Argonne°

NATIONAL LABORATORY

The Future of Scientific Workflow

Michael Wilde wilde@anl.gov
Argonne National Laboratory
and The University of Chicago

Collaborators in this vision of workflow

Timothy Armstrong, University of Chicago A
Justin Wozniak, Argonne Argon ne
Ketan Maheshwari, Argonne
Zhao Zhang, UChicago

r==4 THE UNIVERSITY OF
Mihael Hategan, UChicago and UCDavis C H ICAG O

Scott J. Krieder, lllinois Institute of Technology

David Kelly, University of Chicago ﬁ'
Yadu Nand Babuji, University of Chicago ILLINOIS INSTITUTE V
Daniel S. Katz, University of Chicago OF TECHNOLOGY

lan T. Foster, University of Chicago and Argonne
loan Raicu, lllinois Institute of Technology
Michael Wilde, Argonne / University of Chicago

Supported in part by DOE-ASCR X-Stack, , NSF SI2, Argonne LDRD, NIH, ALCF, and Blue
Waters/GLCPC

When do you need workflow ?

Sample application: protein-ligand docking for drug screening

0(10) X O(lOOK) @/‘TN:EE/S oy | oo
proteins drug =4
implicated candidates =] g
ina disease o o e o0 .- e

=1M
docking
tasks

Q Tens of fruitful

0 o /=N H)
p_|_'p B @/NWN\/\SWS candidates for
SLETET gt W Q wetlab & APS

[Na] >
¢ \/?4F Work of M. Kubal, T.A. Blnkowskl
a D03361 and B. Roux

How to code this?
Compact, portable scripting

Swift code excerpt:

foreach p, 1 i1n proteins {
foreach ¢, jJ 1n ligands {
(structure[1i,]], log[i,]]) =
dock(p, ¢, minRad, maxRad);

}

scatter plot = analyze(structure)

o run:
swift —site tukey,blues dock.swift

o http://swift-lang.org

Swift programming model

= Data types

int i=4;
int All;
string s = "hello world";

= Mapped data types
file image<"snapshot. jpg">;

= Structured data
image A[]<array mapper..>;
type protein ({
file pdb;
file docking pocket;
}

protein p<ext; exec=protein.map>;

= Conventional expressions
if (% 3) {

y = x+2;

s = @strcat("y:

"’ Y);

= Parallel loops
foreach £,i in A {
B[i] = convert(A[i])

= Data flow
analyze (B[0], BI[1]);
analyze (B[2], B[3]);

Swift: A language for distributed parallel scripting, J. Parallel Computing, 2011

Coasters: uniform resource provisioning

12/6/2011

On-Disk
Data
Layout

=

—

type Study { —
&3 DBIC Group gl |;
TR }
 =8c
3 E--~§0;L?bject type Group {
- Bl Anat Subject s[];
=0 Run
E volume }
_____ 0 e type Subject {
i volume Volume anat;
- =iyR :
5 9 Subject Run run[];
: =8 Subject }
-4 Stud
o @ Study type Run {
Volume v[|;
}
type Volume {
Viapping functic Image img;
Header hdr;

Dataset mapping of structured image directory tree

In-memory
. data
model

} -

Benefits of a functional dataflow model

Makes parallelism more transparent
Implicitly parallel functional dataflow programming

Makes computing location more transparent

Runs your script on multiple distributed sites and
diverse computing resources (desktop to petascale)

Makes basic failure recovery transparent
Retries/relocates failing tasks
Can restart failing runs from point of failure

Functional model amenable to provenance capture
Tasks have recordable inputs and outputs

http://swift-lang.org

Analysis & visualization of
high-resolution climate models

S48

sakzhgg

)

H (km

guapEREHyerY
tazzRagikagael

= Climate model diagnostics
vield thousands of images
and summary datasets

= QOriginally done by serial
shells scripts

" Converted to swift dataflow =
script logic is automatically
parallelized

)

Work of: S Mickelson, R Jacob, J Dennis, M Woitasek
s http://swift-lang.org

20 00 © 06

Large-scale many-task applications using Swift

AA AB BB T0623, 25 res., 8.2A to 6.3A
4 LA B e SIIVIIIIIII»SIII‘IIII (excludingtail)

3 — KALJ

Simulation of super-
cooled glass materials

O = N W

Protein folding using
homology-free approaches

F, (K=7.25.)

