
HPCToolkit: Performance Analysis of GPU-accelerated 
Kokkos Applications on NVIDIA GPUs
John Mellor-Crummey 
Rice University

April 26, 2024



Current Funding for HPCToolkit
• Government

– Lawrence Livermore National Laboratory Subcontract B658833
– DOE Software Tools Ecosystem Project - UT-Battelle Subcontract CW54422
– Argonne National Laboratory Subcontract 4F-60094

• Corporate
– Advanced Micro Devices
– TotalEnergies EP Research & Technology USA, LLC.

2



A Hands-on Example for the Tutorial: ArborX
A library written in Kokkos that provides performance portable algorithms for geometric search

% git clone https://github.com/hpctoolkit/hpctoolkit-tutorial-examples

% cd hpctoolkit-tutorial-examples/examples/gpu/arborx

% source setup/perlmutter.sh

% make all # downloads, builds, measures, and analyzes two executions

% make view

% make view-pc

Note: precomputed databases available on Perlmutter at /global/cfs/cdirs/m3977/data/arborx

3

https://github.com/hpctoolkit/hpctoolkit-tutorial-examples


Outline
• Introduction to HPCToolkit performance tools

– Overview of HPCToolkit components and their workflow
– HPCToolkit's graphical user interfaces 

• Analyzing the performance of GPU-accelerated codes with HPCToolkit
– GAMESS 
– ArborX
– LAMMPS at Exascale

• Coming attractions
• Troubleshooting

4



Rice University’s HPCToolkit Performance Tools
Measure and analyze performance of CPU and GPU-accelerated applications

• Easy: profile unmodified application binaries
• Fast: low-overhead measurement
• Informative: understand where an application spends its time and why

– call path profiles associate metrics with application source code contexts
– optional hierarchical traces to understand execution dynamics

• Broad audience
– application developers
– framework developers
– runtime and tool developers

• Measures complex programs on a broad range of platforms
– CPU: x86_64, Power, ARM
– GPU: NVIDIA, AMD, Intel

5



How does HPCToolkit Differ from NVIDIA’s Tools?
• NVIDIA NSight Systems

– tracing of CPU and GPU streams
– analyze traces when you open them with the GUI

• long running traces are huge and thus extremely slow to analyze, limiting scalability
– designed for measurement and analysis within a node

• NVIDIA NSight Compute
– detailed measurement of kernels with counters and execution replay
– very slow measurement
– flat display of measurements within GPU kernels

• HPCToolkit
– supports more scalable tracing than Nsight Systems 

• measure exascale executions across many GPUs and nodes
– scalable, parallel post-mortem analysis vs. non-scalable in-GUI analysis
– detailed reconstruction of estimates for calling context profiles within GPU kernels

6



HPCToolkit’s Workflow for CPU Applications 

7



HPCToolkit’s Workflow for GPU-accelerated Applications 

8



HPCToolkit’s Workflow for GPU-accelerated Applications 

9

!"#$%&'
• ()*+,#%"-."%/01$23#,*%,#/0,4%32)#%1.$$2)5*%
• -0*"%/01$23#,'%-g
• )6//'%-lineinfo



HPCToolkit’s Workflow for GPU-accelerated Applications 

10

!"#$%7'
• !"#$%&'/033#/"*%/.33%$."-%$,0823#*%9.)4%

0$"20).33:;%",./#*<%08%#6#)"*%08%2)"#,#*"



Measurement of CPU and GPU-accelerated Applications
• Sampling using Linux timers and hardware counter overflows on the CPU
• Callbacks when GPU operations are launched and (sometimes) completed
• Event stream for GPU operations; PC Samples (NVIDIA)
• Binary instrumentation of GPU kernels on Intel GPUs for fine-grain measurement

11



Call Stack Unwinding to Attribute Costs in Context

Call path sample

instruction pointer

return address

return address

return address

Calling context tree

• Unwind when timer or hardware counter overflows
– measurement overhead proportional to sampling frequency rather than call frequency

• Unwind to capture context for events such as GPU kernel launches

12



hpcrun: Measure CPU and/or GPU activity
• GPU profiling

– hpcrun -e gpu=xxx <app> ….              

