
XC comparison to XE  
and early performance tips 
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● Node is similar but different 

● Choice of hyperthreading is new 

● Intel OpenMP on XC 

● Environment is very similar  

● Couple of MPI enhancements 

● Hyperthreading optimization chart 

● Network bandwidth, in particular global bandwidth, has 
improved substantially 

● Brush up on your IO 

 

● 3D FFTS… if we have time 
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● 2 Multi-Chip Modules, 4 Opteron Dies 

● 24 (or 16) Computational Cores, 24 MB of L3 cache 

● 8 Channels of DDR3 Bandwidth to 8 DIMMs 

● Dies are fully connected with HT3 

XE6 Compute Node Details:  
24-core Magny Cours 

To Interconnect 

HT3 

HT3 

HT3 

HT3 
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Cray XC30 Compute Blade Architecture 
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20 MB L3 Cache 



MAGNY COURS 

 6 cores per die 

 4 die per node 

 Each core has 

 1 user thread 

 1 SSE (vector) functional group 

 128 bits wide 

 1 add and 1 multiply 

 L1 cache size = 32 Kbytes 

 L2 cache size = .5 Mbytes 

 L3 cache, size = 6 Mbytes 

 Cache per core = .5 + 6/6 = 1.5 Mbytes 

 Cache BW per core 

 L1 / L2 / L3 = 35 / 3.2 / 3.2  Gbytes/s 

 Stream TRIAD BW/node = 52 Gbytes/s 

 Clock speed = 2.1 Ghz 

 Peak DP FP per core = 4 flops/clk 

 Peak DP FP per node = 201 flops/clk 

 Memory latency = 110 ns 

Magny Cours vs Sandybridge:  bake-off 

Sandybridge 

 8 cores per die  

 2 die per node 

 Each core has 

 1 or 2 user threads 

 1 SSE (vector) functional group 

 256 bits wide 

 1 add and 1 multiply 

 L1 cache size = 32 Kbytes 

 L2 cache size = 256 kbytes 

 L3 cache, size = 20 Mbytes 

 Cache per core=  20/8 = 2.5 Mbytes 

 Cache BW per core 

 L1 / L2 / L3 = 105 / 42 / 26 Gbytes/s 

 Stream TRIAD BW / Node = 77 Gbytes/s 

 Clock speed = 2.6 Ghz 

 Peak DP FP per core = 8 flops/clk 

 Peak DP FP per node = 332 flops/clk 

 Memory latency = 82 ns 
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Single Stream vs Dual Stream 

● Cray compute nodes booted with hyperthreads always ON 
● User can choose to run with one or two ranks/pes/threads per core 
● Choice made at runtime 

 
● aprun –n### -j1 …     ->  Single Stream mode, one rank per core 
● aprun –n### -j2 …     ->  Dual Stream mode, two ranks per core 

 
● Default is Single Stream 
● Dual Stream often better  

● if throughput is more important OR… 
● If performance per node is more important OR… 
● if you code scales extremely well 

● Single Stream often better 
● Single job performance matters more 
● Per core performance matters most (code does not scale well) 

 
● Cray ended up running 4 or the 7 “SSP” codes in dual stream 

mode to maximize overall system score 
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Running with OpenMP and the Intel PE 
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● An extra thread created by the Intel OpenMP runtime 
interacts with the CLE thread binding mechanism and 
causes poor performance 

 

● To work around this issue cpu-binding should be turned off 
● Allows user compute threads to spread out over available resources 

● Helper thread will no longer impact performance 

 

● Note:  This is only an issue for running OpenMP programs 
that were compiled and linked with the Intel compiler 

 



Examples of using MPI and OpenMP with Intel PE 
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● Running when “depth” divides evenly into the number of 
“cpus” on a socket  
export OMP_NUM_THREADS=“<=depth” 

aprun -n npes -d “depth” -cc numa_node a.out 

 
 

● Running when “depth” does not divide evenly into the 
number of “cpus” on a socket  
export OMP_NUM_THREADS=“<=depth” 

aprun -n npes -d “depth” -cc none a.out 

 

 

● When running default # of cpus = # of cores 

● When running using –j2 # of cpus = # of cores X 2 
hyperthreads 

● These “-cc” options turn off cpu binding 
● Your process/thread may switch cores in the middle of execution 