Climate model analysis and
decision making in energy
policy

Simulation of RNA-protein =
interaction)

'S
ey

Multiscale subsurface
flow modeling

° Latitude N
B
o

w
©

38

Modeling of power grid
for OE applications

-90 -88
° Longitude W

All have published science
results obtained using Swift

But, a problem: Centralized evaluation
can be a bottleneck!

-

Swift XSEDE

1 </A\> Extrema Sckence ond Engineering
Open Science Grid

E pplicatio j

Programs

Qubmlt host (login node, laptop, Linux server

500 tasks/sec is good for traditional workflow systems,
but can’t utilize a large supercomputer if tasks are short.

S http://swift-lang.org w0

Centralized evaluation can be a bottleneck
at extreme scales

Had this (Swift/K): For extreme scale, we need this (Swift/T):

Data flow program Data flow program
x 1,000
Y Y

Data flow engine
> Engine Engine

L 500 taSKS/ S Control tasks

’ Task l Task l | Task l Task l

L 500.000 tasks/s -

Centralized evaluation Distributed evaluation

11

http://swift-lang.org

EXM - Extreme scale Many-task computing

Compiler Techniques for Massively Scalable
Implicit Task Parallelism

Timothy G. Armstrong,* Justin M. Wozniak,'* Michael Wilde,’* Ian T. Foster**
*Dept. of Computer Science, University of Chicago, Chicago, IL, USA
tMathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, USA
fComputation Institute, University of Chicago and Argonne National Laboratory, Chicago, IL, USA

http://people.cs.uchicago.edu/~tga/pubs/stc-preprint-aprl4.pdf

http://swift-lang.org

Swift/T: High-level model with Turbine runtime

. sl Swift worker process | |
Turbine MPI
control > >
processes | | || fl C J C+t | Fortran
l
l

p:‘gon @ gl
powered '

tel\tk

Script-like global-view programming with “leaf” tasks

— function calls in C, C++, Fortran, Python, R, or Tcl
Leaf tasks can be MPI programs, etc. Can be separate processes if OS permits.
Distributed, scalable runtime manages tasks, load balancing, data movement
User function calls to external code run on thousands of worker nodes

Like master-worker but with expressive Swift language to express
http://swift-lang.org

Optimization challenge: distributed data

L) b9 —

a
c,
f

£f1(); b= f2(a);
= f3(a, b); e = f4(f5(c);
f4 (£5(4) ; g = f6(e, £f);

(a) Swift/T code fragment

(b) Unoptimized version, passing data as shared data and
perform synchronization

14

http://swift-lang.org

Swift/T optimizations improve data locality

value of e

value of a value of b value Of C passed
Pooe 29 PF
Valueofts.)"f

(c) After wait pushdown and elimination of shared data in favor
of parent-to-child data passing

value of e

@ {O RO, .
f5(); f4(); |

(d) After pipeline fusion merges tasks

s http://swift-lang.org ®

Scaling of trivial foreach { } loop in Swift/T
100 microsecond to 10 millisecond tasks
on up to 512K integer cores of Blue Waters

10000M]
........................ 10ms
oMy LegET ideal
8 100M | oy 10ms
Q 10M | e T | 1ms
% M| g ideal
~ 0.1M * ;n:s
---------------- . mS
0.01M | ideal
0.001M = 0.1ms
AL D AL R Q'L 6 ’\’7/ %‘5

CPU Cores
Advances in compiler and runtime optimization enable
Swift to be applied in new in-memory programming models.
http://people.cs.uchicago.edu/~tga/pubs/stc-preprint-apri4.pdf
http://swift-lang.org

