow Memory Per Core

● Fast memory has ~ 5x DDR4
bandwidth

What is different about Cori?

Edison (Ivy-Bridge):
● 12 Cores Per CPU
● 24 Virtual Cores Per CPU

● 2.4-3.2 GHz

● Can do 4 Double Precision
Operations per Cycle (+ multiply/add)

● 2.5 GB of Memory Per Core

● ~100 GB/s Memory Bandwidth

Cori (Knights-Landing):
● 60+ Physical Cores Per CPU
● 240+ Virtual Cores Per CPU

● Much slower GHz

● Can do 8 Double Precision
Operations per Cycle (+ multiply/add)

● < 0.3 GB of Fast Memory Per Core
 < 2 GB of Slow Memory Per Core

● Fast memory has ~ 5x DDR4
bandwidth

What is different about Cori?

Two Big Changes:

1. More on node parallelism. More cores, bigger vectors

2. Small amount of very fast memory.
(similar-ish amounts of traditional DDR)

Key Concepts

MPI Vs. OpenMP For Multi-Core Programming

CPU
Core

Memory

CPU
Core

Memory

CPU
Core

Memory

CPU
Core

Memory

Network
Interconnect

CPU
Core

Memory, Shared Arrays etc.

CPU
Core

CPU
Core

CPU
Core

Private
Arrays

Typically less memory overhead/duplication.
Communication often implicit, through cache
coherency and runtime

MPI OpenMP

PARATEC Use Case For OpenMP

PARATEC computes parallel
FFTs across all processors.

Involves MPI all-to-all
communication (small
messages, latency bound).

Reducing the number of MPI
tasks in favor OpenMP
threads makes large
improvement in overall
runtime.

Vectorization

There is a another important form of on-node parallelism

Vectorization: CPU does identical operations on different data; e.g., multiple iterations of the
above loop can be done concurrently.

 do i = 1, n
 a(i) = b(i) + c(i)
 enddo

Vectorization

There is a another important form of on-node parallelism

Vectorization: CPU does identical operations on different data; e.g., multiple iterations of the
above loop can be done concurrently.

 do i = 1, n
 a(i) = b(i) + c(i)
 enddo

Intel Xeon Sandy-Bridge/Ivy-Bridge: 4 Double Precision Ops Concurrently

Intel Xeon Phi: 8 Double Precision Ops Concurrently

NVIDIA Kepler GPUs: 32 SIMT threads

Things that prevent vectorization in your code

Compilers want to “vectorize” your loops whenever possible. But sometimes they
get stumped. Here are a few things that prevent your code from vectorizing:

Loop dependency:

Task forking:

 do i = 1, n
 a(i) = a(i-1) + b(i)
 enddo

 do i = 1, n
 if (a(i) < x) cycle
 if (a(i) > x) …
 enddo

Memory Bandwidth

do i = 1, n

 do j = 1, m

 c = c + a(i) * b(j)

 enddo

enddo

Consider the following loop:

Assume, n & m are very large such that a & b don’t fit into
cache.

Then,

During execution, the number of loads From DRAM is

n*m + n

Memory Bandwidth

do i = 1, n

 do j = 1, m

 c = c + a(i) * b(j)

 enddo

enddo

Consider the following loop: Assume, n & m are very large such that a & b don’t fit into cache.

Assume, n & m are very large such that a & b don’t fit into
cache.

Then,

During execution, the number of loads From DRAM is

n*m + n

Requires 8 bytes loaded from DRAM per FMA (if supported). Assuming 100 GB/s bandwidth on
Edison, we can at most achieve 25 GFlops/second (2 Flops per FMA)

Much lower than 460 GFlops/second peak on Edison node. Loop is memory bandwidth bound.

Roofline Model For Edison

Improving Memory Locality

Loads From DRAM:

n*m + n

do jout = 1, m, block

 do i = 1, n

 do j = jout, jout+block

 c = c + a(i) * b(j)

 enddo

 enddo

enddo

Loads From DRAM:

m/block * (n+block)
= n*m/block + m

do i = 1, n

 do j = 1, m

 c = c + a(i) * b(j)

 enddo

enddo

Improving Memory Locality. Reducing bandwidth required.

