
The Kokkos Lectures

Module 2: Views and Spaces

April 25, 2024

April 25, 2024 2/50

Module 2

Kokkos View

What are Views? How to create them? Why should you use it?

Memory and Execution Spaces

How to control where data lives and code executes.

Memory Access Patterns

The importance of access patterns for performance portability and
how to control it.

April 25, 2024 3/50

Views

Learning objectives:

▶ Motivation behind the View abstraction.

▶ Key View concepts and template parameters.

▶ The View life cycle.

April 25, 2024 4/50

View motivation

Example: running daxpy on the GPU:

double * x = new double[N]; // also y

parallel_for("DAXPY",N, [=] (const int64_t i) {

y[i] = a * x[i] + y[i];

});

struct Functor {

double *_x , *_y, a;

void operator ()(const int64_t i) const {

_y[i] = _a * _x[i] + _y[i];

}

};

Problem: x and y reside in CPU memory.

Solution: We need a way of storing data (multidimensional arrays)
which can be communicated to an accelerator (GPU).

⇒ Views

L
a
m
b
d
a

F
u
n
ct
o
r

April 25, 2024 4/50

View motivation

Example: running daxpy on the GPU:

double * x = new double[N]; // also y

parallel_for("DAXPY",N, [=] (const int64_t i) {

y[i] = a * x[i] + y[i];

});

struct Functor {

double *_x , *_y, a;

void operator ()(const int64_t i) const {

_y[i] = _a * _x[i] + _y[i];

}

};

Problem: x and y reside in CPU memory.

Solution: We need a way of storing data (multidimensional arrays)
which can be communicated to an accelerator (GPU).

⇒ Views

L
a
m
b
d
a

F
u
n
ct
o
r

April 25, 2024 4/50

View motivation

Example: running daxpy on the GPU:

double * x = new double[N]; // also y

parallel_for("DAXPY",N, [=] (const int64_t i) {

y[i] = a * x[i] + y[i];

});

struct Functor {

double *_x , *_y, a;

void operator ()(const int64_t i) const {

_y[i] = _a * _x[i] + _y[i];

}

};

Problem: x and y reside in CPU memory.

Solution: We need a way of storing data (multidimensional arrays)
which can be communicated to an accelerator (GPU).

⇒ Views

L
a
m
b
d
a

F
u
n
ct
o
r

April 25, 2024 5/50

Views (0)

View abstraction

▶ A lightweight C++ class with a pointer to array data and a
little meta-data,

▶ that is templated on the data type (and other things).

High-level example of Views for daxpy using lambda:

View <double*, ...> x(...) , y(...);

... populate x, y...

parallel_for("DAXPY",N, [=] (const int64_t i) {

// Views x and y are captured by value (shallow copy)

y(i) = a * x(i) + y(i);

});

Important point

Views are like pointers, so copy them in your functors.

April 25, 2024 5/50

Views (0)

View abstraction

▶ A lightweight C++ class with a pointer to array data and a
little meta-data,

▶ that is templated on the data type (and other things).

High-level example of Views for daxpy using lambda:

View <double*, ...> x(...) , y(...);

... populate x, y...

parallel_for("DAXPY",N, [=] (const int64_t i) {

// Views x and y are captured by value (shallow copy)

y(i) = a * x(i) + y(i);

});

Important point

Views are like pointers, so copy them in your functors.

April 25, 2024 6/50

Views (1)

View overview:

▶ Multi-dimensional array of 0 or more dimensions
scalar (0), vector (1), matrix (2), etc.

▶ Number of dimensions (rank) is fixed at compile-time.

▶ Arrays are rectangular, not ragged.

▶ Sizes of dimensions set at compile-time or runtime.
e.g., 2x20, 50x50, etc.

▶ Access elements via ”(...)” operator.

Example:

View <double ***> data("label", N0 , N1, N2); //3 run, 0 compile

View <double **[N2]> data("label", N0, N1); //2 run, 1 compile

View <double *[N1][N2]> data("label", N0); //1 run, 2 compile

View <double[N0][N1][N2]> data("label"); //0 run, 3 compile

// Access

data(i,j,k) = 5.3;

Note: runtime-sized dimensions must come first.