16

Swift/T application benchmarks
on Blue Waters

1e10 1e10 1e9 150K
1e9 1e9 1e8
o 1e8 o 1e8 A 3 1e7 100K @
(] o
2167 2167 B 1e6 O
) n x 7]
§1e6 -§1e6 ’g 1e5 50K é{é
~1e5 —1e5 1e4 [
tea ** 1ed 1e3 0K
© P o ax P © © > o ok P © © X R
SR P2 R S (N ot RN S N P S oo g 0P o> O P B A S S
P QY O \Q;b 6(0‘3 q,bq:\ YV \Qq' N '\65 6@‘3 r&q:\ VO O \‘brgP‘Q)‘D% 'LQ;I:\
(a) Sweep weak scaling: 0.2 ms tasks (b) Sweep weak scaling: 0.5 ms tasks (c) ReduceTree scaling: O s tasks
1e6 1e3
1e12 200M S
o o Q
QS 1el = o
g 150M § 3 &) 8 5
2 1e10 oms 2 E o] 2
3 1e9 ! 3 % 3 S 1e4p hi 1e1 g
z c o © 8 § * . o
§ 18 W M g 3 5 " x
= — — o ©
(= = 0] < 1e3 1e0 s
e o = LTRSS I N L)
SRR S Y I = A g @ " @
N o7 § (10,51' 0 1024 2048 3072 4096

. (f) Annealing strong scaling: 256 anneal-
(d) UTS scaling (e) Wavefront: Sms tasks ing processes x 2000 tasks per objective
function X 5 parameter updates

—&— ADLB —e— 00 01 —&—02 —»—03 —— Parallelism

Fig. 10: Application speedup and scalability at different optimization levels. X axes show scale in cores. Primary Y axes show
application throughput in application-dependent terms. Secondary Y axes show problem size or degree of parallelism where

applicable.

R e b & A R R e L e)

Where can this take us?

" Data management strategies are key to a workflow’s
utility: performance and system overhead

= Usability improvement opportunities as we scale
dataflow up

" Dealing with multi-language and multi-model
programming challenges

" |ntegration of visual and textual workflow
specification

18

http://swift-lang.org

Workflows demand flexible data management

models
Data server A
¥ ,

Swift ,
st
E pplicatio j Local
Programs Data Access

Kubmlt host (login node, laptop, Linux servery \

-

Clouds:
Amazon EC2,

19

http://swift-lang.org

Multisystem and multijob workflow

" Dynamic provisioning with node-resident workers
— Multi-job provisioning; Multi-system access;

-

Swift
script

Compute Remote

sites

Submit

Swift file a = compute (b, c);
I compilation
[0]
-(TJ — ”
Karajan <execute task="compute”> ...

site

=7 =

\ Submit host (login node, laptop, Linux

I API

Coaster Client

I socket

] |

Coaster Service

I I sockets
Worker Worker Worker Worker

[T, -
I\
server) ‘

http://swift-lang.org

(o

|l @ W
‘ | Ve .

XSEDE

Open Science Grid

ampus
systems:
Midway, Beagle

Clouds:
Amazon EC2,

MTC Envelope vs. Scale

Creation ughput

N-to-1 Read Bandwidth Open Throughput
N-to-1 Read Throughput \ : 1-to-1 Read Throughput
>
b (
Write Bandwidth 1-to-1 Read Bandwidth
Write ghput
1 client 2 clients 4 clients 8 clients ~—16 clients
~——32clients 64 clients — 128 clients 256 clients

Zhao Zhang et al., MTC Envelope, HPDC 2013
A ¥

Integrating the map-reduce programming model

= Two main strategies
— Operate on data in-place
— Tree-structured data reduction
= Opportunities for pure functional dataflow
— Locality constructs
— Pop-up temporary filesystems and stores
— Reduce load on shared filesystems
— Collective data management
— Reduction of small file usage by auto batching
— Temp workspaces with data (semi-persistent)