Improving Memory Locality Moves you to the Right on the Roofline

Optimization Strategy

Optimizing Code For Cori is like:

Can You
Increase Flops

Per Byte Loaded
From Memory in
Your Algorithm?

Make
Algorithm
Changes

Explore Using
HBM on Cori

For Key Arrays

Is
Performance
affected by
Half-Clock

Speed?

Run Example
at “Half Clock”

Speed

Run Example in
“Half Packed”

Mode

Is
Performance
affected by

Half-
Packing?

Your Code is at least
Partially Memory
Bandwidth Bound

You are at
least Partially
CPU Bound

Make Sure Your
Code is

Vectorized!
Measure Cycles
Per Instruction

with VTune

Likely Partially Memory
Latency Bound

(assuming not IO or
Communication

Bound)

Use IPM and Darshan to
Measure and Remove
Communication and IO
Bottlenecks from Code

Can You
Reduce
Memory

Requests Per
Flop In

Algorithm?

Try Running
With as Many

Virtual Threads
as Possible (>
240 Per Node

on Cori)

Make
Algorithm
Changes

YesYes

Yes Yes

No

No No

No

The Ant Farm Flow Chart

Can You
Increase Flops

Per Byte Loaded
From Memory in
Your Algorithm?

Make
Algorithm
Changes

Explore Using
HBM on Cori

For Key Arrays

Is
Performance
affected by
Half-Clock

Speed?

Run Example
at “Half Clock”

Speed

Run Example in
“Half Packed”

Mode

Is
Performance
affected by

Half-
Packing?

Your Code is at least
Partially Memory
Bandwidth Bound

You are at
least Partially
CPU Bound

Make Sure Your
Code is

Vectorized!
Measure Cycles
Per Instruction

with VTune

Likely Partially Memory
Latency Bound

(assuming not IO or
Communication

Bound)

Use IPM and Darshan to
Measure and Remove
Communication and IO
Bottlenecks from Code

Can You
Reduce
Memory

Requests Per
Flop In

Algorithm?

Try Running
With as Many

Virtual Threads
as Possible (>
240 Per Node

on Cori)

Make
Algorithm
Changes

Yes Yes

No

No No

No

Use IPM to Measure Communication Time

https://www.nersc.gov/users/software/debugging-and-profiling/ipm/

wallclock 953.272 29.7897 29.6092 29.9752
user 837.25 26.1641 25.71 26.92
system 60.6 1.89375 1.52 2.59
mpi 264.267 8.25834 7.73025 8.70985
%comm 27.7234 25.8873 29.3705

[time] [calls] <%mpi> <%wall>
MPI_Send 188.386 639616 71.29 19.76
MPI_Wait 69.5032 639616 26.30 7.29
MPI_Irecv 6.34936 639616 2.40 0.67
MPI_Barrier 0.0177442 32 0.01 0.00
MPI_Reduce 0.00540609 32 0.00 0.00

Use IPM and Darshan to
Measure and Remove
Communication and IO
Bottlenecks from Code

https://www.nersc.gov/users/software/debugging-and-profiling/ipm/
https://www.nersc.gov/users/software/debugging-and-profiling/ipm/

Use Darshan to Measure IO Time/Performance

https://www.nersc.gov/users/software/debugging-and-profiling/darshan

https://www.nersc.gov/users/software/debugging-and-profiling/darshan
https://www.nersc.gov/users/software/debugging-and-profiling/darshan

Measuring Your Memory Bandwidth Usage (VTune)

Measure memory
bandwidth usage in
VTune. (Next Talk)

Compare to Stream
GB/s.

If 90% of stream, you are
memory bandwidth

bound.

If less, more tests need
to be done.

Are you memory or compute bound? Or both?

Is
Performance
affected by
Half-Clock

Speed?

Run Example
at “Half Clock”

Speed

Run Example in
“Half Packed”

Mode

Is
Performance
affected by

Half-
Packing?

