
The Kokkos Lectures

Module 1: Introduction and Parallel Dispatch

April 24, 2024

April 24, 2024 2/49

Welcome to Kokkos

Kokkos is C++ Performance Portability
▶ Write a single source implementation using C++

▶ Use a descriptive Programming Model

▶ Compile for GPUs and CPUs

Kokkos is Ready for Use
▶ Well established project since 2012

▶ Major buy-in by DOE National Labs

▶ Well over 100 projects with over 500 developers use Kokkos

▶ Dedicated developer staff at 5 National Labs

▶ Robust support for software stacks: GCC 8+, Clang 8+, NVCC 11+, ROCM
5.2, Intel 19+

April 24, 2024 3/49

Lecture Series Outline

▶ 07/17 Module 1: Introduction, Building and Parallel Dispatch

▶ 07/24 Module 2: Views and Spaces

▶ 07/31 Module 3: Data Structures + MultiDimensional Loops

▶ 08/07 Module 4: Hierarchical Parallelism

▶ 08/14 Module 5: Tasking, Streams and SIMD

▶ 08/21 Module 6: Internode: MPI and PGAS

▶ 08/28 Module 7: Tools: Profiling, Tuning and Debugging

▶ 09/04 Module 8: Kernels: Sparse and Dense Linear Algebra

▶ 09/11 Reserve Day

April 24, 2024 4/49

What to Expect

Exercises

▶ Exercises are small codes with places to do modifications.

▶ Access to GPUs helpful for most of them, but most can be
done on pure CPU systems.

▶ Only dependent on standard compilers (e.g. Clang, NVCC)

April 24, 2024 5/49

Module 1

Introduction

What is Kokkos? Who is behind it? Why should you use it?

Parallel Dispatch

Pattern, Policy and Body: how to parallelize simple code with
Kokkos.

April 24, 2024 6/49

Introduction
Learning objectives:

▶ Why do we need Kokkos

▶ The Kokkos EcoSystem

April 24, 2024 7/49

The HPC Hardware Landscape

(a) Initially not working. Now more robust for Fortran than C++, but getting better.
(b) Research effort.
(c) OpenMP 5 by NVIDIA.
(d) OpenMP 5 by AMD.
(e) OpenMP 5 by Intel.

(f) OpenMP 5 by HPE.

April 24, 2024 8/49

Cost of Coding

Industry Estimate

A full time software engineer writes 10 lines of production code per
hour: 20k LOC/year.

Conservative estimate: need to rewrite 10% of an app to switch
Programming Model

Software Cost Switching Vendors

Just switching Programming Models costs multiple person-years
per app!

April 24, 2024 8/49

Cost of Coding

Industry Estimate

A full time software engineer writes 10 lines of production code per
hour: 20k LOC/year.

Conservative estimate: need to rewrite 10% of an app to switch
Programming Model

Software Cost Switching Vendors

Just switching Programming Models costs multiple person-years
per app!

April 24, 2024 9/49

What is Kokkos?

▶ A C++ Programming Model for Performance Portability
▶ Implemented as a template library on top CUDA, HIP,

OpenMP, ...
▶ Aims to be descriptive not prescriptive
▶ Aligns with developments in the C++ standard

▶ Expanding solution for common needs of modern science and
engineering codes
▶ Math libraries based on Kokkos
▶ Tools for debugging, profiling and tuning
▶ Utilities for integration with Fortran and Python

▶ It is an Open Source project with a growing community
▶ Maintained and developed at https://github.com/kokkos
▶ Hundreds of users at many large institutions

https://github.com/kokkos

April 24, 2024 10/49

Prerequisites for Tutorial Exercises

Knowledge of C++: class constructors, member variables,
member functions, member operators, template arguments

Using your own ${HOME}
▶ Git

▶ GCC 8.2 (or newer) OR Intel 19.0.5 (or newer) OR Clang 8.0 (or newer)

▶ CUDA nvcc 11.0 (or newer) AND NVIDIA compute capability 6.0 (or newer)

▶ git clone https://github.com/kokkos/kokkos

into ${HOME}/Kokkos/kokkos

▶ git clone https://github.com/kokkos/kokkos-tutorials

into ${HOME}/Kokkos/kokkos-tutorials

Slides are in
${HOME}/Kokkos/kokkos-tutorials/LectureSeries

Exercises are in
${HOME}/Kokkos/kokkos-tutorials/Exercises

Exercises’ makefiles look for ${HOME}/Kokkos/kokkos

https://github.com/kokkos/kokkos
https://github.com/kokkos/kokkos-tutorials

April 24, 2024 11/49

Prerequisites for Tutorial Exercises

Online Resources:

▶ https://github.com/kokkos: Primary Kokkos GitHub
Organization

▶ https://kokkos.github.io/kokkos-core-wiki: Wiki
including API reference

▶ https://github.com/kokkos/kokkos-tutorials: Tutorial
exercises

▶ https://kokkosteam.slack.com: Slack channel for
Kokkos. Join the doe-portability-training channel.

https://github.com/kokkos
https://kokkos.github.io/kokkos-core-wiki
https://github.com/kokkos/kokkos-tutorials
https://kokkosteam.slack.com