• GPU instrumentation (Intel GPU only)
– hpcrun -e gpu=level0,inst=count,latency <app>

• GPU PC sampling (NVIDIA GPU only)
– hpcrun -e gpu=nvidia,pc <app>  

• CPU and GPU Tracing (in addition to profiling)
– hpcrun -e CPUTIME -e gpu=xxx -t <app>           

•Use hpcrun with job launchers
– srun -n 1 -G 1 hpcrun -e gpu=xxx <app>               

13

xxx ! {nvidia,amd,opencl,level0}



HPCToolkit’s Workflow for GPU-accelerated Applications 

14

!"#$%='
• !"#()$%#)%,#/06#,*%$,05,.1%*",+/"+,#%

.>0+"%32)#*;%300$*;%.)4%2)32)#4%8+)/"20)*



hpcstruct: Analyze CPU and GPU Binaries Using Multiple Threads
• Usage

hpcstruct [--gpucfg yes] <measurement-directory>

• What it does
• Recover program structure information

• Files, functions, inlined templates or functions, loops, source lines
• In parallel, analyze all CPU and GPU binaries that were measured by HPCToolkit

!default: use size(CPU set)/2 threads
!analyze large application binaries with 16 threads
!analyze multiple small application binaries concurrently with 2 threads each

• Cache binary analysis results for reuse when analyzing other executions

15

NOTE: --gpucfg yes needed only for analysis of GPU binaries for interpreting PC samples on NVIDIA GPUs



HPCToolkit’s Workflow for GPU-accelerated Applications 

16

!"#$%?'
• !"#"$*+,!"#"$*+-."/%/01>2)#*%

$,0823#*%8,01%1+3"2$3#%"-,#.4*%.)4%
/0,,#3."#%1#",2/*%"0%*"."2/%@%4:).12/%
$,05,.1%*",+/"+,#



hpcprof/hpcprof-mpi: Associate Measurements with Program Structure

• Analyze data from modest executions with multithreading
hpcprof <measurement-directory>

• Analyze data from large executions with distributed-memory parallelism + multithreading
srun -N 2 -n 2 -c 126 hpcprof-mpi <measurement-directory>    

17



HPCToolkit’s Workflow for GPU-accelerated Applications 

18

!"#$%?'
• !"#0/121$'-%2)"#,./"26#3:%#A$30,#%

$,0823#%.)4%",./#*%80,%BCDE.//#3#,."#4%
.$$32/."20)*



Code-centric Analysis with hpcviewer
• Profiling compresses out the temporal dimension

– Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles
• What can we do? Trace call path samples

– N times per second, take a call path sample of each thread
– Organize the samples for each thread along a time line
– View how the execution evolves left to right
– What do we view? assign each procedure a color; view a depth slice of an execution

19

• function calls in full context 
• inlined procedures
• inlined templates
• outlined OpenMP loops
• loops

source pane

navigation pane metric pane

view control

metric display



Understanding Temporal Behavior
• Profiling compresses out the temporal dimension

– Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles
• What can we do? Trace call path samples

– N times per second, take a call path sample of each thread
– Organize the samples for each thread along a time line
– View how the execution evolves left to right
– What do we view? assign each procedure a color; view a depth slice of an execution

20

Time

Processes

Call 
stack



Time-centric Analysis with hpcviewer

21

M
PI

 ra
nk

s,
O

pe
nM

P 
Th

re
ad

s,
 G

PU
 s

tr
ea

m
s

Time

The color at a particular point in a 
timeline indicates the CPU procedure 
or GPU kernel active at that time at 
the selected call stack depth

Depth view showing the history of calling contexts for the thread/GPU stream with the cursor

Call stack pane 
shows full calling 
context for the 
cursor

Minimap indicates part of 
execution trace shownA multi-level call stack based view of execution over time



Summary of ECP Developments
• Measurement

• profile and trace GPU-accelerated applications on AMD, Intel, and NVIDIA GPUs
• source-level measurement of Python frameworks, e.g. Pytorch
• record measurement data in sparse formats: benefits GPU-accelerated programs with many metrics
• implement of OMPT performance tools interface in AMD OpenMP and LLVM

• Binary analysis
• binary analysis of AMD, Intel, NVIDIA GPU binaries
• parallel analysis of application binaries to speed recovery of program structure

