
XC comparison to XE
and early performance tips

Outline

2/6/2013
2

● Node is similar but different

● Choice of hyperthreading is new

● Intel OpenMP on XC

● Environment is very similar

● Couple of MPI enhancements

● Hyperthreading optimization chart

● Network bandwidth, in particular global bandwidth, has
improved substantially

● Brush up on your IO

● 3D FFTS… if we have time

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

6MB L3

Cache

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

6MB L3

Cache

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

6MB L3

Cache

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

6MB L3

Cache

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound H
T

3

H
T

3

● 2 Multi-Chip Modules, 4 Opteron Dies

● 24 (or 16) Computational Cores, 24 MB of L3 cache

● 8 Channels of DDR3 Bandwidth to 8 DIMMs

● Dies are fully connected with HT3

XE6 Compute Node Details:
24-core Magny Cours

To Interconnect

HT3

HT3

HT3

HT3

3

Cray XC30 Compute Blade Architecture

4

C
O

R
E

0
C

O
R

E

1
C

O
R

E

2
C

O
R

E

3
C

O
R

E

4
C

O
R

E

5
C

O
R

E

6
C

O
R

E

7

20 MB L3 Cache

MAGNY COURS

 6 cores per die

 4 die per node

 Each core has

 1 user thread

 1 SSE (vector) functional group

 128 bits wide

 1 add and 1 multiply

 L1 cache size = 32 Kbytes

 L2 cache size = .5 Mbytes

 L3 cache, size = 6 Mbytes

 Cache per core = .5 + 6/6 = 1.5 Mbytes

 Cache BW per core

 L1 / L2 / L3 = 35 / 3.2 / 3.2 Gbytes/s

 Stream TRIAD BW/node = 52 Gbytes/s

 Clock speed = 2.1 Ghz

 Peak DP FP per core = 4 flops/clk

 Peak DP FP per node = 201 flops/clk

 Memory latency = 110 ns

Magny Cours vs Sandybridge: bake-off

Sandybridge

 8 cores per die

 2 die per node

 Each core has

 1 or 2 user threads

 1 SSE (vector) functional group

 256 bits wide

 1 add and 1 multiply

 L1 cache size = 32 Kbytes

 L2 cache size = 256 kbytes

 L3 cache, size = 20 Mbytes

 Cache per core= 20/8 = 2.5 Mbytes

 Cache BW per core

 L1 / L2 / L3 = 105 / 42 / 26 Gbytes/s

 Stream TRIAD BW / Node = 77 Gbytes/s

 Clock speed = 2.6 Ghz

 Peak DP FP per core = 8 flops/clk

 Peak DP FP per node = 332 flops/clk

 Memory latency = 82 ns
 5

Single Stream vs Dual Stream

● Cray compute nodes booted with hyperthreads always ON
● User can choose to run with one or two ranks/pes/threads per core
● Choice made at runtime

● aprun –n### -j1 … -> Single Stream mode, one rank per core
● aprun –n### -j2 … -> Dual Stream mode, two ranks per core

● Default is Single Stream
● Dual Stream often better

● if throughput is more important OR…
● If performance per node is more important OR…
● if you code scales extremely well

● Single Stream often better
● Single job performance matters more
● Per core performance matters most (code does not scale well)

● Cray ended up running 4 or the 7 “SSP” codes in dual stream

mode to maximize overall system score

6

Running with OpenMP and the Intel PE

2/6/2013
7

● An extra thread created by the Intel OpenMP runtime
interacts with the CLE thread binding mechanism and
causes poor performance

● To work around this issue cpu-binding should be turned off
● Allows user compute threads to spread out over available resources

● Helper thread will no longer impact performance

● Note: This is only an issue for running OpenMP programs
that were compiled and linked with the Intel compiler

Examples of using MPI and OpenMP with Intel PE

2/6/2013
8

● Running when “depth” divides evenly into the number of
“cpus” on a socket
export OMP_NUM_THREADS=“<=depth”

aprun -n npes -d “depth” -cc numa_node a.out

● Running when “depth” does not divide evenly into the
number of “cpus” on a socket
export OMP_NUM_THREADS=“<=depth”

aprun -n npes -d “depth” -cc none a.out

● When running default # of cpus = # of cores

● When running using –j2 # of cpus = # of cores X 2
hyperthreads

● These “-cc” options turn off cpu binding
● Your process/thread may switch cores in the middle of execution