April 24, 2024 12/49

Lecture Series Objectives

Kokkos’ basic capabilities:

▶ Simple 1D data parallel computational patterns

▶ Deciding where code is run and where data is placed

▶ Managing data access patterns for performance portability

▶ Multidimensional data parallelism

Kokkos’ advanced capabilities:

▶ Thread safety, thread scalability, and atomic operations

▶ Hierarchical patterns for maximizing parallelism

▶ Task based programming with Kokkos

Kokkos’ tools and Kernels:

▶ How to profile, tune and debug Kokkos code

▶ Interacting with Python and Fortran

▶ Using Kokkos Kernels math library

April 24, 2024 13/49

Tutorial Takeaways

▶ Kokkos enables Single Source Performance Portable
Codes

▶ Simple things stay simple - it is not much more complicated
than OpenMP

▶ Advanced performance optimizing capabilities easier to
use with Kokkos than e.g. CUDA or HIP

▶ Kokkos provides data abstractions critical for performance
portability not available in other programming models
Controlling data access patterns is key for obtaining
performance

▶ The Kokkos Ecosystem comes with tools (profiling,
debugging, tuning, math libraries, etc.) needed for application
development in professional settings

April 24, 2024 14/49

Operating assumptions (0)

Assume you are here because:

▶ Want to use all HPC node architectures; including GPUs

▶ Are familiar with C++

▶ Want GPU programming to be easier

▶ Would like portability, as long as it doesn’t hurt performance

Helpful for understanding nuances:

▶ Are familiar with data parallelism

▶ Are familiar with OpenMP

▶ Are familiar with GPU architecture and CUDA

April 24, 2024 15/49

Operating assumptions (1)

Target machine:

DRAM

NVRAM

On-Package
Memory

Network-on-Chip

Core Core

External Network
Interface

...

Core Core...

Acc.
On-Package

Memory

External Interconnect

Node

NUMA Domain

NUMA Domain

Accelerator

April 24, 2024 16/49

Important Point: Performance Portability

Important Point

There’s a difference between portability and
performance portability.

Example: implementations may target particular architectures and
may not be thread scalable.

(e.g., locks on CPU won’t scale to 100,000 threads on GPU)

Goal: write one implementation which:

▶ compiles and runs on multiple architectures,

▶ obtains performant memory access patterns across
architectures,

▶ can leverage architecture-specific features where possible.

Kokkos: performance portability across manycore architectures.

April 24, 2024 16/49

Important Point: Performance Portability

Important Point

There’s a difference between portability and
performance portability.

Example: implementations may target particular architectures and
may not be thread scalable.

(e.g., locks on CPU won’t scale to 100,000 threads on GPU)

Goal: write one implementation which:

▶ compiles and runs on multiple architectures,

▶ obtains performant memory access patterns across
architectures,

▶ can leverage architecture-specific features where possible.

Kokkos: performance portability across manycore architectures.

April 24, 2024 16/49

Important Point: Performance Portability

Important Point

There’s a difference between portability and
performance portability.

Example: implementations may target particular architectures and
may not be thread scalable.

(e.g., locks on CPU won’t scale to 100,000 threads on GPU)

Goal: write one implementation which:

▶ compiles and runs on multiple architectures,

▶ obtains performant memory access patterns across
architectures,

▶ can leverage architecture-specific features where possible.

Kokkos: performance portability across manycore architectures.

April 24, 2024 17/49

Concepts for Data Parallelism

Learning objectives:

▶ Terminology of pattern, policy, and body.

▶ The data layout problem.

April 24, 2024 18/49

Concepts: Patterns, Policies, and Bodies

for (element = 0; element < numElements; ++ element) {

total = 0;

for (qp = 0; qp < numQPs; ++qp) {

total += dot(left[element][qp], right[element][qp]);

}

elementValues[element] = total;

}

Terminology:

▶ Pattern: structure of the computations
for, reduction, scan, task-graph, ...

▶ Execution Policy: how computations are executed
static scheduling, dynamic scheduling, thread teams, ...

▶ Computational Body: code which performs each unit of
work; e.g., the loop body

⇒ The pattern and policy drive the computational body.

April 24, 2024 18/49

Concepts: Patterns, Policies, and Bodies

for (element = 0; element < numElements; ++ element) {

total = 0;

for (qp = 0; qp < numQPs; ++qp) {

total += dot(left[element][qp], right[element][qp]);

}

elementValues[element] = total;

}

Terminology:

▶ Pattern: structure of the computations
for, reduction, scan, task-graph, ...

▶ Execution Policy: how computations are executed
static scheduling, dynamic scheduling, thread teams, ...

▶ Computational Body: code which performs each unit of
work; e.g., the loop body

⇒ The pattern and policy drive the computational body.

Pattern Policy

B
o
d
y

April 24, 2024 19/49

Threading “Parallel for”

What if we want to thread the loop?

for (element = 0; element < numElements; ++ element) {

total = 0;

for (qp = 0; qp < numQPs; ++qp) {

total += dot(left[element][qp], right[element][qp]);

}

elementValues[element] = total;

}

(Change the execution policy from “serial” to “parallel.”)

