
Helen He!
NUG Meeting, 10/08/2015


Nested OpenMP




OpenMP Execution Model


•  Fork	and	Join	Model	
– Master	thread	forks	new	threads	at	the	beginning	of	
parallel	regions.		

– Mul6ple	threads	share	work	in	parallel.	
–  Threads	join	at	the	end	of	the	parallel	regions.	

	

-	2	-	



Hopper/Edison Compute Nodes


-	3	-	

•  Hopper:	NERSC	Cray	XE6,	6,384	nodes,	153,126	cores.	
•  4	NUMA	domains	per	node,	6	cores	per	NUMA	domain.	

•  Edison:	NERSC	Cray	XC30,	5,576	nodes,	133,824	cores.	
•  2	NUMA	domains	per	node,	12	cores	per	NUMA	domain.																	

2	hardware	threads	per	core.	
•  Memory	bandwidth	is	non-homogeneous	among	NUMA	domains.	
	



MPI Process Affinity: aprun “-S” Option

•  Process	affinity:	or	CPU	pinning,	binds	MPI	process	to	a	CPU	or	a	ranges	of	

CPUs	on	the	node.	
•  Important	to	spread	MPI	ranks	evenly	onto	different	NUMA	nodes.	
•  Use	the	“-S”	opWon	for	Hopper/Edison.	

-	4	-	

0	
200	
400	
600	
800	

1000	
1200	
1400	

24576*1	 12288*2	 8192*3	 4096*6	 2048*12	

Ru
n	
Ti
m
e	
(s
ec
)	

MPI	Tasks	*	OpenMP	Threads	

GTC	Hybrid	MPI/OpenMP																					
on	Hopper,	24,576	cores		

with	-S	-ss	

no	-S	-ss	

aprun	–n	4	–S	1–d	6	

aprun	–n	4	–d	6	

Low
er is B

etter 

-S	2	–d	3	



Thread Affinity: aprun “-cc” Option


•  Thread	affinity:	forces	each	process	or	thread	to	run	on	
a	specific	subset	of	processors,	to	take	advantage	of	
local	process	state.		

•  Thread	locality	is	important	since	it	impacts	both	
memory	and	intra-node	performance.	

•  On	Hopper/Edison:	
–  The	default	op6on	is	“-cc	cpu”	(use	it	for	non-Intel	compilers),	

binds	each	PE	to	a	CPU	within	the	assigned	NUMA	node.		
–  Pay	aWen6on	to	Intel	compiler,	which	uses	an	extra	thread.		

•  Use	“-cc	none”	if	1	MPI	process	per	node	
•  Use	“-cc	numa_node”	(Hopper)	or	“-cc	depth”	(Edison)	if	mul6ple	
MPI	processes	per	node	

-	5	-	



NERSC KNC Testbed: Babbage


-	6	-	

•  NERSC	Intel	Xeon	Phi	Knights	
Corner	(KNC)	testbed	

•  45	compute	nodes,	each	has:	
–  Host	node:	2	Intel	Xeon	

Sandybridge	processors,	8	cores	
each.		

–  2	MIC	cards	each	has	60	na6ve	
cores	and	4	hardware	threads	per	
core.	

–  MIC	cards	aWached	to	host	nodes	
via	PCI-express.	

–  8	GB	memory	on	each	MIC	card	

•  Recommend	to	use	at	least	2	
threads	per	core	to	hide	latency	of	
in-order	execuWon.	

To	best	prepare	codes	on	Babbage	for	Cori:		
•  Use	“na6ve”	mode	on	KNC	to	mimic	KNL,	

which	means	ignore	the	host,	just	run	
completely	on	KNC	cards.	

•  Encourage	to	explore	single	node	op6miza6on	
for	threading	scaling	and	vectoriza6on	on	KNC	
cards	with	problem	sizes	that	can	fit.	