April 25, 2024 6/50

Views (1)

View overview:

▶ Multi-dimensional array of 0 or more dimensions
scalar (0), vector (1), matrix (2), etc.

▶ Number of dimensions (rank) is fixed at compile-time.

▶ Arrays are rectangular, not ragged.

▶ Sizes of dimensions set at compile-time or runtime.
e.g., 2x20, 50x50, etc.

▶ Access elements via ”(...)” operator.
Example:

View <double ***> data("label", N0 , N1, N2); //3 run, 0 compile

View <double **[N2]> data("label", N0, N1); //2 run, 1 compile

View <double *[N1][N2]> data("label", N0); //1 run, 2 compile

View <double[N0][N1][N2]> data("label"); //0 run, 3 compile

// Access

data(i,j,k) = 5.3;

Note: runtime-sized dimensions must come first.

April 25, 2024 7/50

Views (2)

View life cycle:

▶ Allocations only happen when explicitly specified.
i.e., there are no hidden allocations.

▶ Copy construction and assignment are shallow (like pointers).
so, you pass Views by value, not by reference

▶ Reference counting is used for automatic deallocation.

▶ They behave like std::shared ptr

Example:
View <double *[5]> a("a", N), b("b", K);

a = b;

View <double**> c(b);

a(0,2) = 1;

b(0,2) = 2;

c(0,2) = 3;

print_value(a(0,2));

What gets printed?
3.0

April 25, 2024 7/50

Views (2)

View life cycle:

▶ Allocations only happen when explicitly specified.
i.e., there are no hidden allocations.

▶ Copy construction and assignment are shallow (like pointers).
so, you pass Views by value, not by reference

▶ Reference counting is used for automatic deallocation.

▶ They behave like std::shared ptr

Example:
View <double *[5]> a("a", N), b("b", K);

a = b;

View <double**> c(b);

a(0,2) = 1;

b(0,2) = 2;

c(0,2) = 3;

print_value(a(0,2));

What gets printed?

3.0

April 25, 2024 7/50

Views (2)

View life cycle:

▶ Allocations only happen when explicitly specified.
i.e., there are no hidden allocations.

▶ Copy construction and assignment are shallow (like pointers).
so, you pass Views by value, not by reference

▶ Reference counting is used for automatic deallocation.

▶ They behave like std::shared ptr

Example:
View <double *[5]> a("a", N), b("b", K);

a = b;

View <double**> c(b);

a(0,2) = 1;

b(0,2) = 2;

c(0,2) = 3;

print_value(a(0,2));

What gets printed?
3.0

April 25, 2024 8/50

Views (3)

View Properties:
▶ Accessing a View’s sizes is done via its extent(dim)

function.
▶ Static extents can additionally be accessed via

static extent(dim).

▶ You can retrieve a raw pointer via its data() function.

▶ The label can be accessed via label().

Example:

View <double *[5]> a("A",N0);

assert(a.extent (0) == N0);

assert(a.extent (1) == 5);

static_assert(a.static_extent (1) == 5);

assert(a.data() != nullptr);

assert(a.label () == "A");

April 25, 2024 9/50

Exercise #2: Inner Product, Flat Parallelism on the CPU, with Views

▶ Location: Exercises/02/Begin/

▶ Assignment: Change data storage from arrays to Views.

▶ Compile and run on CPU, and then on GPU with UVM

CPU -only using OpenMP

cmake -B build -openmp -DKokkos_ENABLE_OPENMP=ON

cmake --build build -openmp

GPU - note UVM in Makefile

cmake -B build -cuda -DKokkos_ENABLE_CUDA=ON

cmake --build build -cuda

Run exercise

./build -openmp /02 _Exercise -S 26

./build -cuda /02 _Exercise -S 26

Note the warnings , set appropriate environment variables

▶ Vary problem size: -S #

▶ Vary number of rows: -N #

▶ Vary repeats: -nrepeat #

▶ Compare performance of CPU vs GPU

April 25, 2024 10/50

Advanced features we haven’t covered

▶ Memory space in which view’s data resides; covered next.