OpenMP is simple for parallelizing loops on multi-core CPUs,
but what if we then want to do this on other architectures?

Intel PHI and NVIDIA GPU and AMD GPU and ...

April 24, 2024 19/49

Threading “Parallel for”

What if we want to thread the loop?

#pragma omp parallel for

for (element = 0; element < numElements; ++ element) {

total = 0;

for (qp = 0; qp < numQPs; ++qp) {

total += dot(left[element][qp], right[element][qp]);

}

elementValues[element] = total;

}

(Change the execution policy from “serial” to “parallel.”)

OpenMP is simple for parallelizing loops on multi-core CPUs,
but what if we then want to do this on other architectures?

Intel PHI and NVIDIA GPU and AMD GPU and ...

April 24, 2024 19/49

Threading “Parallel for”

What if we want to thread the loop?

#pragma omp parallel for

for (element = 0; element < numElements; ++ element) {

total = 0;

for (qp = 0; qp < numQPs; ++qp) {

total += dot(left[element][qp], right[element][qp]);

}

elementValues[element] = total;

}

(Change the execution policy from “serial” to “parallel.”)

OpenMP is simple for parallelizing loops on multi-core CPUs,
but what if we then want to do this on other architectures?

Intel PHI and NVIDIA GPU and AMD GPU and ...

April 24, 2024 20/49

“Parallel for” on a GPU via pragmas

Option 1: OpenMP 4.5

#pragma omp target data map (...)

#pragma omp teams num_teams (...) num_threads (...) private (...)

#pragma omp distribute

for (element = 0; element < numElements; ++ element) {

total = 0

#pragma omp parallel for

for (qp = 0; qp < numQPs; ++qp)

total += dot(left[element][qp], right[element][qp]);

elementValues[element] = total;

}

Option 2: OpenACC

#pragma acc parallel copy (...) num_gangs (...) vector_length (...)

#pragma acc loop gang vector

for (element = 0; element < numElements; ++ element) {

total = 0;

for (qp = 0; qp < numQPs; ++qp)

total += dot(left[element][qp], right[element][qp]);

elementValues[element] = total;

}

April 24, 2024 20/49

“Parallel for” on a GPU via pragmas

Option 1: OpenMP 4.5

#pragma omp target data map (...)

#pragma omp teams num_teams (...) num_threads (...) private (...)

#pragma omp distribute

for (element = 0; element < numElements; ++ element) {

total = 0

#pragma omp parallel for

for (qp = 0; qp < numQPs; ++qp)

total += dot(left[element][qp], right[element][qp]);

elementValues[element] = total;

}

Option 2: OpenACC

#pragma acc parallel copy (...) num_gangs (...) vector_length (...)

#pragma acc loop gang vector

for (element = 0; element < numElements; ++ element) {

total = 0;

for (qp = 0; qp < numQPs; ++qp)

total += dot(left[element][qp], right[element][qp]);

elementValues[element] = total;

}

April 24, 2024 21/49

Portable, but not performance portable

A standard thread parallel programming model
may give you portable parallel execution
if it is supported on the target architecture.

But what about performance?

Performance depends upon the computation’s
memory access pattern.

April 24, 2024 21/49

Portable, but not performance portable

A standard thread parallel programming model
may give you portable parallel execution
if it is supported on the target architecture.

But what about performance?

Performance depends upon the computation’s
memory access pattern.

April 24, 2024 22/49

Problem: memory access pattern

#pragma something , opencl , etc.

for (element = 0; element < numElements; ++ element) {

total = 0;

for (qp = 0; qp < numQPs; ++qp) {

for (i = 0; i < vectorSize; ++i) {

total +=

left[element * numQPs * vectorSize +

qp * vectorSize + i] *

right[element * numQPs * vectorSize +

qp * vectorSize + i];

}

}

elementValues[element] = total;

}

Memory access pattern problem: CPU data layout reduces GPU
performance by more than 10X.

Important Point

For performance the memory access pattern
must depend on the architecture.

April 24, 2024 22/49

Problem: memory access pattern

#pragma something , opencl , etc.

for (element = 0; element < numElements; ++ element) {

total = 0;

for (qp = 0; qp < numQPs; ++qp) {

for (i = 0; i < vectorSize; ++i) {

total +=

left[element * numQPs * vectorSize +

qp * vectorSize + i] *

right[element * numQPs * vectorSize +

qp * vectorSize + i];

}

}

elementValues[element] = total;

}

Memory access pattern problem: CPU data layout reduces GPU
performance by more than 10X.

Important Point

For performance the memory access pattern
must depend on the architecture.

April 24, 2024 22/49

Problem: memory access pattern

#pragma something , opencl , etc.

for (element = 0; element < numElements; ++ element) {

total = 0;

for (qp = 0; qp < numQPs; ++qp) {

for (i = 0; i < vectorSize; ++i) {

total +=

left[element * numQPs * vectorSize +

qp * vectorSize + i] *

right[element * numQPs * vectorSize +

qp * vectorSize + i];

}

}

elementValues[element] = total;

}

Memory access pattern problem: CPU data layout reduces GPU
performance by more than 10X.