•  “Symmetric”,	“Offload”	modes	on	KNC	and	
“OpenMP	4.0	target”	work,	but	are	not	our	
promoted	usage	models	for	Babbage.	



Babbage MIC Card


-	7	-	

Babbage:	NERSC	Intel	Xeon	Phi	testbed,	45	nodes.	2	MIC	cards	per	node.	
•  1	NUMA	domain	per	MIC	card:	60		physical	cores,	240	logical	cores.	OpenMP	

threading	potenWal	to	240-way.	
•  KMP_AFFINITY,	KMP_PLACE_THREADS,	OMP_PLACES,	OMP_PROC_BIND	for	

thread	affinity	control	
•  I_MPI_PIN_DOMAIN	for	MPI/OpenMP	process	and	thread	affinity	control.	



Full OpenMP 4.0 Support in Compilers


•  GNU	compiler	
–  From	4.9.0	for	C/C++	
–  From	gcc/4.9.1	for	Fortran	

•  Intel	compiler	
–  From	intel/15.0:	supports	most	features	in	OpenMP	4.0;	

From	Intel/16.0:	full	support		

•  Cray	compiler	
–  From	cce/8.4.0	

	

-	8	-	



Thread Affinity Control in OpenMP 4.0

•  OMP_PLACES:	a	list	of	places	that	threads	can	be	pinned	on	

–  threads:	Each	place	corresponds	to	a	single	hardware	thread	on	the	target	
machine.		

–  cores:	Each	place	corresponds	to	a	single	core	(having	one	or	more	
hardware	threads)	on	the	target	machine.		

–  sockets:	Each	place	corresponds	to	a	single	socket	(consis6ng	of	one	or	
more	cores)	on	the	target	machine.		

–  A	list	with	explicit	place	values:	such	as:		
•  "{0,1,2,3},{4,5,6,7},{8,9,10,11},{12,13,14,15}”		
•  “{0:4},{4:4},{8:4},{12:4}”	

•  OMP_PROC_BIND	
–  spread:	Bind	threads	as	evenly	distributed	(spread)	as	possible	
–  close:	Bind	threads	close	to	the	master	thread	while	s6ll	distribu6ng	

threads	for	load	balancing,	wrap	around	once	each	place	receives	one	
thread	

–  master:	Bind	threads	the	same	place	as	the	master	thread	

-	9	-	



Nested OpenMP Thread Affinity Illustration


-	10	-	

setenv	OMP_PLACES	threads	
setenv		OMP_NUM_THREADS	4,4	
setenv	OMP_PROC_BIND	spread,close	

		
spread	

close	



Sample Nested OpenMP Code

#include	<omp.h>	
#include	<stdio.h>	
void	report_num_threads(int	level)	
{	
				#pragma	omp	single	{	
									prinl("Level	%d:	number	of	threads	in	the	
team:	%d\n",	level,	omp_get_num_threads());	
								}	
}	
int	main()	
{	
				omp_set_dynamic(0);	
				#pragma	omp	parallel	num_threads(2)	{	
								report_num_threads(1);	
								#pragma	omp	parallel	num_threads(2)	{	
												report_num_threads(2);	
												#pragma	omp	parallel	num_threads(2)	{	
																report_num_threads(3);	
												}	
								}	
				}	
				return(0);	
}	

-	11	-	

%	a.out				
Level	1:	number	of	threads	in	the	team:	2	
Level	2:	number	of	threads	in	the	team:	1	
Level	3:	number	of	threads	in	the	team:	1	
Level	2:	number	of	threads	in	the	team:	1	
Level	3:	number	of	threads	in	the	team:	1	

%	setenv	OMP_NESTED	TRUE								
%	a.out	
Level	1:	number	of	threads	in	the	team:	2	
Level	2:	number	of	threads	in	the	team:	2	
Level	2:	number	of	threads	in	the	team:	2	
Level	3:	number	of	threads	in	the	team:	2	
Level	3:	number	of	threads	in	the	team:	2	
Level	3:	number	of	threads	in	the	team:	2	
Level	3:	number	of	threads	in	the	team:	2	

