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The	
  Schrödinger	
  equa'on	
  provides	
  the	
  
founda'on	
  for	
  computa'onal	
  studies	
  of	
  
chemical	
  systems.	
  

Calcula'on	
  of	
  the	
  molecular	
  orbitals	
  (MOs)	
  of	
  
the	
  hydrogen	
  atom	
  is	
  trivial.	
  

Calcula'ons	
  on	
  many-­‐electron	
  systems	
  are	
  much	
  more	
  challenging:	
  

“the	
  underlying	
  physical	
   laws	
  necessary	
   for	
   the	
  mathema5cal	
   theory	
  of	
  a	
   large	
  part	
  of	
  
physics	
  and	
  the	
  whole	
  of	
  chemistry	
  are	
  thus	
  completely	
  known,	
  and	
  the	
  difficulty	
  is	
  only	
  
that	
  the	
  exact	
  applica5on	
  of	
  these	
  laws	
  leads	
  to	
  equa5ons	
  much	
  too	
  complicated	
  to	
  be	
  
soluble.”	
  	
  	
  -­‐	
  	
  Paul	
  Dirac,	
  1929	
  

Erwin	
  Schrödinger	
   Paul	
  Dirac	
  

Intro to Computational Chemistry�



Many	
  wavefunc'on	
  theory	
  (WFT)	
  
methods	
  exist	
  for	
  approxima'ng	
  the	
  
solu'on	
  to	
  the	
  Schrödinger	
  equa'on.	
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Because	
  of	
  the	
  large	
  computa'onal	
  cost	
  
of	
  more	
  accurate	
  WFT	
  calcula'ons,	
  they	
  
are	
  only	
  prac'cal	
  for	
  systems	
  containing	
  
approximately	
  20	
  atoms	
  or	
  fewer.	
  

1	
  Minute	
  at	
  the	
  CCSD(T)	
  level	
  

20	
  Years	
  at	
  the	
  CCSD(T)	
  level	
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A	
  

B	
  

A	
  –	
  higher	
  level	
  theory	
  
B	
  –	
  lower	
  level	
  theory	
  

•  Approximate implementations of the idea:
QM/MM, ONIOM, FMO,...

•  However, we will address this problem in a 
way that exactly describes the boundary 
between subsystems. 
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An	
  illustra've	
  example:	
  	
  DFT-­‐in-­‐DFT	
  for	
  ethanol	
  
1.	
  Perform	
  a	
  KS-­‐DFT	
  calcula4on	
  to	
  obtain	
  a	
  set	
  of	
  MOs:	
  

f = h+ J[�] + v
xc

[�]
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2.	
  Par44on	
  the	
  MOs	
  into	
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  sets.	
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2.	
  Par44on	
  the	
  MOs	
  into	
  
two	
  sets.	
  
	
  
	
  

3.	
  Perform	
  a	
  calcula4on	
  
on	
  subsystem	
  A.	
  

fA = h+ J[�A + �B ] + v
xc

[�A + �B ] + µPB

PB
↵� ⌘ h↵|

(
X

i2B

|�B
i ih�B

i |
)
|�i = [S�BS]↵�

fA = h+ J[�A + �B ] + v
xc

[�A + �B ] + µPB

fA = h+ J[�A + �B ] + v
xc

[�A + �B ] + µPB
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An	
  illustra've	
  example:	
  	
  DFT-­‐in-­‐DFT	
  for	
  ethanol	
  

Energy	
  /	
  Eh	
  
DFT	
  on	
  full	
  system	
   -­‐154.827984885	
  

DFT-­‐in-­‐DFT	
  embedding	
   -­‐154.827984883	
  

Error	
   0.000000002	
  
PBE	
  func4onal,	
  6-­‐31G*	
  basis	
  set	
  

Manby	
  et	
  al.,	
  JCTC,	
  8,	
  2564	
  (2012).	
  
Barnes	
  et	
  al.,	
  JCP,	
  139,	
  024103	
  (2013).	
  