Important Point

For performance the memory access pattern
must depend on the architecture.

April 24, 2024 23/49

Data parallel patterns

Learning objectives:

▶ How computational bodies are passed to the Kokkos runtime.

▶ How work is mapped to execution resources.

▶ The difference between parallel for and
parallel reduce.

▶ Start parallelizing a simple example.

April 24, 2024 24/49

Using Kokkos for data parallel patterns (0)

Data parallel patterns and work

for (atomIndex = 0; atomIndex < numberOfAtoms; ++ atomIndex) {

atomForces[atomIndex] = calculateForce (... data ...);

}

Kokkos maps work to execution resources

▶ each iteration of a computational body is a unit of work.

▶ an iteration index identifies a particular unit of work.

▶ an iteration range identifies a total amount of work.

Important concept: Work mapping

You give an iteration range and computational body (kernel)
to Kokkos, and Kokkos decides how to map that work to execution
resources.

April 24, 2024 24/49

Using Kokkos for data parallel patterns (0)

Data parallel patterns and work

for (atomIndex = 0; atomIndex < numberOfAtoms; ++ atomIndex) {

atomForces[atomIndex] = calculateForce (... data ...);

}

Kokkos maps work to execution resources

▶ each iteration of a computational body is a unit of work.

▶ an iteration index identifies a particular unit of work.

▶ an iteration range identifies a total amount of work.

Important concept: Work mapping

You give an iteration range and computational body (kernel)
to Kokkos, and Kokkos decides how to map that work to execution
resources.

April 24, 2024 24/49

Using Kokkos for data parallel patterns (0)

Data parallel patterns and work

for (atomIndex = 0; atomIndex < numberOfAtoms; ++ atomIndex) {

atomForces[atomIndex] = calculateForce (... data ...);

}

Kokkos maps work to execution resources

▶ each iteration of a computational body is a unit of work.

▶ an iteration index identifies a particular unit of work.

▶ an iteration range identifies a total amount of work.

Important concept: Work mapping

You give an iteration range and computational body (kernel)
to Kokkos, and Kokkos decides how to map that work to execution
resources.

April 24, 2024 25/49

Using Kokkos for data parallel patterns (2)

How are computational bodies given to Kokkos?

As functors or function objects, a common pattern in C++.

Quick review, a functor is a function with data. Example:

struct ParallelFunctor {

...

void operator ()(a work assignment) const {

/* ... computational body ... */

...

};

April 24, 2024 25/49

Using Kokkos for data parallel patterns (2)

How are computational bodies given to Kokkos?

As functors or function objects, a common pattern in C++.

Quick review, a functor is a function with data. Example:

struct ParallelFunctor {

...

void operator ()(a work assignment) const {

/* ... computational body ... */

...

};

April 24, 2024 25/49

Using Kokkos for data parallel patterns (2)

How are computational bodies given to Kokkos?

As functors or function objects, a common pattern in C++.

Quick review, a functor is a function with data. Example:

struct ParallelFunctor {

...

void operator ()(a work assignment) const {

/* ... computational body ... */

...

};

April 24, 2024 26/49

Using Kokkos for data parallel patterns (3)

How is work assigned to functor operators?

A total amount of work items is given to a Kokkos pattern,

ParallelFunctor functor;

Kokkos :: parallel_for(numberOfIterations , functor);

and work items are assigned to functors one-by-one:

struct Functor {

void operator ()(const int64_t index) const {...}

}

Warning: concurrency and order

Concurrency and ordering of parallel iterations is not guaranteed
by the Kokkos runtime.

April 24, 2024 26/49

Using Kokkos for data parallel patterns (3)

How is work assigned to functor operators?

A total amount of work items is given to a Kokkos pattern,

ParallelFunctor functor;

Kokkos :: parallel_for(numberOfIterations , functor);

and work items are assigned to functors one-by-one:

struct Functor {

void operator ()(const int64_t index) const {...}

}

Warning: concurrency and order

Concurrency and ordering of parallel iterations is not guaranteed
by the Kokkos runtime.

April 24, 2024 26/49

Using Kokkos for data parallel patterns (3)

How is work assigned to functor operators?

A total amount of work items is given to a Kokkos pattern,

ParallelFunctor functor;

Kokkos :: parallel_for(numberOfIterations , functor);

and work items are assigned to functors one-by-one:

struct Functor {

void operator ()(const int64_t index) const {...}

}

Warning: concurrency and order

Concurrency and ordering of parallel iterations is not guaranteed
by the Kokkos runtime.

April 24, 2024 26/49

Using Kokkos for data parallel patterns (3)

How is work assigned to functor operators?

A total amount of work items is given to a Kokkos pattern,

ParallelFunctor functor;

Kokkos :: parallel_for(numberOfIterations , functor);

and work items are assigned to functors one-by-one:

struct Functor {

void operator ()(const int64_t index) const {...}

}

Warning: concurrency and order

Concurrency and ordering of parallel iterations is not guaranteed
by the Kokkos runtime.

