Nested OpenMP

m R ERS Helen He

at the
FOREFRONT

NUG Meeting, 10/08/2015

~

=2, U.S. DEPARTMENT OF : A
' Office of p—1l

& ENERGY orone

OpenMP Execution Model 1ifesc/

 Fork and Join Model

— Master thread forks new threads at the beginning of
parallel regions.

— Multiple threads share work in parallel.
— Threads join at the end of the parallel regions.

Parallel Regions

A Nested
Master / ! \ Parallel
Thread region
in greg‘ S— / .—‘\\
=T e
S— _//,’
|

Sequential Parts

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science "2- WEN

<
A
rrrrrrr ‘"'|

RENTOr S
4 >
£ 5\
% @ 4
), &
S i

FOREFRONT

Hopper/Edison Compute Nodes Ngeso/ g

Edison Compute Node

H C te Nod E g - e
opper Compute Node = g g 3
Socket 0 Socket 1 °
< n
NUMA node 0 NUMA node 2 o9 S 8 S N Q Q a b & ol |2
] %9 ~ ~ ~ ~ > ~ ~ ~ ~ ~ S -
opo 5 - ~ o < 1 © N) =) S b
S o o o o o o o o o o
ooro | B [e~] [ooms SEls s (518|538]5([3/8/¢|/:z
1 S o o o o o o o o o o S S
Core 2 Core 3 Core 2 Core 3 z
DDR3 DDR3
Core 4 Core 5 Core 4 Core 5 . .
NUMlLod(H >< Nuwlaodes
NN
- 0] ~ -] [<)) [=] - o o < wn -] ~
|core 1|| [DDRS 2021212121212 1212121212 13
DDR3 | Core 1 % o ~ P = N v ~)) =) - ~ o
% 2 - -l - - - - - - ~N ~ o~ o~
Core 2| |core3 Core 2| |Core 3 2 e 4 o e 4 o o o o o o [
DDR3 DDR3 2] S S S S S S <]] <] <] 5]
2 o o o o o o o o o o o o
Core4| |Core5 Core4| |Core5 2
2 Y 2 2
a a a a
a a a a

e Hopper: NERSC Cray XE6, 6,384 nodes, 153,126 cores.
e 4 NUMA domains per node, 6 cores per NUMA domain.
e Edison: NERSC Cray XC30, 5,576 nodes, 133,824 cores.

e 2 NUMA domains per node, 12 cores per NUMA domain.
2 hardware threads per core.

e Memory bandwidth is non-homogeneous among NUMA domains.

U.S. DEPARTMENT OF Office of ‘

AY
ENERGY Science -3- /_\|

BERKELEY LAB

S
/57
b.‘,m\m >

MPI Process Affinity: aprun “-S” Option 2] { J==

* Process affinity: or CPU pinning, binds MPI process to a CPU or a ranges of

CPUs on the node.

* Important to spread MPI ranks evenly onto different NUMA nodes.
* Use the “-S” option for Hopper/Edison.

Hopper Compute Node

Socket 0 Socket 1

aprun—-n4-d6

Hopper Compute Node

Socket 0

U.S. DEPARTMENT OF Ofﬁce of

/ ENERGY Science

Yaneg Si JamoT

Run Time (sec)

1400
1200

GTC Hybrid MP1/OpenMP
on Hopper, 24,576 cores

T -S2-d3
1000 -
800 -
600 -
400 -
200 -

i with -S -ss

I I I I e

24576*1 12288*2 8192*3 4096*6 2048*12
MPI Tasks * OpenMP Threads

Thread Affinity: aprun “-cc” Option e

* Thread affinity: forces each process or thread to run on
a specific subset of processors, to take advantage of
local process state.

* Thread locality is important since it impacts both
memory and intra-node performance.

* On Hopper/Edison:

— The default option is “-cc cpu” (use it for non-Intel compilers),
binds each PE to a CPU within the assigned NUMA node.

— Pay attention to Intel compiler, which uses an extra thread.
e Use “-cc none” if 1 MPI process per node

* Use “-cc numa_node” (Hopper) or “-cc depth” (Edison) if multiple
MPI processes per node

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science = a;;ma

N
A
rrrrrrr ""|

T
£)

£ 2

B 2
L‘”An\m >

NERSC KNC Testbed: Babbage (U i

* NERSC Intel Xeon Phi Knights e

Corner (KNC) testbed - Xeom%'
Processor \.‘-Ez

KNC Card

e 45 compute nodes, each has:
— Host node: 2 Intel Xeon
Sandybridge processors, 8 cores
each.