Level	0:	P0	
Level	1:	P0	P1	
Level	2:	P0	P2;	P1	P3	
Level	3:	P0	P4;	P2	P5;	P1	P6;	P3	P7	



When to Use Nested OpenMP


•  Some	applicaWon	teams	are	exploring	with	nested	
OpenMP	to	allow	more	fine-grained	thread	parallelism.	
–  MPI/Hybrid	not	using	node	fully	packed	
–  Top	level	OpenMP	loop	does	not	use	all	available	threads	
–  Mul6ple	levels	of	OpenMP	loops	are	not	easily	collapsed	
–  Certain	computa6onal	intensive	kernels	could	use	more	threads	
–  MKL	can	use	extra	cores	with	nested	OpenMP	

-	12	-	



Process and Thread Affinity in Nested OpenMP


•  Achieving	best	process	and	thread	affinity	is	crucial	in	
gerng	good	performance	with	nested	OpenMP,	yet	it	is	not	
straighlorward	to	do	so.		

•  A	combinaWon	of	OpenMP	environment	variables	and	run	
Wme	flags	are	needed	for	different	compilers	and	different	
batch	schedulers	on	different	systems.		

	

-	13	-	

Example:	Use	Intel	compiler	with	Torque/Moab	on	Edison:	
setenv	OMP_NESTED	true	
setenv		OMP_NUM_THREADS	4,3	
setenv	OMP_PROC_BIND	spread,close	
aprun	-n	2	-S	1	-d	12	–cc	numa_node	./nested.intel.edison			



Edison: Run Time Environment Variables

•  setenv	OMP_NESTED	true	

–  Default	is	false	for	most	compilers	
•  setenv	OMP_MAX_ACTIVE_LEVELS	2	

–  The	default	was	1	for	CCE	prior	to	cce/8.4.0	
•  setenv	OMP_NUM_THREADS	4,3	
•  setenv	OMP_PROC_BIND	spread,close	
•  setenv	KMP_HOT_TEAMS	1	

–  Intel	only	env.	Default	is	false	
•  setenv	KMP_HOT_TEAMS_MAX_LEVELS	2	

–  Intel	only	env.		Allow	nested	level	OpenMP	threads	to	stay	alive	instead	of	
being	destroyed	and	created	again	to	reduce	thread	crea6on	overhead.	

•  aprun	-n	2	-S	1	-d	12	–cc	numa_node	./nested.intel.edison	
–  Use	-d	for	total	number	of	threads	(products	of	num_threads	from	all	

levels).	–cc	numa_node	to	allow	threads	migrate	within	NUMA	node	to	not	
affected	by	Intel’s	extra	manager	thread.	

	
	

-	14	-	



Babbage: Run Time Environment Variables

•  Set	I_MPI_PIN_DOMAIN=auto	to	get	basic	MPI	process	affinity		
•  Do	not	set	KMP_AFFINITY,	otherwise	OMP_PROC_BIND	will	

be	ignored.	
•  Use	OMP_PLACES	=	threads	(default)	instead	of	sockets	
•  setenv	OMP_NESTED	true	
•  setenv	OMP_NUM_THREADS	4,3	
•  setenv	OMP_PROC_BIND	spread,close	
•  setenv	KMP_HOT_TEAMS	1	
•  setenv	KMP_HOT_TEAMS_MAX_LEVELS	2	
•  mpirun.mic	-n	2	-host	bc1109-mic0	./xthi-nested.mic	|sort	

	
	
	

-	15	-	



XGC1: Nested OpenMP

•  Always	make	sure	to	use	best	thread	affinity.		Avoid	using	threads	across	

NUMA	domains.	
•  Currently:	

	

•  Is	a	bit	slower	than	(work	ongoing):	

	

•  Will	try:		

	
•  Use	num_threads	clause	in	source	codes	to	set	threads	for	nested	regions.	