The	
  projec+on-­‐based	
  embedding	
  calcula+ons	
  do	
  not	
  
introduce	
  any	
  error	
  associated	
  with	
  the	
  boundary	
  
between	
  subsystems.	
  

The	
  projec4on-­‐based	
  embedding	
  
method	
  has	
  been	
  implemented	
  in	
  the	
  
Molpro	
  soaware	
  package.	
  

Projection-Based Embedding�



Parallelism Through MBE �
Many-­‐Body	
  Expansion:	
  

...	
  to	
  es4mate	
  the	
  WFT	
  energy	
  of	
  the	
  full	
  system.	
  

Calculate	
  the	
  
WFT	
  energy	
  
of	
  each	
  of	
  the	
  
monomers	
  ...	
  

...	
  and	
  each	
  of	
  
the	
  dimers	
  ...	
  

+	
  ...	
  +	
  

+	
  ...	
  +	
  

First,	
  divide	
  a	
  system	
  into	
  monomers.	
  

Efficiency:	
  

Accuracy:	
  

The	
  accuracy	
  of	
  projec4on-­‐based	
  embedding	
  facilitates	
  
very	
  aggressive	
  par44oning	
  of	
  the	
  monomers:	
  

Barnes	
  et.	
  al.,	
  JCP,	
  139,	
  024103	
  (2013).	
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Lithium-Ion Batteries�

Structure	
  of	
  a	
  lithium-­‐ion	
  ba=ery:	
  

Proper'es	
  of	
  a	
  good	
  solvent:	
  

Commercial	
  Uses:	
  

• 	
  High	
  dielectric	
  constant	
  
• 	
  Liquid	
  over	
  a	
  large	
  temperature	
  range	
  
• 	
  Inert	
  with	
  respect	
  to	
  the	
  electrodes	
  
• 	
  Low	
  viscosity	
  

• 	
  Forms	
  an	
  SEI	
  
• 	
  Stable	
  against	
  reduc4on/oxida4on	
  
• 	
  Non-­‐toxic	
  
• 	
  Inexpensive	
  



EC and DMC �

δ-­‐	
  δ+	
  

δ+	
   δ+	
  

δ-­‐	
  

δ-­‐	
  

EC:	
  
• 	
  Molecular	
  Dipole:	
  7	
  Debye	
  
• 	
  Dielectric	
  Constant:	
  90	
  
• 	
  Mel4ng	
  Point:	
  310	
  K	
  

DMC:	
  
• 	
  Molecular	
  Dipole:	
  1	
  Debye	
  
• 	
  Dielectric	
  Constant:	
  3	
  
• 	
  Mel4ng	
  Point:	
  275	
  K	
  

Ethylene	
  carbonate	
  (EC)	
  and	
  dimethyl	
  carbonate	
  (DMC)	
  are	
  commonly	
  used	
  solvents	
  in	
  
commercial	
  lithium-­‐ion	
  ba=eries.	
  



Oxidative Decomposition�

Goal:	
  Inves'gate	
  the	
  effect	
  of	
  solvent	
  interac'ons	
  on	
  the	
  oxida've	
  stability	
  of	
  EC	
  
and	
  DMC.	
  

Xing,	
  Borodin,	
  PCCP	
  14,	
  12838	
  (2012)	
  

When	
  charging	
  at	
  high	
  voltages,	
  EC	
  and	
  DMC	
  can	
  
become	
  oxidized	
  by	
  the	
  cathode.	
  	
  This	
  is	
  o\en	
  
followed	
  by	
  numerous	
  oxida'on-­‐induced	
  
decomposi'on	
  reac'ons:	
  

Forma'on	
  of	
  a	
  solid	
  electrolyte	
  
interphase	
  (SEI)	
  is	
  necessary	
  to	
  prevent	
  
excessive	
  solvent	
  decomposi'on.	
  

Xu	
  et	
  al.,	
  J.	
  Phys.	
  Chem.	
  C	
  111,	
  7411	
  (2007)	
  



Why Not Use DFT?�

The	
  B3LYP	
  hole	
  is	
  delocalized	
  across	
  both	
  molecules,	
  while	
  the	
  HF	
  hole	
  
is	
  localized	
  on	
  a	
  single	
  molecule.	
  