• Performance analysis and attribution
• MPI + OpenMP highly parallel analysis of measurement data at exascale
• sparse representations observed to reduce performance analysis results by > 1000x
• detailed attribution of PC samples to rich calling contexts within GPU kernels 

• Presentation
• interactive display profiles and terabytes of traces from exascale executions

22



hpcstruct Example: Analyze 7.7GB TensorFlow library (170MB text) in 77s

23



24

Analyze 38.1GB data for 2K MPI ranks + 2K GPUs using 1K threads in 41s

Slide credit: Jonathon Anderson



Case Studies
• GAMESS  (OpenMP)
• ArborX (Kokkos)
• LAMMPS (Kokkos) at exascale

25



Case Study: GAMESS
• General Atomic and Molecular Electronic Structure System (GAMESS)

– general ab initio quantum chemistry package
• Calculates the energies, structures, and properties of a wide range of chemical systems

• Experiments
• GPU-accelerated nodes at a prior Perlmutter hackathon

• Single node with 4 GPUs
• Five nodes with 20 GPUs

26

Perlmutter node at a glance
AMD Milan CPU
4 NVIDIA A100 GPUs
256 GB memory



27

Time-centric Analysis: GAMESS 4 ranks, 4 GPUs on Perlmutter

GAMESS original All CPU threads and GPU streams



28

Time-centric Analysis: GAMESS 4 ranks, 4 GPUs on Perlmutter

GAMESS original All CPU threads and GPU streams



Time-centric Analysis: GAMESS 4 ranks, 4 GPUs on Perlmutter

29GAMESS original All GPU streams, whole execution



Time-centric Analysis: GAMESS 4 ranks, 4 GPUs on Perlmutter

30GAMESS original GPU streams: 1 iteration

GPU load imbalance due to triangular iteration spaces



Time-centric Analysis: GAMESS 4 ranks, 4 GPUs on Perlmutter

31GAMESS original



Time-centric Analysis: GAMESS 4 ranks, 4 GPUs on Perlmutter

32GAMESS improved All CPU threads and GPU streams



Time-centric Analysis: GAMESS 4 ranks, 4 GPUs on Perlmutter

33
GAMESS improved All GPU streams, whole execution



Time-centric Analysis: GAMESS 4 ranks, 4 GPUs on Perlmutter

34
GAMESS improved All GPU streams: 2 iterations

Improved GPU load balance



Time-centric Analysis: GAMESS 4 ranks, 4 GPUs on Perlmutter

35GAMESS improved



Time-centric Analysis: GAMESS 5 nodes, 40 ranks, 20 GPUs on Perlmutter

36
GAMESS improved CPU Threads and GPU Streams



Time-centric Analysis: GAMESS 5 nodes, 40 ranks, 20 GPUs on Perlmutter

37
GAMESS improved



Time-centric Analysis: GAMESS 5 nodes, 40 ranks, 20 GPUs on Perlmutter

38GAMESS improved with better manual distribution of work in input



Time-centric Analysis: GAMESS 5 nodes, 40 ranks, 20 GPUs on Perlmutter

39GAMESS improved adding Rank 0 Thread 0 to GPU streams



Time-centric Analysis: GAMESS 5 nodes, 40 ranks, 20 GPUs on Perlmutter

401 CPU Stream, 2 GPU Streams: 6 Iterations



Time-centric Analysis: GAMESS 5 nodes, 40 ranks, 20 GPUs on Perlmutter

41



Time-centric Analysis: GAMESS 5 nodes, 40 ranks, 20 GPUs on Perlmutter

42



Time-centric Analysis: GAMESS 5 nodes, 40 ranks, 20 GPUs on Perlmutter

43



Case Study: ArborX
• A library written in Kokkos that provides performance portable algorithms for geometric search

44



ArborX Trace: Lots of irrelevant CPU Trace Lines for Idle Threads

45

• Solution: Filter out trace lines with very small numbers of samples



ArborX Trace: Filter to Focus on Relevant CPU and GPU Traces

46

• Use Filter!Filter Ranks: select Rank 0 and GPU trace lines



ArborX Trace: PC sampling of ArborX

47



Key Metrics Available for GPU Kernels
• GPUOP: GPU operation time (kernel launch, copies, etc.)
• GXCOPY:* GPU copies of various kinds
• GKER: GPU kernel time
• GKER:FGP_ACT: fine grain parallelism actual (number of threads used)
• GKER:FGP_MAX: maximum possible fine-grain parallelism (number of threads possible)
• GKER:BLK_THR: threads per block
• GKER:BLK_SM: block shared memory
• GKER:OCC_THR: theoretical thread occupancy 