April 24, 2024 27/49

Using Kokkos for data parallel patterns (4)

How is data passed to computational bodies?

for (atomIndex = 0; atomIndex < numberOfAtoms; ++ atomIndex) {

atomForces[atomIndex] = calculateForce(... data ...);

}

struct AtomForceFunctor {

...

void operator ()(const int64_t atomIndex) const {

atomForces[atomIndex] = calculateForce(... data ...);

}

...

}

How does the body access the data?

Important concept

A parallel functor body must have access to all the data it needs
through the functor’s data members.

April 24, 2024 27/49

Using Kokkos for data parallel patterns (4)

How is data passed to computational bodies?

for (atomIndex = 0; atomIndex < numberOfAtoms; ++ atomIndex) {

atomForces[atomIndex] = calculateForce(... data ...);

}

struct AtomForceFunctor {

...

void operator ()(const int64_t atomIndex) const {

atomForces[atomIndex] = calculateForce(... data ...);

}

...

}

How does the body access the data?

Important concept

A parallel functor body must have access to all the data it needs
through the functor’s data members.

April 24, 2024 28/49

Using Kokkos for data parallel patterns (5)

Putting it all together: the complete functor:

struct AtomForceFunctor {

ForceType _atomForces;

DataType _atomData;

AtomForceFunctor(/* args */) {...}

void operator ()(const int64_t atomIndex) const {

_atomForces[atomIndex] = calculateForce(_atomData);

}

};

Q/ How would we reproduce serial execution with this functor?

for (atomIndex = 0; atomIndex < numberOfAtoms; ++ atomIndex){

atomForces[atomIndex] = calculateForce(data);

}

AtomForceFunctor functor(atomForces , data);

for (atomIndex = 0; atomIndex < numberOfAtoms; ++ atomIndex){

functor(atomIndex);

}

April 24, 2024 28/49

Using Kokkos for data parallel patterns (5)

Putting it all together: the complete functor:

struct AtomForceFunctor {

ForceType _atomForces;

DataType _atomData;

AtomForceFunctor(/* args */) {...}

void operator ()(const int64_t atomIndex) const {

_atomForces[atomIndex] = calculateForce(_atomData);

}

};

Q/ How would we reproduce serial execution with this functor?

for (atomIndex = 0; atomIndex < numberOfAtoms; ++ atomIndex){

atomForces[atomIndex] = calculateForce(data);

}

AtomForceFunctor functor(atomForces , data);

for (atomIndex = 0; atomIndex < numberOfAtoms; ++ atomIndex){

functor(atomIndex);

}

S
er
ia
l

April 24, 2024 28/49

Using Kokkos for data parallel patterns (5)

Putting it all together: the complete functor:

struct AtomForceFunctor {

ForceType _atomForces;

DataType _atomData;

AtomForceFunctor(/* args */) {...}

void operator ()(const int64_t atomIndex) const {

_atomForces[atomIndex] = calculateForce(_atomData);

}

};

Q/ How would we reproduce serial execution with this functor?

for (atomIndex = 0; atomIndex < numberOfAtoms; ++ atomIndex){

atomForces[atomIndex] = calculateForce(data);

}

AtomForceFunctor functor(atomForces , data);

for (atomIndex = 0; atomIndex < numberOfAtoms; ++ atomIndex){

functor(atomIndex);

}

S
er
ia
l

F
u
n
ct
o
r

April 24, 2024 29/49

Using Kokkos for data parallel patterns (6)

The complete picture (using functors):

1. Defining the functor (operator+data):

struct AtomForceFunctor {

ForceType _atomForces;

DataType _atomData;

AtomForceFunctor(ForceType atomForces , DataType data) :

_atomForces(atomForces), _atomData(data) {}

void operator ()(const int64_t atomIndex) const {

_atomForces[atomIndex] = calculateForce(_atomData);

}

}

2. Executing in parallel with Kokkos pattern:
AtomForceFunctor functor(atomForces , data);

Kokkos :: parallel_for(numberOfAtoms , functor);

April 24, 2024 30/49

Using Kokkos for data parallel patterns (7)

Functors are tedious ⇒ C++11 Lambdas are concise

atomForces already exists

data already exists

Kokkos :: parallel_for(numberOfAtoms ,

[=] (const int64_t atomIndex) {

atomForces[atomIndex] = calculateForce(data);

}

);

A lambda is not magic, it is the compiler auto-generating a
functor for you.

Warning: Lambda capture and C++ containers

For portability to GPU a lambda must capture by value [=].
Don’t capture containers (e.g., std::vector) by value because it will
copy the container’s entire contents.

April 24, 2024 30/49

Using Kokkos for data parallel patterns (7)

Functors are tedious ⇒ C++11 Lambdas are concise

atomForces already exists

data already exists

Kokkos :: parallel_for(numberOfAtoms ,

[=] (const int64_t atomIndex) {

atomForces[atomIndex] = calculateForce(data);

}

);

A lambda is not magic, it is the compiler auto-generating a
functor for you.

Warning: Lambda capture and C++ containers

For portability to GPU a lambda must capture by value [=].
Don’t capture containers (e.g., std::vector) by value because it will
copy the container’s entire contents.