	
  
Other	
  DFT	
  func4onals	
  (i.e.	
  M05,	
  M05-­‐2X)	
  also	
  produce	
  delocalized	
  
holes.	
  

B3LYP	
  Electron	
  Hole:	
   HF	
  Electron	
  Hole:	
  

The	
  electron	
  hole	
  caused	
  by	
  oxida4on	
  of	
  a	
  system	
  of	
  two	
  EC	
  molecules	
  
is	
  shown	
  below,	
  at	
  both	
  the	
  B3LYP	
  and	
  HF	
  levels	
  of	
  theory.	
  



Embedding Strategy�

The	
  embedding	
  calcula'ons	
  were	
  performed	
  
using	
  NERSC’s	
  Edison	
  peta-­‐flop	
  system.	
  

CCSD(T)–in–B3LYP–in–MM	
  

128-­‐Molecule	
  Simula4on	
  Cell:	
   Overall	
  Embedding	
  Strategy:	
  
1.  Run	
  molecular	
  dynamics	
  simula4ons	
  to	
  

generate	
  solvent	
  configura4ons.	
  
2.  Calculate	
  the	
  ver4cal	
  ioniza4on	
  energies	
  for	
  

many	
  different	
  solvent	
  configura4ons	
  using	
  
CCSD(T)-­‐in-­‐B3LYP-­‐in-­‐MM	
  embedding.	
  

3.  Determine	
  the	
  adiaba4c	
  oxida4on	
  poten4als	
  
and	
  reorganiza4on	
  energies	
  using	
  linear	
  
response	
  theory	
  

More	
  than	
  3,000	
  embedding	
  calcula'ons	
  were	
  
performed,	
  cos'ng	
  approximately	
  5,000,000	
  CPU	
  
hours.	
  



Bulk Phase Results�
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FIG. 10. The IE of gas-phase EC (rMM = rDFT = rborder =
0.0) is plotted against R, the distance between the sp2 oxygen
and the mid-point between the two sp3 carbons. The calcu-
lations are performed in the aug-cc-pVTZ basis set using (a)
B3LYP theory and (b) CCSD(T) theory.

D. Bulk Calculations

Fig. 11 shows the results of electronically-
relaxed CCSD(T)-in-B3LYP-in-MM/aug-cc-pVTZ em-
bedding calculations on EC in both the EC and EC+

ensembles, using rborder = 2.5 Å, rDFT = 4.0 Å, and
rMM = 50.0 Å. The distribution of IEs is shown in
Fig. 11(a) for both ensembles, as well as Gaussian fits to
these ensembles. The standard deviations of the distri-
butions for the reduced and oxidized ensembles are 0.29
eV and 0.27 eV, respectively. These results are consis-
tent with linear response theory, which predicts that the
two distributions should follow Gaussian curves having
the same standard deviation.26 Because linear response
theory holds for this system, it is possible to use Eqs.
2 and 1 to construct Marcus parabolas corresponding to
transfer of an electron to the gas-phase; this is depicted
in Fig. 11(b).

Similarly, Fig. 12 shows the IE distributions for neat
DMC, EC in the EC:DMC mixture, and DMC in the
EC:DMC mixture. As shown in Table V, the oxidized
and reduced distributions for each of these systems have
standard deviations within approximately 10% of one an-
other. This small di�erence in standard deviations is
consistent with that of other systems that have been
identified as obeying linear response theory.26 We thus
conclude that, neglecting any oxidative decomposition
reactions, the oxidation of EC and DMC solvents can
be accurately treated using the assumptions of Marcus
theory.