Cray XE6 Platform Cray Cascade Platform 
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Cray MPT (MPI and SHMEM) 

Cray Compiler (incl. Fortran/UPC/CAF/Chapel) 

Cray Tools (CrayPat, Cray Apprentice2, Cascade Debugging Support) 

Cray Math and Science Libraries 

Third Party Libraries (ACML, MKL, IO, Math and Science) 

Third Party (Python, Totalview, DDT) 

PGI/GNU/Intel  Compilers GNU/Intel  Compilers 
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MOAB/LSF/PBS Pro 

ALPS  

Lustre/DVS/NFS 

CLE 

SuSE components 

Intel Processors Components 

Gemini Networks Gemini API’s on Aries Network 

Cray System Mgmt  

HSS Framework 

Other Party 

 Developed 

Cray 

 Developed 

Cray Software: XE6 – Cascade Continuity    
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● MPI on XC behaves essentially the same as MPI on XE 
● UGNI interface is the same for XE and XC 
● MPICH2 code base is nearly the same  

● Messaging Paths (VSHORT, EAGER, RENDEZVOUS) are Identical 
 

● Enhanced Features for XC 
 

● Modified MPI Asynchronous Progress Engine Threads  
● Threads can be placed on unused Intel hyper thread cores 
● More on this in a moment… 

 
● XC Hardware Collective Engine (CE) 

● XC supports hardware-offload of Barrier & Allreduce collectives 
● Plan to invoke these via MPICH_USE_DMAPP_COLL env variable 
● Must also link libdmapp into your application 
 

MPI Features / Functionality for XC 

2013 -  Cray Proprietary 
10 



● Used to improve communication/computation overlap 

● Each MPI rank starts a “helper thread” during MPI_Init 

● Helper threads progress MPI engine while application computes 

● Only inter-node messages that use Rendezvous Path are 
progressed (relies on BTE for data motion) 

● To enable on XC when using 1 stream per core: 
● export MPICH_NEMESIS_ASYNC_PROGRESS=1 

● export MPICH_MAX_THREAD_SAFETY=multiple 

● export MPICH_GNI_USE_UNASSIGNED_CPUS=enabled 

● Run application:   aprun –n XX  a.out 

● To enable on XC when using 2 streams per core recommend 
running with the corespec option: 

● export MPICH_NEMESIS_ASYNC_PROGRESS=1 

● export MPICH_MAX_THREAD_SAFETY=multiple 

● Run application with corespec:   aprun –n XX  -r [1-2]  a.out 

● 10% or more performance improvements with some apps 

 

 

MPI - Async Progress Engine Support 
 

2013 -  Cray Proprietary 
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Hyperthreading optimization chart 
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Single Stream Mode – No MPI 
Async: 

Collect performance baseline here 

 

Maximize per cpu performance 

Little to no MPI communication 
overlap for medium size 

messages 
 

Dual Stream Mode – With MPI Async 

Goals: 
Optimizing per node perf. or 

Maximizing perf. using many Pes 
and 

Improve communication 
performance… 

 
But give up using 1 or 2 

hyperthreads 

Is this “better”? 
 

Single Stream Mode –  

With MPI Async 

Goals: 

Maximize per cpu performance 

Improve communication 
performance 

 

Does overall performance improve? 
 

Dual Stream Mode –  

Without MPI Async 

Goals: 
Optimizing per node performance 

or 
Maximizing performance by using 

many PEs 

Is this “better”? 
 



Significant Improvement in Network Bandwidth 
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● There has been a significant improvement in global 
bandwidth moving from the XE to the XC 
● Phase 2 Edison will likely have ~4-5 times global bandwidth of Hopper if 

running on the full system 

● Group structure and adaptive routine will likely mean the improvement will 
be even greater for jobs that take 100+ nodes 

 

● Adaptive routing should prevent hotspots in the network 
● Relatively easy to generate hot spots in hopper 

● Higher dimensional nearest-neighbor patterns see contention in the 3D 
torus network in Hopper 

● Edison should be able to handle these patterns much better 

 

● Global bandwidth intensive and higher dimensional nearest-
neighbor codes should benefit from dragonfly 



Linking with MKL and PrgEnv-cray 
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● PrgEnv-cray compatible with sequential, not threaded, MKL 
● Examples assume you have loaded the intel module (to 

define the env var INTEL_PATH) 
● Typical case: You want to use MKL BLAS and/or LAPACK 