— 2 MIC cards each has 60 native
cores and 4 hardware threads per

g _System Memory _

>= 8GB GDDRS memory

core.
— MIC cards attached to host nodes To best prepare codes on Babbage for Cori:
via PCl-express. * Use “native” mode on KNC to mimic KNL,

which means ignore the host, just run

completely on KNC cards.

e Recommend to use at least 2 * Encourage to explore single node optimization
threads per core to hide latency of for(’jchreacrj]ing sglaling and v:ctorizaf’fion on KNC
. . cards with problem sizes that can fit.

in-order execution. e “Symmetric”, “Offload” modes on KNC and
“OpenMP 4.0 target” work, but are not our

U.s. DEPARTMENT OF _ | Office of promoted usage models for Babbage.

ENERGY Science U BERKELEY LAB

— 8 GB memory on each MIC card

PAENT O

&7 &
£ %)
B 2
2 /

)

Q2
SO

Babbage MIC Card E) (o

Babbage MIC Card

0 n
2 5 g z
o [a) (=) o
w0
™M
N S
0 7)))
~N — ™M %]
AR) N N
— — <)
< < — < . a9
™ ~ RS ! o~ ~
) N i 0 { {
Y IS [Y G I © L 2218 s
o o o2 o o o o ~N ~
- - ol ol=s o s s et v v
O O O O (=] (=] o '58 se
oocjoocjoocjogs|o o o Ss5l8 5
=0 =0 =0 |=90 |= — — S S
o A i i © © = =
L oo oY oo o o 9 i owm|oT®
g=l12212=2122 1% 90 9 RSl KRS
o Y Y an = =
L olsolso]lso|s < < E%o E%o
a J ja a ja o a o o a. a. o 5 o 5

Babbage: NERSC Intel Xeon Phi testbed, 45 nodes. 2 MIC cards per node.

* 1 NUMA domain per MIC card: 60 physical cores, 240 logical cores. OpenMP
threading potential to 240-way.

e KMP_AFFINITY, KMP_PLACE_THREADS, OMP_PLACES, OMP_PROC_BIND for
thread affinity control

* |_MPI_PIN_DOMAIN for MPI/OpenMP process and thread affinity control.

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science "7 E.;Eﬂ\‘%“?

T
£ 0\
B 2
% @ 5
», 4
S5 iy

Full OpenMP 4.0 Support in Compilers 0

e GNU compiler

— From 4.9.0 for C/C++

— From gcc/4.9.1 for Fortran
* Intel compiler

— From intel/15.0: supports most features in OpenMP 4.0;
From Intel/16.0: full support

* Cray compiler
— From cce/8.4.0

Office of
Science

Thread Affinity Control in OpenMP 4.0 e

* OMP_PLACES: a list of places that threads can be pinned on

— threads: Each place corresponds to a single hardware thread on the target
machine.

— cores: Each place corresponds to a single core (having one or more
hardware threads) on the target machine.

— sockets: Each place corresponds to a single socket (consisting of one or
more cores) on the target machine.

— Alist with explicit place values: such as:
« "{0,1,2,3},{4,5,6,7},{8,9,10,11},{12,13,14,15}"
« “{0:4},{4:4},{8:4},{12:4}"

« OMP_PROC_BIND

— spread: Bind threads as evenly distributed (spread) as possible

— close: Bind threads close to the master thread while still distributing
threads for load balancing, wrap around once each place receives one
thread

— master: Bind threads the same place as the master thread

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science "9- E.;Eﬂ\‘%“?

N
A
rrrrrrr "“l

)"hmm“‘\‘

Nested OpenMP Thread Affinity lllustration

L \YEARS

| ; FOREFRONT

setenv OMP_PLACES threads
setenv OMP_NUM_THREADS 4,4
setenv OMP_PROC_BIND spread,close

p7

000 m m M M E M

spread pO p1 I p2 p2 1 pa o5 p6
0000

00010000]9000100001000010000,0000
n2\p3 n4.p5 p6~p7

N N N N

close 0\ pi1

Office of

f%&, U.S. DEPARTMENT OF
@ ENERGY science

>
A
rrrrrrr ""l

BERKELEY LAB

Sample Nested OpenMP Code

#include <omp.h>
#include <stdio.h>
void report_num_threads(int level)
{
#pragma omp single {
printf("Level %d: number of threads in the
team: %d\n", level, omp_get_num_threads());