▶ deep copy view’s data; covered later.
Note: Kokkos never hides a deep copy of data.

▶ Layout of multidimensional array; covered later.

▶ Memory traits; covered later.

▶ Subview: Generating a view that is a “slice” of other
multidimensional array view; covered later.

April 25, 2024 11/50

Execution and Memory spaces

Execution and Memory Spaces

Learning objectives:

▶ Heterogeneous nodes and the space abstractions.

▶ How to control where parallel bodies are run, execution
space.

▶ How to control where view data resides, memory space.

▶ How to avoid illegal memory accesses and manage data
movement.

▶ The need for Kokkos::initialize and finalize.

▶ Where to use Kokkos annotation macros for portability.

April 25, 2024 12/50

Execution spaces (1)

Execution Space
a homogeneous set of cores and an execution mechanism

(i.e., “place to run code”)

DRAM

NVRAM

On-Package
Memory

Network-on-Chip

Core Core

External Network
Interface

...

Core Core...

Acc.
On-Package

Memory

External Interconnect

Node

NUMA Domain

NUMA Domain

Accelerator

Execution spaces: Serial, Threads, OpenMP, Cuda, HIP, ...

April 25, 2024 13/50

Execution spaces (2)

MPI_Reduce (...);

FILE * file = fopen (...);

runANormalFunction (... data ...);

Kokkos :: parallel_for("MyKernel", numberOfSomethings ,

[=] (const int64_t somethingIndex) {

const double y = ...;

// do something interesting

}

);

▶ Where will Host code be run? CPU? GPU?
⇒ Always in the host process

▶ Where will Parallel code be run? CPU? GPU?
⇒ The default execution space

▶ How do I control where the Parallel body is executed?
Changing the default execution space (at compilation),
or specifying an execution space in the policy.

H
o
st

P
ar
al
le
l

April 25, 2024 13/50

Execution spaces (2)

MPI_Reduce (...);

FILE * file = fopen (...);

runANormalFunction (... data ...);

Kokkos :: parallel_for("MyKernel", numberOfSomethings ,

[=] (const int64_t somethingIndex) {

const double y = ...;

// do something interesting

}

);

▶ Where will Host code be run? CPU? GPU?
⇒ Always in the host process

▶ Where will Parallel code be run? CPU? GPU?
⇒ The default execution space

▶ How do I control where the Parallel body is executed?
Changing the default execution space (at compilation),
or specifying an execution space in the policy.

H
o
st

P
ar
al
le
l

April 25, 2024 13/50

Execution spaces (2)

MPI_Reduce (...);

FILE * file = fopen (...);

runANormalFunction (... data ...);

Kokkos :: parallel_for("MyKernel", numberOfSomethings ,

[=] (const int64_t somethingIndex) {

const double y = ...;

// do something interesting

}

);

▶ Where will Host code be run? CPU? GPU?
⇒ Always in the host process

▶ Where will Parallel code be run? CPU? GPU?
⇒ The default execution space

▶ How do I control where the Parallel body is executed?
Changing the default execution space (at compilation),
or specifying an execution space in the policy.

H
o
st

P
ar
al
le
l

April 25, 2024 13/50

Execution spaces (2)

MPI_Reduce (...);

FILE * file = fopen (...);

runANormalFunction (... data ...);

Kokkos :: parallel_for("MyKernel", numberOfSomethings ,

[=] (const int64_t somethingIndex) {

const double y = ...;

// do something interesting

}

);

▶ Where will Host code be run? CPU? GPU?
⇒ Always in the host process

▶ Where will Parallel code be run? CPU? GPU?
⇒ The default execution space

▶ How do I control where the Parallel body is executed?
Changing the default execution space (at compilation),
or specifying an execution space in the policy.

H
o
st

P
ar
al
le
l

April 25, 2024 14/50

Execution spaces (3)

Changing the parallel execution space:

parallel_for("Label",

RangePolicy < Execut ionSpace >(0, numberOfIntervals),

[=] (const int64_t i) {

/* ... body ... */

});

parallel_for("Label",

numberOfIntervals , // => RangePolicy <>(0, numberOfIntervals)

[=] (const int64_t i) {

/* ... body ... */

});

Requirements for enabling execution spaces:
▶ Kokkos must be compiled with the execution spaces enabled.