April 24, 2024 30/49

Using Kokkos for data parallel patterns (7)

Functors are tedious ⇒ C++11 Lambdas are concise

atomForces already exists

data already exists

Kokkos :: parallel_for(numberOfAtoms ,

[=] (const int64_t atomIndex) {

atomForces[atomIndex] = calculateForce(data);

}

);

A lambda is not magic, it is the compiler auto-generating a
functor for you.

Warning: Lambda capture and C++ containers

For portability to GPU a lambda must capture by value [=].
Don’t capture containers (e.g., std::vector) by value because it will
copy the container’s entire contents.

April 24, 2024 31/49

parallel for examples

How does this compare to OpenMP?

for (int64_t i = 0; i < N; ++i) {

/* loop body */

}

#pragma omp parallel for

for (int64_t i = 0; i < N; ++i) {

/* loop body */

}

parallel_for(N, [=] (const int64_t i) {

/* loop body */

});

Important concept

Simple Kokkos usage is no more conceptually difficult than
OpenMP, the annotations just go in different places.

S
er
ia
l

O
p
en

M
P

K
o
k
ko

s

April 24, 2024 32/49

Scalar integration (0)

Riemann-sum-style numerical integration:

y =

∫ upper

lower
function(x) dx

Wikipedia

April 24, 2024 32/49

Scalar integration (0)

Riemann-sum-style numerical integration:

y =

∫ upper

lower
function(x) dx

Wikipedia

double totalIntegral = 0;

for (int64_t i = 0; i < numberOfIntervals; ++i) {

const double x =

lower + (i/numberOfIntervals) * (upper - lower);
const double thisIntervalsContribution = function(x);
totalIntegral += thisIntervalsContribution;

}

totalIntegral *= dx;

April 24, 2024 32/49

Scalar integration (0)

Riemann-sum-style numerical integration:

y =

∫ upper

lower
function(x) dx

Wikipedia

double totalIntegral = 0;

for (int64_t i = 0; i < numberOfIntervals; ++i) {

const double x =

lower + (i/numberOfIntervals) * (upper - lower);
const double thisIntervalsContribution = function(x);
totalIntegral += thisIntervalsContribution;

}

totalIntegral *= dx;

How do we parallelize it? Correctly?

April 24, 2024 32/49

Scalar integration (0)

Riemann-sum-style numerical integration:

y =

∫ upper

lower
function(x) dx

Wikipedia

double totalIntegral = 0;

for (int64_t i = 0; i < numberOfIntervals; ++i) {

const double x =

lower + (i/numberOfIntervals) * (upper - lower);
const double thisIntervalsContribution = function(x);
totalIntegral += thisIntervalsContribution;

}

totalIntegral *= dx;

How do we parallelize it? Correctly?

Pattern?
Policy?

B
o
d
y?

April 24, 2024 33/49

Scalar integration (1)

An (incorrect) attempt:

double totalIntegral = 0;

Kokkos :: parallel_for(numberOfIntervals ,

[=] (const int64_t index) {

const double x =

lower + (index/numberOfIntervals) * (upper - lower);

totalIntegral += function(x);},

);

totalIntegral *= dx;

First problem: compiler error; cannot increment totalIntegral
(lambdas capture by value and are treated as const!)

April 24, 2024 34/49

Scalar integration (2)

An (incorrect) solution to the (incorrect) attempt:

double totalIntegral = 0;

double * totalIntegralPointer = &totalIntegral;

Kokkos :: parallel_for(numberOfIntervals ,

[=] (const int64_t index) {

const double x =

lower + (index/numberOfIntervals) * (upper - lower);

*totalIntegralPointer += function(x);},

);

totalIntegral *= dx;

Second problem: race condition

step thread 0 thread 1

0 load

1 increment load

2 write increment

3 write

April 24, 2024 34/49

Scalar integration (2)

An (incorrect) solution to the (incorrect) attempt:

double totalIntegral = 0;

double * totalIntegralPointer = &totalIntegral;

Kokkos :: parallel_for(numberOfIntervals ,

[=] (const int64_t index) {

const double x =

lower + (index/numberOfIntervals) * (upper - lower);

*totalIntegralPointer += function(x);},

);

totalIntegral *= dx;

Second problem: race condition

step thread 0 thread 1

0 load

1 increment load

2 write increment

3 write

April 24, 2024 35/49

Scalar integration (3)

Root problem: we’re using the wrong pattern, for instead of
reduction

Important concept: Reduction

Reductions combine the results contributed by parallel work.

How would we do this with OpenMP?
double finalReducedValue = 0;

#pragma omp parallel for reduction(+: finalReducedValue)

for (int64_t i = 0; i < N; ++i) {

finalReducedValue += ...

}

How will we do this with Kokkos?
double finalReducedValue = 0;

parallel_reduce(N, functor , finalReducedValue);

April 24, 2024 35/49

Scalar integration (3)

Root problem: we’re using the wrong pattern, for instead of
reduction

Important concept: Reduction

Reductions combine the results contributed by parallel work.

How would we do this with OpenMP?
double finalReducedValue = 0;

#pragma omp parallel for reduction(+: finalReducedValue)

for (int64_t i = 0; i < N; ++i) {

finalReducedValue += ...