}
}
int main()
{
omp_set_dynamic(0);
#pragma omp parallel num_threads(2) {
report_num_threads(1);
#pragma omp parallel num_threads(2) {
report_num_threads(2);
#pragma omp parallel num_threads(2) {
report_num_threads(3);

}
}
}

return(0);

U.S. DEPARTMENT OF Ofﬂce Of

EN ERGY Science

% a.out

Level 1: number of threads in the team:
Level 2: number of threads in the team:
Level 3: number of threads in the team:
Level 2: number of threads in the team:
Level 3: number of threads in the team:

% setenv OMP_NESTED TRUE
% a.out

Level 1: number of threads in the team:
Level 2: number of threads in the team:
Level 2: number of threads in the team:
Level 3: number of threads in the team:
Level 3: number of threads in the team:
Level 3: number of threads in the team:
Level 3: number of threads in the team:

Level O: PO

Level 1: PO P1

Level 2: PO P2; P1 P3

Level 3: PO P4; P2 P5; P1 P6; P3 P7

-11 -

R R R RN

N NNDNDNMNDNMNNDN

YEARS

at the
FOREFRONT

BERKELEY LAB

When to Use Nested OpenMP E) (e

* Some application teams are exploring with nested
OpenMP to allow more fine-grained thread parallelism.
— MPI/Hybrid not using node fully packed
— Top level OpenMP loop does not use all available threads
— Multiple levels of OpenMP loops are not easily collapsed
— Certain computational intensive kernels could use more threads
— MKL can use extra cores with nested OpenMP

Office of Lo i
Science e BERKELEY LAB

Process and Thread Affinity in Nested OpenMPm

* Achieving best process and thread affinity is crucial in
getting good performance with nested OpenMP, yet it is not
straightforward to do so.

A combination of OpenMP environment variables and run
time flags are needed for different compilers and different
batch schedulers on different systems.

Example: Use Intel compiler with Torque/Moab on Edison:
setenv OMP_NESTED true

setenv OMP_NUM_THREADS 4,3

setenv OMP_PROC_BIND spread,close
aprun-n2-S1-d12—cc numa_node ./nested.intel.edison

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science -13- &;;a\l%B

N
A
rrrrrrr "“l

T

£ W

B 2
RS

Edison: Run Time Environment Variables EZ) (o

* setenv OMP_NESTED true
— Default is false for most compilers
* setenv OMP_MAX_ACTIVE_LEVELS 2
— The default was 1 for CCE prior to cce/8.4.0

* setenv OMP_NUM_THREADS 4,3

 setenv OMP_PROC_BIND spread,close
* setenv KMP_HOT_TEAMS 1

— Intel only env. Default is false

+ setenv KMP_HOT TEAMS_MAX_LEVELS 2

— Intel only env. Allow nested level OpenMP threads to stay alive instead of
being destroyed and created again to reduce thread creation overhead.

« aprun-n2-S1-d12-cc numa_node ./nested.intel.edison

— Use -d for total number of threads (products of num_threads from all
levels). —cc numa_node to allow threads migrate within NUMA node to not
affected by Intel’s extra manager thread.

£ERY, U-S. DEPARTMENT OF Office of

a ENERGY science S E;E"\l%m

N
A
rrrrrrr "“l

Babbage: Run Time Environment Variables S
 Set| _MPI_PIN_DOMAIN=auto to get basic MPI process affinity

* Do not set KMP_AFFINITY, otherwise OMP_PROC_BIND wiill
be ignored.

 Use OMP_PLACES = threads (default) instead of sockets

* setenv OMP_NESTED true

* setenv OMP_NUM_THREADS 4,3

 setenv OMP_PROC_BIND spread,close

* setenv KMP_HOT_TEAMS 1

 setenv KMP_HOT_TEAMS_MAX_LEVELS 2

* mpirun.mic -n 2 -host bc1109-micO ./xthi-nested.mic |sort

AR, U.S. DEPARTMENT OF Office of

1 ENERGY Science b

XGC1: Nested OpenMP L.