▶ Execution spaces must be initialized (and finalized).

▶ Functions must be marked with a macro for non-CPU spaces.

▶ Lambdas must be marked with a macro for non-CPU spaces.

D
ef
a
u
lt

C
u
st
o
m

April 25, 2024 14/50

Execution spaces (3)

Changing the parallel execution space:

parallel_for("Label",

RangePolicy < Execut ionSpace >(0, numberOfIntervals),

[=] (const int64_t i) {

/* ... body ... */

});

parallel_for("Label",

numberOfIntervals , // => RangePolicy <>(0, numberOfIntervals)

[=] (const int64_t i) {

/* ... body ... */

});

Requirements for enabling execution spaces:
▶ Kokkos must be compiled with the execution spaces enabled.

▶ Execution spaces must be initialized (and finalized).

▶ Functions must be marked with a macro for non-CPU spaces.

▶ Lambdas must be marked with a macro for non-CPU spaces.

D
ef
a
u
lt

C
u
st
o
m

April 25, 2024 15/50

Execution spaces (5)

Kokkos function and lambda portability annotation macros:

Function annotation with KOKKOS INLINE FUNCTION macro
s t r u c t P a r a l l e l F u n c t o r {

KOKKOS INLINE FUNCTION
doub l e h e l p e r F un c t i o n (con s t i n t 6 4 t s) con s t { . . .}
KOKKOS INLINE FUNCTION
vo i d op e r a t o r () (con s t i n t 6 4 t i nd ex) con s t {

h e l p e r Fun c t i o n (i nd ex) ;
}

}
// Where kokkos d e f i n e s :
#d e f i n e KOKKOS INLINE FUNCTION i n l i n e /* #i f CPU=on l y */
#d e f i n e KOKKOS INLINE FUNCTION i n l i n e d e v i c e h o s t /* #i f CPU+Cuda */

Lambda annotation with KOKKOS LAMBDA macro
Kokkos : : p a r a l l e l f o r (” Labe l ” , numbe rO f I t e r a t i on s ,

KOKKOS LAMBDA (cons t i n t 6 4 t i nd ex) { . . . }) ;

// Where Kokkos d e f i n e s :
#d e f i n e KOKKOS LAMBDA [=] /* #i f CPU=on l y */
#d e f i n e KOKKOS LAMBDA [=] d e v i c e h o s t /* #i f CPU+Cuda */

April 25, 2024 15/50

Execution spaces (5)

Kokkos function and lambda portability annotation macros:

Function annotation with KOKKOS INLINE FUNCTION macro
s t r u c t P a r a l l e l F u n c t o r {

KOKKOS INLINE FUNCTION
doub l e h e l p e r F un c t i o n (con s t i n t 6 4 t s) con s t { . . .}
KOKKOS INLINE FUNCTION
vo i d op e r a t o r () (con s t i n t 6 4 t i nd ex) con s t {

h e l p e r Fun c t i o n (i nd ex) ;
}

}
// Where kokkos d e f i n e s :
#d e f i n e KOKKOS INLINE FUNCTION i n l i n e /* #i f CPU=on l y */
#d e f i n e KOKKOS INLINE FUNCTION i n l i n e d e v i c e h o s t /* #i f CPU+Cuda */

Lambda annotation with KOKKOS LAMBDA macro
Kokkos : : p a r a l l e l f o r (” Labe l ” , numbe rO f I t e r a t i on s ,

KOKKOS LAMBDA (cons t i n t 6 4 t i nd ex) { . . . }) ;

// Where Kokkos d e f i n e s :
#d e f i n e KOKKOS LAMBDA [=] /* #i f CPU=on l y */
#d e f i n e KOKKOS LAMBDA [=] d e v i c e h o s t /* #i f CPU+Cuda */

April 25, 2024 16/50

Memory Space Motivation

Memory space motivating example: summing an array

View <double*> data("data", size);

for (int64_t i = 0; i < size; ++i) {

data(i) = ... read from file ...