Fig. 13(a) and Fig. 13(b) show the di�erence between
CCSD(T)-in-B3LYP-in-MM/aug-cc-pVTZ and B3LYP-
in-B3LYP-in-MM/aug-cc-pVTZ results for EC in the EC
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FIG. 11. (a) Equilibrium probability distributions, PM(�E),
of the IE of EC, �E, calculated using CCSD(T)-in-B3LYP-
in-MM/aug-cc-pVTZ electronically-relaxed embedding. “M”
corresponds either to the reduced state (R, black) or the oxi-
dized state (O, blue). The distributions have similar standard
deviations, implying that the linear response approximation is
accurate for this system. The best fit Gaussian distributions,
gM(�E), are indicated in solid lines. (b) Diabatic free energy
profiles constructed from the equilibrium distributions shown
in (a). The solid lines indicate the parabolas obtained from
�A and ⇤, which are determined by applying Eqs. 2 and 1.
The sets of data points near the minimum of each parabola
(i.e., the upper left and lower right sets of data points) were
obtained by applying FM(�E) = ���1ln (PM(�E)) + F ref

M ,
where F ref

M = ��1ln (gmax
M ) + ⇥MO�A, and gmax

M is the max-
imum of the Gaussian fit in (a). The linear free energy re-
lation FO(�E) � FR(�E) = �E was then applied to these
data points in order to obtain the other sets of data points
(i.e., the lower left and upper right sets of data points).

Molecule System Reduced ⌅ Oxidized ⌅
EC EC 0.29 0.27
DMC DMC 0.29 0.28
EC EC:DMC 0.33 0.31
DMC EC:DMC 0.29 0.33

TABLE V. Standard deviations, ⌅, of the IE distributions in
Fig. 11(a) and Fig. 12. All values are reported in eV.

ensemble and DMC in the DMC ensemble, respectively.
The black distributions are calculated in the gas-phase
(rborder = rDFT = rMM = 0.0 Å), while the blue distri-
butions are calculated in the condensed-phase (rborder =
2.5 Å, rDFT = 4.0 Å, rMM = 50.0 Å). These curves
average to about 0.4-0.5 eV, indicating that B3LYP-in-
B3LYP-in-MM embedding underestimates the IEs by a
relatively large amount relative to CCSD(T)-in-B3LYP-
in-MM embedding.

Although this di�erence is fairly substantial, one might
expect that the errors associated with treating subsystem
A at the DFT level could exhibit good cancellation of er-
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butions are calculated in the condensed-phase (rborder =
2.5 Å, rDFT = 4.0 Å, rMM = 50.0 Å). These curves
average to about 0.4-0.5 eV, indicating that B3LYP-in-
B3LYP-in-MM embedding underestimates the IEs by a
relatively large amount relative to CCSD(T)-in-B3LYP-
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Application of Linear Response Theory�
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0.0) is plotted against R, the distance between the sp2 oxygen
and the mid-point between the two sp3 carbons. The calcu-
lations are performed in the aug-cc-pVTZ basis set using (a)
B3LYP theory and (b) CCSD(T) theory.

D. Bulk Calculations

Fig. 11 shows the results of electronically-
relaxed CCSD(T)-in-B3LYP-in-MM/aug-cc-pVTZ em-
bedding calculations on EC in both the EC and EC+

ensembles, using rborder = 2.5 Å, rDFT = 4.0 Å, and
rMM = 50.0 Å. The distribution of IEs is shown in
Fig. 11(a) for both ensembles, as well as Gaussian fits to
these ensembles. The standard deviations of the distri-
butions for the reduced and oxidized ensembles are 0.29
eV and 0.27 eV, respectively. These results are consis-
tent with linear response theory, which predicts that the
two distributions should follow Gaussian curves having
the same standard deviation.26 Because linear response
theory holds for this system, it is possible to use Eqs.
2 and 1 to construct Marcus parabolas corresponding to
transfer of an electron to the gas-phase; this is depicted
in Fig. 11(b).