Your Code is at least
Partially Memory
Bandwidth Bound

You are at
least Partially
CPU Bound

Likely Partially Memory
Latency Bound

(assuming not IO or
Communication

Bound)

YesYes

No No

Are you memory or compute bound? Or both?

Run Example in
“Half Packed”

Mode

 aprun -n 24 -N 12 - S 6 ... VS aprun -n 24 -N 24 -S 12 ...

If you run on only half of the cores on a node, each core you do run
has access to more bandwidth

If your performance changes, you are at least partially memory bandwidth bound

Are you memory or compute bound? Or both?

aprun --p-state=2400000 ... VS aprun --p-state=2200000 ...

Reducing the CPU speed slows down computation, but doesn’t reduce
memory bandwidth available.

If your performance changes, you are at least partially compute bound

Run Example
at “Half Clock”

Speed

So, you are Memory Bandwidth Bound?

What to do?

1. Try to improve memory locality,
 cache reuse

2. Identify the key arrays leading to high memory bandwidth usage and make sure they are/will-
be allocated in HBM on Cori.

Profit by getting ~ 5x more bandwidth GB/s.

So, you are Compute Bound?

What to do?
1. Make sure you have good OpenMP scalability. Look at VTune to see thread activity for major

OpenMP regions.

2. Make sure your code is vectorizing. Look at Cycles per Instruction (CPI) and VPU utilization in
vtune.

See whether intel compiler vectorized loop using compiler flag: -qopt-report=5

So, you are neither compute nor memory bandwidth bound?

You may be memory latency bound (or you may be spending all your time in IO and Communication).

If running with hyper-threading on Edison improves performance, you *might* be
latency bound:

If you can, try to reduce the number of memory requests per flop by accessing
contiguous and predictable segments of memory and reusing variables in cache as
much as possible.

On Cori, each core will support up to 4 threads. Use them all.

 aprun -j 2 -n 48 …. aprun -n 24 ….VS

BerkeleyGW Case Study

BerkeleyGW Use Case

★ Big systems require more memory. Cost scales as Natoms^2 to store the data.
★ In an MPI GW implementation, in practice, to avoid communication, data is duplicated and

each MPI task has a memory overhead.
★ Users sometimes forced to use 1 of 24 available cores, in order to provide MPI tasks with

enough memory. 90% of the computing capability is lost.

…

 Targeting Intel Xeon Phi Many Core Architecture

1. Target more on-node parallelism. (MPI model already failing users)
2. Ensure key loops/kernels can be vectorized.

Example: Optimization steps for Xeon Phi Coprocessor

Refactor to Have 3
Loop Structure:

Outer: MPI
Middle: OpenMP
Inner: Vectorization

Add OpenMP

Ensure
Vectorization

Final Loop Structure

ngpown typically in
100’s to 1000s. Good
for many threads.

ncouls typically in
1000s - 10,000s.
Good for vectorization.

Original inner loop.
Too small to vectorize!

Attempt to save work
breaks vectorization
and makes code
slower.

!$OMP DO reduction(+:achtemp)
 do my_igp = 1, ngpown
 ...
 do iw=1,3

 scht=0D0
 wxt = wx_array(iw)

 do ig = 1, ncouls

 !if (abs(wtilde_array(ig,my_igp) * eps(ig,my_igp)) .lt. TOL) cycle

 wdiff = wxt - wtilde_array(ig,my_igp)
 delw = wtilde_array(ig,my_igp) / wdiff
 ...
 scha(ig) = mygpvar1 * aqsntemp(ig) * delw * eps(ig,my_igp)
 scht = scht + scha(ig)

 enddo ! loop over g
 sch_array(iw) = sch_array(iw) + 0.5D0*scht

 enddo

 achtemp(:) = achtemp(:) + sch_array(:) * vcoul(my_igp)

 enddo

Hybrid MPI-OpenMP Scaling Improvements.

Epsilon Code

* Major Improvement between 1.0 and 1.1
* Trading MPI tasks for OpenMP threads, yields
improved performance (mostly in MPI
communication costs) and allows scaling to higher
core counts.

Sigma Code

The End