-L ${INTEL_PATH}/mkl/lib/intel64/ \ 
-Wl,--start-group \ 
-lmkl_intel_lp64 -lmkl_sequential -lmkl_core \ 
-Wl,--end-group 

● Another typical case: You want to use MKL serial FFTs/DFTs 
Same as above (need more for FFTW interface) 

● A less typical case: You want to use MKL distributed FFTs 
-L ${INTEL_PATH}/mkl/lib/intel64/ \ 
-Wl,--start-group \ 
-lmkl_cdft_core -lmkl_intel_lp64 -lmkl_sequential \ 
-lmkl_core -lmkl_blacs_intelmpi_lp64 \ 
-Wl,--end-group 

● The Intel MKL Link Line Advisor can tell you what to add to 
your link line 
● http://software.intel.com/sites/products/mkl/ 

http://software.intel.com/sites/products/mkl/
http://software.intel.com/sites/products/mkl/


Write Transfer Speeds for Sequential IO Patterns 
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Transfer Size 

MPI-IO SF

Performed many small transfers 

to form a larger record. 

Even this performance was 

difficult to achieve. 



Write Transfer Speeds for Sequential IO Patterns 
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Transfer Size 

MPI-IO SF POSIX FPP
Used iobuf for FPP 

module load iobuf; man iobuf 



IO performance summary 
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● File per process performance can benefit from using IOBUF, 
especially for small record sizes. 

● Shared file performance that is 40-50% of file per process 
performance is possible, depending on the file access pattern.   
● During shared file IO the file system must do file locking to preserve 

consistency semantics.  

● Shared file performance may or may not benefit from MPI I/O 
collective buffering, depending on the file access pattern. 
● See the Cray manual "Getting Started on MPI I/O" (S-2490), and in particular, 

section 5.2, for some simple write examples. 

● To get a summary of the file access pattern: 
export MPICH_MPIIO_STATS=1 

● For apps with MPI I/O calls using module cray-mpich2/5.6.0 (or later) 

● In general, large records with no gaps performs best, small 
records with large gaps performs worst.   
● And collective buffering helps most on writes for small records by many 

processes to a single region of a shared file. 



3D FFT case study 

18 



3D FFT Story:  1D decomposition 

 Customer had a code whose main computational section 
was a 3D FFT 

 “Original” version had a 1D decomposition; series of planes 

 3 compute sections 

 1 communication section of a large all-to-all across all 
PEs in the job 

 Communication used shmem 

 Two major problems 

 Limited parallelism:  Real problems <=10k in 1 dimension 

 As #PEs increased, message size decreased 

 More of a problem on XT (Seastar) than XE (Gemini) 
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3D FFT Story:  2D decomposition 

 “New” version had a 2D decomposition; pencils 

 3 compute sections 

 2 communication sections of a large all-to-all across 
subsets of PEs in the job 

 New version was not running “as well as he would like” 

 

WHY? 
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3D FFT Story:  2D decomposition 

 Reason 1:  Moving twice as much data 

 Two sections that picked up and set down “all the data” 

 At scale communication accounted for the vast majority 
of the time 

 Communicating twice was taking twice as long 

 

 What can we do about it? 

 

• What about the decomposition? 
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3D FFT Story:  2D decomposition 

 Initial decomposition was 100 x 100 or 200 x 50 

 First number is the number of “logically contiguous” PEs 
which do the first all-to-all 

 Second number is the number of simultaneous all-to-alls 
done between groups 

 Second all-to-all was global bandwidth bound 

 See previous slides for optimization techniques 

 First all-to-all still put significant amounts of data onto the 
network. 
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3D FFT Story:  2D decomposition 

 What if we reduced the size of the first dimension? 

 Smaller size kept higher % of data on node 

 Smaller size meant fewer, “likely closer” nodes were 
communicating during that phase 

 24 x M decomposition:  communication for the 1st all-to-
all is entirely on node 

 Time associated with the first all-to-all essentially 
disappeared 
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3D FFT Story:  2D decomposition 

 Reason 2:  Using too few cores 

 Initial comparisons where made on < 4k cores 

 1D version was performing just fine 

 Had no parallelism limitations 

 Smaller messages were running fine on XE 

 2D version “designed” to run on more core 

 Designed to scale to core counts that 1D could not 
achieve 
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