Similarly, Fig. 12 shows the IE distributions for neat
DMC, EC in the EC:DMC mixture, and DMC in the
EC:DMC mixture. As shown in Table V, the oxidized
and reduced distributions for each of these systems have
standard deviations within approximately 10% of one an-
other. This small di�erence in standard deviations is
consistent with that of other systems that have been
identified as obeying linear response theory.26 We thus
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be accurately treated using the assumptions of Marcus
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Fig. 13(a) and Fig. 13(b) show the di�erence between
CCSD(T)-in-B3LYP-in-MM/aug-cc-pVTZ and B3LYP-
in-B3LYP-in-MM/aug-cc-pVTZ results for EC in the EC
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FIG. 11. (a) Equilibrium probability distributions, PM(�E),
of the IE of EC, �E, calculated using CCSD(T)-in-B3LYP-
in-MM/aug-cc-pVTZ electronically-relaxed embedding. “M”
corresponds either to the reduced state (R, black) or the oxi-
dized state (O, blue). The distributions have similar standard
deviations, implying that the linear response approximation is
accurate for this system. The best fit Gaussian distributions,
gM(�E), are indicated in solid lines. (b) Diabatic free energy
profiles constructed from the equilibrium distributions shown
in (a). The solid lines indicate the parabolas obtained from
�A and ⇤, which are determined by applying Eqs. 2 and 1.
The sets of data points near the minimum of each parabola
(i.e., the upper left and lower right sets of data points) were
obtained by applying FM(�E) = ���1ln (PM(�E)) + F ref

M ,
where F ref

M = ��1ln (gmax
M ) + ⇥MO�A, and gmax

M is the max-
imum of the Gaussian fit in (a). The linear free energy re-
lation FO(�E) � FR(�E) = �E was then applied to these
data points in order to obtain the other sets of data points
(i.e., the lower left and upper right sets of data points).

Molecule System Reduced ⌅ Oxidized ⌅
EC EC 0.29 0.27
DMC DMC 0.29 0.28
EC EC:DMC 0.33 0.31
DMC EC:DMC 0.29 0.33

TABLE V. Standard deviations, ⌅, of the IE distributions in
Fig. 11(a) and Fig. 12. All values are reported in eV.

ensemble and DMC in the DMC ensemble, respectively.
The black distributions are calculated in the gas-phase
(rborder = rDFT = rMM = 0.0 Å), while the blue distri-
butions are calculated in the condensed-phase (rborder =
2.5 Å, rDFT = 4.0 Å, rMM = 50.0 Å). These curves
average to about 0.4-0.5 eV, indicating that B3LYP-in-
B3LYP-in-MM embedding underestimates the IEs by a
relatively large amount relative to CCSD(T)-in-B3LYP-
in-MM embedding.

Although this di�erence is fairly substantial, one might
expect that the errors associated with treating subsystem
A at the DFT level could exhibit good cancellation of er-
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on the union of subsystems A and B using a +1 charge
would often lead to the charge being localized outside of
subsystem A. As with the neutral case, the RCCSD(T)-
in-B3LYP embedding calculations use B3LYP reference
MOs obtained from the corresponding B3LYP-in-B3LYP
embedding calculations. To improve the convergence of
these initial B3LYP-in-B3LYP calculations, they are ini-
tialized with the B3LYP-in-B3LYPMOs from the neutral
case.

E. Selection of the Point Charge Representation of
Distant Atoms

Beyond the region treated at the DFT level of the-
ory, atoms are represented using point charges. These
calculations correspond to CCSD(T)-in-B3LYP-in-point
charge embedding. Here we describe the protocol for ob-
taining these point charges.

First, B3LYP-in-B3LYP/cc-pVDZ calculations were
performed on all molecules in an MD snapshot, using
the MD point charges for the point-charge region. The
Mulliken charges were then averaged across all molecules,
and were then scaled in such a manner as to reproduce
the average molecular dipole. Another set of B3LYP-
in-B3LYP/cc-pVDZ calculations were performed on the
same set of molecules, using these scaled Mulliken charges
for the point-charge region. The Mulliken charges result-
ing from this new set of calculations were similarly av-
eraged and scaled, and this procedure was iterated until
the magnitude of the scaled dipole changed by no more
than 0.01 Debye. Table 1 shows the point charges that
were obtained in this manner. These charges were used
for all molecules in the point-charge region, regardless of
the charge of subsystem A.