For	most	other	non-nested	regions,	use	OMP_NUM_THREADS	env	for	
simplicity	and	flexibility.	

	
	

	

-	16	-	

export	OMP_NUM_THREADS=6,4	
export	OMP_PROC_BIND=spread,close	
export	OMP_NESTED=TRUE	
export	OMP_STACKSIZE=8000000	
aprun	-n	200	-N	2	-S	1	-j	2	-cc	numa_node	./xgca	

export	OMP_NUM_THREADS=24	
export	OMP_NESTED=TRUE	
export	OMP_STACKSIZE=8000000	
aprun	-n	200	-d	24	-N	2	-S	1	-j	2	-cc	numa_node	./xgca	

export	KMP_HOT_TEAMS=1	
export	KMP_HOT_TEAMS_MAX_LEVELS=2	

Courtesy	of		Robert	Hager,	PPPL	and	NESAP	XGC1	team.		



Use Multiple Threads in MKL


•  By	Default,	in	OpenMP	parallel	regions,	only	1	thread	will	be	
used	for	MKL	calls.		
–  MKL_DYNAMICS	is	true	by	default	

•  Nested	OpenMP	can	be	used	to	enable	mulWple	threads	for	
MKL	calls.		Treat	MKL	as	a	nested	inner	OpenMP	region.	

•  Sample	serngs	

-	17	-	

export	OMP_NESTED=true	
export	OMP_PLACES=cores	
export	OMP_PROC_BIND=close	
export	OMP_NUM_THREADS=6,4	
export	MKL_DYNAMICS=false			
export	KMP_HOT_TEAMS=1	
export	KMP_HOT_TEAMS_MAX_LEVELS=2	



NWChem: OpenMP “Reduce” Algorithm


-	18	-	

•  Plane	wave	Lagrange	mulWplier	
–  Many	matrix	mul6plica6ons	of	complex	numbers,	C	=	A	x	B	
–  Smaller	matrix	products:	FFM,	typical	size	100	x	10,000	x	100	
–  Original	threading	scaling	with	MKL	not	sa6sfactory	

•  OpenMP	“Reduce”	or	“Block”	algorithm		
-  Distribute	work	on	A	and	B	along	the	k	dimension	
-  A	thread	puts	its	contribu6on	in	a	buffer	of	size	m	x	n	
-  Buffers	reduced	to	produce	C	
-  OMP	teams	of	threads	

 
FFM	

Courtesy	of	Mathias	Jacquelin,	LBNL		



NWChem: OpenMP “Reduce” Algorithm

•  Bezer	for	smaller	inner	dimensions,	i.e.	for	FFMs	
•  MulWple	FFMs	can	be	done	concurrently	in	different	thread	pools	
•  Threading	enables	us	to	use	all	240	hardware	threads	
•  Best	“Reduce”:	10	MPI,	6	teams	of	4	threads	(nested	OpenMP	with	MKL)	
	

-	19	-	

										MKL	
1MPI,	240	threads		

											Best	“Reduce”	
10	MPI,	6	teams	of	4	threads	

Courtesy	of	Mathias	Jacquelin,	LBNL		



FFT3D on KNC, Ng=643


-	20	-	

Courtesy	of	Jeongnim	Kim,		Intel		



Nested OpenMP on NERSC Systems


•  Please	see	detailed	example	serngs	in	the	“Nested	
OpenMP”	web	page:	
–  Run	on	Edison	and	Babbage	
– With	Intel	and	Cray	compilers	
–  Use	Torque/Moab	and	SLURM	batch	schedulers	
–  hWps://www.nersc.gov/users/computa6onal-systems/
edison/running-jobs/using-openmp-with-mpi/nested-
openmp/	

	

-	21	-	



Thank you.


-	22	-	