Cray XE6 Platform Cray Cascade Platform

C
ra

y
 P

ro
g

ra
m

m
in

g
 E

n
v
ir

o
n

m
e

n
t

Cray MPT (MPI and SHMEM)

Cray Compiler (incl. Fortran/UPC/CAF/Chapel)

Cray Tools (CrayPat, Cray Apprentice2, Cascade Debugging Support)

Cray Math and Science Libraries

Third Party Libraries (ACML, MKL, IO, Math and Science)

Third Party (Python, Totalview, DDT)

PGI/GNU/Intel Compilers GNU/Intel Compilers

C
ra

y
 L

in
u

x
 E

n
v
ir

o
n

m
e

n
t

MOAB/LSF/PBS Pro

ALPS

Lustre/DVS/NFS

CLE

SuSE components

Intel Processors Components

Gemini Networks Gemini API’s on Aries Network

Cray System Mgmt

HSS Framework

Other Party

 Developed

Cray

 Developed

Cray Software: XE6 – Cascade Continuity

9

● MPI on XC behaves essentially the same as MPI on XE
● UGNI interface is the same for XE and XC
● MPICH2 code base is nearly the same

● Messaging Paths (VSHORT, EAGER, RENDEZVOUS) are Identical

● Enhanced Features for XC

● Modified MPI Asynchronous Progress Engine Threads
● Threads can be placed on unused Intel hyper thread cores
● More on this in a moment…

● XC Hardware Collective Engine (CE)

● XC supports hardware-offload of Barrier & Allreduce collectives
● Plan to invoke these via MPICH_USE_DMAPP_COLL env variable
● Must also link libdmapp into your application

MPI Features / Functionality for XC

2013 - Cray Proprietary
10

● Used to improve communication/computation overlap

● Each MPI rank starts a “helper thread” during MPI_Init

● Helper threads progress MPI engine while application computes

● Only inter-node messages that use Rendezvous Path are
progressed (relies on BTE for data motion)

● To enable on XC when using 1 stream per core:
● export MPICH_NEMESIS_ASYNC_PROGRESS=1

● export MPICH_MAX_THREAD_SAFETY=multiple

● export MPICH_GNI_USE_UNASSIGNED_CPUS=enabled

● Run application: aprun –n XX a.out

● To enable on XC when using 2 streams per core recommend
running with the corespec option:

● export MPICH_NEMESIS_ASYNC_PROGRESS=1

● export MPICH_MAX_THREAD_SAFETY=multiple

● Run application with corespec: aprun –n XX -r [1-2] a.out

● 10% or more performance improvements with some apps

MPI - Async Progress Engine Support

2013 - Cray Proprietary
11

Hyperthreading optimization chart

2/6/2013
12

Single Stream Mode – No MPI
Async:

Collect performance baseline here

Maximize per cpu performance

Little to no MPI communication
overlap for medium size

messages

Dual Stream Mode – With MPI Async

Goals:
Optimizing per node perf. or

Maximizing perf. using many Pes
and

Improve communication
performance…

But give up using 1 or 2

hyperthreads

Is this “better”?

Single Stream Mode –

With MPI Async

Goals:

Maximize per cpu performance

Improve communication
performance

Does overall performance improve?

Dual Stream Mode –

Without MPI Async

Goals:
Optimizing per node performance

or
Maximizing performance by using

many PEs

Is this “better”?

Significant Improvement in Network Bandwidth

2/6/2013
13

● There has been a significant improvement in global
bandwidth moving from the XE to the XC
● Phase 2 Edison will likely have ~4-5 times global bandwidth of Hopper if

running on the full system

● Group structure and adaptive routine will likely mean the improvement will
be even greater for jobs that take 100+ nodes

● Adaptive routing should prevent hotspots in the network
● Relatively easy to generate hot spots in hopper

● Higher dimensional nearest-neighbor patterns see contention in the 3D
torus network in Hopper

● Edison should be able to handle these patterns much better

● Global bandwidth intensive and higher dimensional nearest-
neighbor codes should benefit from dragonfly

Linking with MKL and PrgEnv-cray

2/7/2013
14

● PrgEnv-cray compatible with sequential, not threaded, MKL
● Examples assume you have loaded the intel module (to

define the env var INTEL_PATH)
● Typical case: You want to use MKL BLAS and/or LAPACK