F. Electronic Relaxation of Subsystem B

When removing an electron from the embedded sub-
system A, it is important to allow the density of subsys-
tem B to relax in response. For this purpose, we perform
an iterative procedure as follows. First, a DFT-in-DFT
embedding calculation is performed on subsystem A with
a +1 charge, using the embedding potential correspond-
ing to the neutral system. The resulting density matrix is
then used to calculate an embedding potential for subsys-
tem B. A standard DFT-in-DFT embedding calculation
is then performed, but with subsystem B treated as the
active subsystem, and the oxidized subsystem A treated
as the environment subsystem. The above steps are then
repeated until the density of subsystem B is relaxed with
respect to the oxidation of subsystem A. The subsequent
CCSD(T)-in-DFT calculation on the oxidized subsystem
A is performed using the relaxed subsystem B density.

G. Acquiring Observable Quantities from the Embedding
Calculations

By applying the above embedding methodology to an
equilibrium ensemble of configurations, obtained via MD
simulation, it is possible to calculate the vertical ioniza-
tion potential. We denote this quantity as ⇥�E⇤0, where
�E is the vertical ionization energy of a single molecule
from a single MD configuration and the subscript indi-
cates that the configurations are sampled using an MD
force field in which all solvent molecules have a net neu-
tral charge.
The above quantity corresponds to the result of photo-

electron spectroscopy, and is thus a relevant experimental
observable; however, most oxidation experiments in the
liquid phase measure the adiabatic oxidation potential.12

This quantity can be calculated as

E =
�A

F
� Eref, (1)

where �A is the di⇥erence in Helmholtz free energies
between the neutral and oxidized systems, F is Faraday’s
constant, and Eref is the reference oxidation potential of
the Li+/Li electrode, 1.4 V. The value of �A can be
obtained from

�A =
1

2
(⇥�E⇤0 + ⇥�E⇤+1) , (2)

where ⇥�E⇤+1 is the vertical ionization energy averaged
over an ensemble in which the MD force field for the
molecule used for subsystem A has a net +1 charge.13

Additionally, we can calculate the Marcus reorganiza-
tion energy associated with oxidation of the solvent,

� =
1

2
(⇥�E⇤0 � ⇥�E⇤+1) , (3)

When an applied overpotential is much less than the re-
organization energy, the oxidation rate is under charge
transfer control, and when the overpotential is much
greater than the reorganization energy, the oxidation rate
is under mass transfer control. Thus the reorganization
energy indicates the overpotential range for which the
Tafel plot of the system is expected to exhibit a linear
slope.

III. RESULTS: METHOD ROBUSTNESS

We now summarize the primary sources of error in
these calculations, relative to the full WFT calculation.
Where applicable, we demonstrate the convergence of our
calculations with respect to available convergence param-
eters.

A. Errors Associated with the Distant Point Charges

As Fig. 3(a) illustrates, the point charge region is of
considerable importance to the IE of EC. These calcula-
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FIG. 3. Contribution of the electronic relaxation of subsystem
B to the ionization energy of subsystem A, calculated with
rDFT = 4.0 Å and rMM = 50.0 Å.

the advantage that the calculation on the active molecule
can be performed using any level of theory.

III. RESULTS

A. Extent of Delocalization of the Electron Hole

In the preceding sections, we described a method for
calculating the IE of a single solvent molecule, even if
other nearby solvent molecules are more readily liable to
oxidation. In principle, this allows for the calculation
of a number of statistical properties of the bulk system;
however, it also invokes the assumption that the electron
hole of the vertically oxidized system is reasonably well
localized on a single molecule. If the electron hole is
instead delocalized across many solvent molecules, the
strategy described above would require modification.