48



What Metrics Are Available for GPU Kernels with PC Sample
• GINS: GPU instructions
• GINS:STL_ANY: GPU instruction stalls for any reason
• GINS:STL_IFET: GPU instruction stalls for instruction fetch
• GINS:STL_GMEM: GPU instruction stalls for global memory
• GINS:STL_CMEM: GPU instruction stalls for constant memory
• GINS:STL_IDEP: GPU instruction stalls for instruction dependences
• GINS:STL_PIPE: GPU instruction pipeline stalls
• GINS:STL_MTHR: GPU instruction stalls for memory throttling

• GSAMP:EXP: expected number of samples
• GSAMP:TOT: total number of samples recorded
• GSAMP:UTIL: GPU utilization = (PC samples expected) / (PC samples total)

49



LAMMPS on Frontier: Executions with Kernel Duration of Milliseconds

50



LAMMPS on Frontier: Executions with Kernel Duration of Milliseconds

51



LAMMPS on Frontier: Executions with Kernel Duration of Milliseconds

52



LAMMPS on Frontier: Executions with Kernel Duration of Milliseconds

53



LAMMPS on Frontier: Executions with Kernel Duration of Milliseconds

54



LAMMPS on Frontier: 8K nodes, 64K MPI ranks + 64K GPU tiles

55

Kernel duration of microseconds



LAMMPS on Frontier: 8K nodes, 64K MPI ranks + GPU times

56

Kernel duration of microseconds



Coming Attractions
• Developing comprehensive support for NVTX/ROCTX/Caliper/Kokkos Labels
• Support for instruction-level measurement and attribution on AMD and Intel GPUs
• New GUI support for analysis of remote data
• Python-based interface for analysis of performance results

57



Troubleshooting: Only GPU kernel Name
• Need to measure with PC sampling to measure within GPU kernels

58



Troubleshooting: No GPU source code lines with PC sampling
• If you don’t see source code with PC sampling on NVIDIA GPUs: compile with “-lineinfo” option

59



Troubleshooting: Compiling ArborX with GPU Line Map Info

• ArborX cmake isn’t set up to include GPU line mappings 
• Force the compiler to record GPU line mappings

% cmake  -DARBORX_ENABLE_EXAMPLES=true \

        -DCMAKE_INSTALL_PREFIX=`pwd`/../install \

        -DCMAKE_CXX_COMPILER=g++ \

        -DCMAKE_BUILD_TYPE=RelWithDebInfo \

        -DCMAKE_CXX_FLAGS_RELWITHDEBINFO="-O2 -g -DNDEBUG -lineinfo"

60



HPCToolkit Resources

• Documentation
– User manual

• http://hpctoolkit.org/manual/HPCToolkit-users-manual.pdf
– Tutorial videos

• http://hpctoolkit.org/training.html   
• recorded demo of GPU analysis of Quicksilver: https://youtu.be/vixa3hGDuGg
• recorded tutorial presentation including demo with GPU analysis of GAMESS: https://vimeo.com/781264043

– Cheat sheet
• https://gitlab.com/hpctoolkit/hpctoolkit/-/wikis/home

• Software
– Download hpcviewer GUI binaries for your laptop, desktop, cluster, or supercomputer

• OS: Linux, Windows, MacOS
• Processors: x86_64, aarch64, ppc64le
• http://hpctoolkit.org/download.html

– Install HPCToolkit on your Linux desktop, cluster, or supercomputer using Spack
• http://hpctoolkit.org/software-instructions.html

61

http://hpctoolkit.org/manual/HPCToolkit-users-manual.pdf
http://hpctoolkit.org/training.html
https://youtu.be/vixa3hGDuGg
https://vimeo.com/781264043
https://gitlab.com/hpctoolkit/hpctoolkit/-/wikis/home
http://hpctoolkit.org/download.html
http://hpctoolkit.org/software-instructions.html