}

How will we do this with Kokkos?
double finalReducedValue = 0;

parallel_reduce(N, functor , finalReducedValue);

April 24, 2024 35/49

Scalar integration (3)

Root problem: we’re using the wrong pattern, for instead of
reduction

Important concept: Reduction

Reductions combine the results contributed by parallel work.

How would we do this with OpenMP?
double finalReducedValue = 0;

#pragma omp parallel for reduction(+: finalReducedValue)

for (int64_t i = 0; i < N; ++i) {

finalReducedValue += ...

}

How will we do this with Kokkos?
double finalReducedValue = 0;

parallel_reduce(N, functor , finalReducedValue);

April 24, 2024 35/49

Scalar integration (3)

Root problem: we’re using the wrong pattern, for instead of
reduction

Important concept: Reduction

Reductions combine the results contributed by parallel work.

How would we do this with OpenMP?
double finalReducedValue = 0;

#pragma omp parallel for reduction(+: finalReducedValue)

for (int64_t i = 0; i < N; ++i) {

finalReducedValue += ...

}

How will we do this with Kokkos?
double finalReducedValue = 0;

parallel_reduce(N, functor , finalReducedValue);

April 24, 2024 36/49

Scalar integration (4)

Example: Scalar integration

double totalIntegral = 0;

#pragma omp parallel for reduction(+: totalIntegral)

for (int64_t i = 0; i < numberOfIntervals; ++i) {

totalIntegral += function (...);

}

double totalIntegral = 0;

parallel_reduce(numberOfIntervals ,

[=] (const int64_t i, double & valueToUpdate) {

valueToUpdate += function (...);

},

totalIntegral);

▶ The operator takes two arguments: a work index and a value
to update.

▶ The second argument is a thread-private value that is
managed by Kokkos; it is not the final reduced value.

O
p
en

M
P

K
o
k
ko

s

April 24, 2024 37/49

Amdahl’s Law (1)

Warning: Parallelism is NOT free

Dispatching (launching) parallel work has non-negligible cost.

Simplistic data-parallel performance model: Time = α+ β∗N
P

▶ α = dispatch overhead

▶ β = time for a unit of work

▶ N = number of units of work

▶ P = available concurrency

Speedup = P ÷
(
1 + α∗P

β∗N

)
▶ Should have α ∗ P ≪ β ∗ N
▶ All runtimes strive to minimize launch overhead α

▶ Find more parallelism to increase N

▶ Merge (fuse) parallel operations to increase β

April 24, 2024 37/49

Amdahl’s Law (1)

Warning: Parallelism is NOT free

Dispatching (launching) parallel work has non-negligible cost.

Simplistic data-parallel performance model: Time = α+ β∗N
P

▶ α = dispatch overhead

▶ β = time for a unit of work

▶ N = number of units of work

▶ P = available concurrency

Speedup = P ÷
(
1 + α∗P

β∗N

)
▶ Should have α ∗ P ≪ β ∗ N
▶ All runtimes strive to minimize launch overhead α

▶ Find more parallelism to increase N

▶ Merge (fuse) parallel operations to increase β

April 24, 2024 37/49

Amdahl’s Law (1)

Warning: Parallelism is NOT free

Dispatching (launching) parallel work has non-negligible cost.

Simplistic data-parallel performance model: Time = α+ β∗N
P

▶ α = dispatch overhead

▶ β = time for a unit of work

▶ N = number of units of work

▶ P = available concurrency

Speedup = P ÷
(
1 + α∗P

β∗N

)
▶ Should have α ∗ P ≪ β ∗ N
▶ All runtimes strive to minimize launch overhead α

▶ Find more parallelism to increase N

▶ Merge (fuse) parallel operations to increase β

April 24, 2024 38/49

Amdahl’s Law (2)

Results: illustrates simple speedup model = P ÷
(
1 + α∗P

β∗N

)

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100 1000 10000 100000 1x106 1x107 1x108

sp
ee

du
p

ov
er

 s
er

ia
l [

-]

number of intervals [-]

Kokkos speedup over serial: Scalar Integration
Kokkos Cuda Pascal60
Kokkos OpenMP HSW
Kokkos OpenMP KNL
Native OpenMP KNL
Unity

N
o
te
:
lo
g
sc
a
le

April 24, 2024 39/49

Naming your kernels

Always name your kernels!

Giving unique names to each kernel is immensely helpful for
debugging and profiling. You will regret it if you don’t!

▶ Non-nested parallel patterns can take an optional string
argument.

▶ The label doesn’t need to be unique, but it is helpful.