We now perform a number of calculations to exam-
ine the extent of delocalization of the electron hole in
the oxidized system. The blue squares in Fig. 4 demon-
strate that at the B3LYP/aug-cc-pVDZ level of theory,
the electron hole is strongly delocalized across di⇥erent
solvent molecules. These calculations are run on a se-
ries of two-molecule systems, taken from the EC ensem-
ble. The two molecules were chosen by taking the active
molecule and a randomly chosen molecule within 4.0 Å
of the active molecule, using snapshots that are 500 ps
apart. In every case, the largest Mulliken charge on ei-
ther of the two molecules, �max, is close to +0.5, indi-
cating that the electron hole is evenly split between the
two molecules. The black circles in Fig. 4 show that
HF theory produces qualitatively di⇥erent results: �max

is always close to +1.0, indicating that the electron hole
is well localized on a single molecule. Fig. 5 provides an
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FIG. 5. Isosurface of the oxidized electron hole of a two
molecule EC system at ⇥ = 0.005 and calculated at the (a)
B3LYP/aug-cc-pVDZ and (b) HF/aug-cc-pVDZ levels of the-
ory.

example of the isosurface of the electron hole produced
at the B3LYP and HF levels of theory for one of these
systems. The black pluses and blue crosses in Fig. 4
demonstrate that the unrestricted versions of these meth-
ods (UB3LYP and UHF, respectively) yield results that
are nearly identical to the restricted open-shell versions
of the methods. Shown by the hollow red diamonds, the
MO5 functional is found to exhibit somewhat more local-
ization than B3LYP, but a significant amount of charge
is still shared between molecules. The red triangles show
that the related MO5-2X functional typically produces
highly localized electron holes upon oxidation, although
in four of the sixteen test cases, the MO5-2X functional
produces relatively delocalized holes.
To determine which method is correct, we first define

the delocalization energy,

Edeloc ⇥ �EAB �min {�EA,�EB} , (7)

where A and B correspond to one of the molecules in the
two-molecule systems described above, min {x, y} repre-
sents the minimum of x and y, �EAB is the IE of the
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rDFT = 4.0 Å and rMM = 50.0 Å.

the advantage that the calculation on the active molecule
can be performed using any level of theory.

III. RESULTS

A. Extent of Delocalization of the Electron Hole

In the preceding sections, we described a method for
calculating the IE of a single solvent molecule, even if
other nearby solvent molecules are more readily liable to
oxidation. In principle, this allows for the calculation
of a number of statistical properties of the bulk system;
however, it also invokes the assumption that the electron
hole of the vertically oxidized system is reasonably well
localized on a single molecule. If the electron hole is
instead delocalized across many solvent molecules, the
strategy described above would require modification.

We now perform a number of calculations to exam-
ine the extent of delocalization of the electron hole in
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strate that at the B3LYP/aug-cc-pVDZ level of theory,
the electron hole is strongly delocalized across di⇥erent
solvent molecules. These calculations are run on a se-
ries of two-molecule systems, taken from the EC ensem-
ble. The two molecules were chosen by taking the active
molecule and a randomly chosen molecule within 4.0 Å
of the active molecule, using snapshots that are 500 ps
apart. In every case, the largest Mulliken charge on ei-
ther of the two molecules, �max, is close to +0.5, indi-
cating that the electron hole is evenly split between the
two molecules. The black circles in Fig. 4 show that
HF theory produces qualitatively di⇥erent results: �max

is always close to +1.0, indicating that the electron hole
is well localized on a single molecule. Fig. 5 provides an
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molecule EC system at ⇥ = 0.005 and calculated at the (a)
B3LYP/aug-cc-pVDZ and (b) HF/aug-cc-pVDZ levels of the-
ory.
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at the B3LYP and HF levels of theory for one of these
systems. The black pluses and blue crosses in Fig. 4
demonstrate that the unrestricted versions of these meth-
ods (UB3LYP and UHF, respectively) yield results that
are nearly identical to the restricted open-shell versions
of the methods. Shown by the hollow red diamonds, the
MO5 functional is found to exhibit somewhat more local-
ization than B3LYP, but a significant amount of charge
is still shared between molecules. The red triangles show
that the related MO5-2X functional typically produces
highly localized electron holes upon oxidation, although
in four of the sixteen test cases, the MO5-2X functional
produces relatively delocalized holes.
To determine which method is correct, we first define

the delocalization energy,

Edeloc ⇥ �EAB �min {�EA,�EB} , (7)

where A and B correspond to one of the molecules in the
two-molecule systems described above, min {x, y} repre-
sents the minimum of x and y, �EAB is the IE of the
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