-L ${INTEL_PATH}/mkl/lib/intel64/ \
-Wl,--start-group \
-lmkl_intel_lp64 -lmkl_sequential -lmkl_core \
-Wl,--end-group

● Another typical case: You want to use MKL serial FFTs/DFTs
Same as above (need more for FFTW interface)

● A less typical case: You want to use MKL distributed FFTs
-L ${INTEL_PATH}/mkl/lib/intel64/ \
-Wl,--start-group \
-lmkl_cdft_core -lmkl_intel_lp64 -lmkl_sequential \
-lmkl_core -lmkl_blacs_intelmpi_lp64 \
-Wl,--end-group

● The Intel MKL Link Line Advisor can tell you what to add to
your link line
● http://software.intel.com/sites/products/mkl/

http://software.intel.com/sites/products/mkl/
http://software.intel.com/sites/products/mkl/

Write Transfer Speeds for Sequential IO Patterns

2/12/2013
15

0

5

10

15

20

25

30

35

40

10000 1000000 1048576

G
b

y
te

s
/s

e
c

Transfer Size

MPI-IO SF

Performed many small transfers

to form a larger record.

Even this performance was

difficult to achieve.

Write Transfer Speeds for Sequential IO Patterns

2/12/2013
16

0

5

10

15

20

25

30

35

40

10000 1000000 1048576

G
b

y
te

s
/s

e
c

Transfer Size

MPI-IO SF POSIX FPP
Used iobuf for FPP

module load iobuf; man iobuf

IO performance summary

2/12/2013
17

● File per process performance can benefit from using IOBUF,
especially for small record sizes.

● Shared file performance that is 40-50% of file per process
performance is possible, depending on the file access pattern.
● During shared file IO the file system must do file locking to preserve

consistency semantics.

● Shared file performance may or may not benefit from MPI I/O
collective buffering, depending on the file access pattern.
● See the Cray manual "Getting Started on MPI I/O" (S-2490), and in particular,

section 5.2, for some simple write examples.

● To get a summary of the file access pattern:
export MPICH_MPIIO_STATS=1

● For apps with MPI I/O calls using module cray-mpich2/5.6.0 (or later)

● In general, large records with no gaps performs best, small
records with large gaps performs worst.
● And collective buffering helps most on writes for small records by many

processes to a single region of a shared file.

3D FFT case study

18

3D FFT Story: 1D decomposition

 Customer had a code whose main computational section
was a 3D FFT

 “Original” version had a 1D decomposition; series of planes

 3 compute sections

 1 communication section of a large all-to-all across all
PEs in the job

 Communication used shmem

 Two major problems

 Limited parallelism: Real problems <=10k in 1 dimension

 As #PEs increased, message size decreased

 More of a problem on XT (Seastar) than XE (Gemini)

19

3D FFT Story: 2D decomposition

 “New” version had a 2D decomposition; pencils

 3 compute sections

 2 communication sections of a large all-to-all across
subsets of PEs in the job

 New version was not running “as well as he would like”

WHY?

20

3D FFT Story: 2D decomposition

 Reason 1: Moving twice as much data

 Two sections that picked up and set down “all the data”

 At scale communication accounted for the vast majority
of the time

 Communicating twice was taking twice as long

 What can we do about it?

• What about the decomposition?

21

3D FFT Story: 2D decomposition

 Initial decomposition was 100 x 100 or 200 x 50

 First number is the number of “logically contiguous” PEs
which do the first all-to-all

 Second number is the number of simultaneous all-to-alls
done between groups

 Second all-to-all was global bandwidth bound

 See previous slides for optimization techniques

 First all-to-all still put significant amounts of data onto the
network.

22

3D FFT Story: 2D decomposition

 What if we reduced the size of the first dimension?

 Smaller size kept higher % of data on node

 Smaller size meant fewer, “likely closer” nodes were
communicating during that phase

 24 x M decomposition: communication for the 1st all-to-
all is entirely on node

 Time associated with the first all-to-all essentially
disappeared

23

3D FFT Story: 2D decomposition

 Reason 2: Using too few cores

 Initial comparisons where made on < 4k cores

 1D version was performing just fine

 Had no parallelism limitations

 Smaller messages were running fine on XE

 2D version “designed” to run on more core

 Designed to scale to core counts that 1D could not
achieve

24