▶ Anything convertible to ”std::string”

▶ Used by profiling and debugging tools (see Profiling Tutorial)

Example:
double totalIntegral = 0;

parallel_reduce("Reduction",numberOfIntervals ,

[=] (const int64_t i, double & valueToUpdate) {

valueToUpdate += function (...);

},

totalIntegral);

April 24, 2024 40/49

Recurring Exercise: Inner Product

Exercise: Inner product < y ,A ∗ x >

Details:

▶ y is Nx1, A is NxM, x is Mx1

▶ We’ll use this exercise throughout the tutorial

April 24, 2024 41/49

Exercise #1: include, initialize, finalize Kokkos

The first step in using Kokkos is to include, initialize, and finalize:

#include <Kokkos_Core.hpp >

int main(int argc , char* argv []) {

/* ... do any necessary setup (e.g., initialize MPI) ... */

Kokkos :: initialize(argc , argv);

{

/* ... do computations ... */

}

Kokkos :: finalize ();

return 0;

}

(Optional) Command-line arguments or environment variables:

--kokkos-num-threads=INT or
KOKKOS NUM THREADS

total number of threads

--kokkos-device-id=INT or
KOKKOS DEVICE ID

device (GPU) ID to use

April 24, 2024 42/49

Exercise #1: Inner Product, Flat Parallelism on the CPU

Exercise: Inner product < y ,A ∗ x >

Details:

▶ Location: Exercises/01/Begin/

▶ Look for comments labeled with “EXERCISE”

▶ Need to include, initialize, and finalize Kokkos library

▶ Parallelize loops with parallel for or parallel reduce

▶ Use lambdas instead of functors for computational bodies.

▶ For now, this will only use the CPU.

April 24, 2024 43/49

Exercise #1: logistics

Compiling for CPU

cmake -B build -DKokkos_ENABLE_OPENMP=ON \

-DCMAKE_BUILD_TYPE=Release

cmake --build build

Running on CPU with OpenMP backend

Set OpenMP affinity

export OMP_NUM_THREADS =8

export OMP_PROC_BIND=spread OMP_PLACES=threads

Print example command line options:

./build /01 _Exercise -h

Run with defaults on CPU

./build /01 _Exercise

Run larger problem

./build /01 _Exercise -S 26

Things to try:

▶ Vary problem size with command line argument -S s

▶ Vary number of rows with command line argument -N n

▶ Num rows = 2n, num cols = 2m, total size = 2s == 2n+m

April 24, 2024 44/49

Basic capabilities we haven’t covered

▶ Customizing parallel reduce data type and reduction
operator

e.g., minimum, maximum, ...

▶ parallel scan pattern for exclusive and inclusive prefix sum

▶ Using tag dispatch interface to allow non-trivial functors to
have multiple “operator()” functions.

very useful in large, complex applications

April 24, 2024 45/49

Section Summary

▶ Simple usage is similar to OpenMP, advanced features are
also straightforward

▶ Three common data-parallel patterns are parallel for,
parallel reduce, and parallel scan.

▶ A parallel computation is characterized by its pattern, policy,
and body.

▶ User provides computational bodies as functors or lambdas
which handle a single work item.

April 24, 2024 46/49

Building Applications with
Kokkos
Learning objectives:

▶ Kokkos-docs :
https://kokkos.org/kokkos-core-wiki/building.html

▶ NERSC-docs : https://docs.nersc.gov/development/
programming-models/kokkos/

Ignore This For Tutorial Only

The following details on options to integrate Kokkos into your
build process are NOT necessary to know if you just want to do
the tutorial.

https://kokkos.org/kokkos-core-wiki/building.html
https://docs.nersc.gov/development/programming-models/kokkos/
https://docs.nersc.gov/development/programming-models/kokkos/

April 24, 2024 46/49

Building Applications with
Kokkos
Learning objectives:

▶ Kokkos-docs :
https://kokkos.org/kokkos-core-wiki/building.html

▶ NERSC-docs : https://docs.nersc.gov/development/
programming-models/kokkos/

Ignore This For Tutorial Only

The following details on options to integrate Kokkos into your
build process are NOT necessary to know if you just want to do
the tutorial.

https://kokkos.org/kokkos-core-wiki/building.html
https://docs.nersc.gov/development/programming-models/kokkos/
https://docs.nersc.gov/development/programming-models/kokkos/

April 24, 2024 47/49

Module 1: Summary

Kokkos EcoSystem:

▶ C++ Performance Portability Programming Model.

▶ The Kokkos Ecosystem provides capabilities needed for serious
code development.

▶ Kokkos is supported by multiple National Laboratories with a
sizeable dedicated team.

April 24, 2024 48/49

Module 1: Summary

Data Parallelism:

▶ Simple things stay simple!

▶ You use parallel patterns and execution policies to execute
computational bodies

▶ Simple parallel loops use the parallel for pattern:

parallel_for("Label",N, [=] (int64_t i) {

/* loop body */

});

▶ Reductions combine contributions from loop iterations

int result;

parallel_reduce("Label",N, [=] (int64_t i, int& lres) {

/* loop body */

lres += /* something */

},result);

April 24, 2024 49/49

Module 2: Outlook (07/24)

Kokkos::View:

▶ Solving the data-layout issue.

▶ Controlling data life-time.

Execution and Memory Spaces:

▶ How to control where data lives.

▶ How to control where code executes.

▶ How to manage data transfers.

Don’t Forget: Join our Slack Channel and drop into our office
hours on Tuesday.

Updates at:
https://github.com/kokkos/kokkos-tutorials/issues/38

https://github.com/kokkos/kokkos-tutorials/issues/38