* Always make sure to use best thread affinity. Avoid using threads across
NUMA domains.

e Currently:
y export OMP_NUM_THREADS=6,4

export OMP_PROC_BIND=spread,close

export OMP_NESTED=TRUE

export OMP_STACKSIZE=8000000

aprun-n 200-N 2-S1-j2-ccnuma_node ./xgca

* Is a bit slower than (work ongoing): courtesy of Robert Hager, PPPL and NESAP XGC1 team.

export OMP_NUM_THREADS=24

export OMP_NESTED=TRUE

export OMP_STACKSIZE=8000000

aprun -n 200-d 24-N 2 -S1-j 2 -cc numa_node ./xgca
* Will try:

export KMP_HOT_TEAMS=1

export KMP_HOT_TEAMS_MAX_LEVELS=2

* Use num_threads clause in source codes to set threads for nested regions.
For most other non-nested regions, use OMP_NUM_THREADS env for
simplicity and flexibility.

~

A
i

U.S. DEPARTMENT OF Ofﬂce Of

e
4 3 16 rreeeee
N ENERG I Science BERKELEY LAB

Use Multiple Threads in MKL L.

* By Default, in OpenMP parallel regions, only 1 thread will be
used for MKL calls.

— MKL_DYNAMICS is true by default

* Nested OpenMP can be used to enable multiple threads for
MKL calls. Treat MKL as a nested inner OpenMP region.

* Sample settings

export OMP_NESTED=true

export OMP_PLACES=cores

export OMP_PROC_BIND=close

export OMP_NUM_THREADS=6,4

export MKL_DYNAMICS=false

export KMP_HOT_TEAMS=1

export KMP_HOT_TEAMS_MAX_LEVELS=2

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science -17- a;a\ltsma

N
A
rrrrrrr ""|

ST

/57 %)

% w 5
‘-‘un\m >

NWChem: OpenMP “Reduce” Algorithm m

* Plane wave Lagrange multiplier
— Many matrix multiplications of complex numbers, C=Ax B

— Smaller matrix products: FFM, typical size 100 x 10,000 x 100
— Original threading scaling with MKL not satisfactory

« OpenMP “Reduce” or “Block” algorithm
— Distribute work on A and B along the k dimension

— A thread puts its contribution in a buffer of size m x n
— Buffers reduced to produce C
— OMP teams of threads -

FFM I —
| —
N N ,

Courtesy of Mathias Jacquelin, LBNL

\ U.S. DEPARTMENT OF Ofﬁce of

A
© ENERGY <o il

BERKELEY LAB

NWChem: OpenMP “Reduce” Algorithm E e

* Better for smaller inner dimensions, i.e. for FFMs

 Multiple FFMs can be done concurrently in different thread pools

* Threading enables us to use all 240 hardware threads

 Best “Reduce”: 10 MPI, 6 teams of 4 threads (nested OpenMP with MKL)

MKL Best “Reduce”
1MPI, 240 threads 10 MPI, 6 teams of 4 threads

MKL_KNC_1x240 - 240 threads REDUCE_KNC_10x24 - 240 threads

40

0.9 60 0.9

0.8 8o 0.8

100

0.7 150 0.7
062 200 _
62 062
S 400 &

p

5 Z
o 059 .~ 600 050
2 Is3] 8
5 8 £ 800 S
E 0.4 E 047
] 1000 49
° °
033 2000 03%

4000

e

N
o
N

6000
8000
10000
12000

15000 S
S S
,s L)

e

i
=)
h

g
o

0.0

Courtesy of Mathias Jacquelin, LBNL

U.S. DEPARTMENT OF Ofﬂce Of

/—\‘ .
ENERGY Science -19- BERKELEY LAB

RENTOr S
CERD
1S e)
A (7])i
), &
S5 i

FFT3D on KNG, Ng=64°) e

Throughputs (# of FFTs/sec)

4|1

OMP ®1 ®m2 =4
NMKL == 240/(NMPI * OMP)

2500

2000

1500

1000

500

0

MPI task

Courtesy of Jeongnim Kim, Intel

""\“"f: U.S. DEPARTMENT OF Ofﬁce Of

)) ENERGY Science 0

FFFFFFFFF

Nested OpenMP on NERSC Systems Niesc/|[g e

* Please see detailed example settings in the “Nested
OpenMP” web page:
— Run on Edison and Babbage
— With Intel and Cray compilers
— Use Torque/Moab and SLURM batch schedulers

— https://www.nersc.gov/users/computational-systems/
edison/running-jobs/using-openmp-with-mpi/nested-
openmp/

Office of

Science -21-

YEARS

at the
FOREFRONT

Thank you.

FA‘ U.S. DEPARTMENT OF Office of
(&)

ENERGY Science -22-