22

http://swift-lang.org

Deeply in-situ processing

= Potential new model for analytics

= Multiple workflows (and even users) could share
resources to analyze a running model

" Leverage lockless data structure sync
= Reduce data movement and distance to a minimum
= Work in progress by ADIOS, Dataspaces, GLEAN, DIY

23

http://swift-lang.org

Galaxy workflow portal and the Swift execution

model
Galaxy Workflow
- - Management System

Y “ Globus Online ™ o =

&0,
N
1o Public - &

-

Data @O
'8 -~

«
‘Q «— Storage

N_£L®
Research Lab Q‘i

_ml] Local Cluster/
= Cloud

Galaxy-accessible
Data Libraries

|
|
i
i
i
}
i

i

e

Galaxy powered by Swift
on Clusters and Clouds

Data Management Data Analysis

24

http://swift-lang.org

Proposed architecture for ALCF Workflow
Gateway prototype

Command line Mira
Ul

|

-
gateway .
[w/ Swift] Cetus Tukey
|

alaxy Web U

GPES | Vesta

Other systems:
OLCF, NERSC, LCRC,
UChicago, Amazon, ... I

25

http://swift-lang.org

Additional research directions for dataflow-
based workflow model

" Exploit dataflow for energy management
= Exploit dataflow for fault recovery
" Programmability and productivity
— More flexible dataflow constructs - foreach => formost
— Shells Read-evaluate-print loops
— Debugging on the compute nodes
— Languages in dataflow => dataflow in languages

http://swift-lang.org 26

Conclusion: Implicitly parallel functional
dataflow has a valuable role

= Expressive

= Portable

= Usable

= Fast

= Applicable over a broad application space

" Greatest value is for “programming in the large”

— High productivity, lower bar to scaling
— Works well with MPI, OpenMP, ...
= Many research directions identified to extend it

27

http://swift-lang.org

Parallel Computing 37 (2011) 633-652

Contents lists available at ScienceDirect

PARALLEL
COMPUTING

Parallel Computing

journal homepage: www.elsevier.com/locate/parco

Swift: A language for distributed parallel scripting

Michael Wilde *>*, Mihael Hategan ?, Justin M. Wozniak ®, Ben Clifford ¢, Daniel S. Katz?,
lan Foster *P€

2 Computation Institute, University of Chicago and Argonne National Laboratory, United States
> Mathematics and Computer Science Division, Argonne National Laboratory, United States

¢ Department of Computer Science, University of Chicago, United States

4 Department of Astronomy and Astrophysics, University of Chicago, United States

ARTICLE INFO ABSTRACT
Article history: Scientists, engineers, and statisticians must execute domain-specific application programs
Available online 12 July 2011 many times on large collections of file-based data. This activity requires complex orches-
tration and data management as data is passed to, from, and among application invoca-
Keywords: tions. Distributed and parallel computing resources can accelerate such processing, but
Swift their use further increases programming complexity. The Swift parallel scripting language
Parallel programming reduces these complexities by making file system structures accessible via language con-
SnggftlglV% structs and by allowing ordinary application programs to be composed into powerful par-

allel scripts that can efficiently utilize parallel and distributed resources. We present
Swift’s implicitly parallel and deterministic programming model, which applies external
applications to file collections using a functional style that abstracts and simplifies distrib-
uted parallel execution.

hit . Parallel Computing, Sep 2011

Acknowledgments

= Swift is supported in part by NSF grants OCI-1148443 and PHY-636265,
and the UChicago SCI Program

= Extreme scaling research on Swift (ExM project) is supported by the DOE
Office of Science, ASCR Division, X-Stack program.

= Application support from NIH (fMRI, OpenMX)

= The Swift team:

— Tim Armstrong, lan Foster, Mihael Hategan, Dan Katz, David Kelly, Ketan Maheshwari, Yadu
Nand, Mike Wilde, Justin Wozniak, Zhao Zhang

= Special thanks to our collaborators and the Swift user community

http://swift-lang.org #