}

double sum = 0;

Kokkos :: parallel_reduce("Label",

RangePolicy <SomeExampleExecutionSpace >(0, size),

KOKKOS_LAMBDA (const int64_t index , double & valueToUpdate) {

valueToUpdate += data(index);

},

sum);

Question: Where is the data stored? GPU memory? CPU
memory? Both?

⇒ Memory Spaces

April 25, 2024 16/50

Memory Space Motivation

Memory space motivating example: summing an array

View <double*> data("data", size);

for (int64_t i = 0; i < size; ++i) {

data(i) = ... read from file ...

}

double sum = 0;

Kokkos :: parallel_reduce("Label",

RangePolicy <SomeExampleExecutionSpace >(0, size),

KOKKOS_LAMBDA (const int64_t index , double & valueToUpdate) {

valueToUpdate += data(index);

},

sum);

Question: Where is the data stored? GPU memory? CPU
memory? Both?

⇒ Memory Spaces

April 25, 2024 16/50

Memory Space Motivation

Memory space motivating example: summing an array

View <double*> data("data", size);

for (int64_t i = 0; i < size; ++i) {

data(i) = ... read from file ...

}

double sum = 0;

Kokkos :: parallel_reduce("Label",

RangePolicy <SomeExampleExecutionSpace >(0, size),

KOKKOS_LAMBDA (const int64_t index , double & valueToUpdate) {

valueToUpdate += data(index);

},

sum);

Question: Where is the data stored? GPU memory? CPU
memory? Both?

⇒ Memory Spaces

April 25, 2024 16/50

Memory Space Motivation

Memory space motivating example: summing an array

View <double*> data("data", size);

for (int64_t i = 0; i < size; ++i) {

data(i) = ... read from file ...

}

double sum = 0;

Kokkos :: parallel_reduce("Label",

RangePolicy <SomeExampleExecutionSpace >(0, size),

KOKKOS_LAMBDA (const int64_t index , double & valueToUpdate) {

valueToUpdate += data(index);

},

sum);

Question: Where is the data stored? GPU memory? CPU
memory? Both?

⇒ Memory Spaces

April 25, 2024 17/50

Memory spaces (0)

Memory space:
explicitly-manageable memory resource

(i.e., “place to put data”)

DRAM

NVRAM

On-Package
Memory

Network-on-Chip

Core Core

External Network
Interface

...

Core Core...

Acc.
On-Package

Memory

External Interconnect

Node

NUMA Domain

NUMA Domain

Accelerator

April 25, 2024 18/50

Memory spaces (1)

Important concept: Memory spaces

Every view stores its data in a memory space set at compile time.

▶ View<double***,MemorySpace> data(...);

▶ Available memory spaces:
HostSpace, CudaSpace, CudaUVMSpace, ... more
Portable: SharedSpace, SharedHostPinnedSpace

▶ Each execution space has a default memory space, which is
used if Space provided is actually an execution space

▶ If no Space is provided, the view’s data resides in the default
memory space of the default execution space.

// Equivalent:

View <double*> a("A",N);

View <double*,DefaultExecutionSpace :: memory_space > b("B",N);

April 25, 2024 18/50

Memory spaces (1)

Important concept: Memory spaces

Every view stores its data in a memory space set at compile time.

▶ View<double***,MemorySpace> data(...);

▶ Available memory spaces:
HostSpace, CudaSpace, CudaUVMSpace, ... more
Portable: SharedSpace, SharedHostPinnedSpace

▶ Each execution space has a default memory space, which is
used if Space provided is actually an execution space

▶ If no Space is provided, the view’s data resides in the default
memory space of the default execution space.

// Equivalent:

View <double*> a("A",N);

View <double*,DefaultExecutionSpace :: memory_space > b("B",N);

April 25, 2024 18/50

Memory spaces (1)

Important concept: Memory spaces

Every view stores its data in a memory space set at compile time.

▶ View<double***,MemorySpace> data(...);

▶ Available memory spaces:
HostSpace, CudaSpace, CudaUVMSpace, ... more
Portable: SharedSpace, SharedHostPinnedSpace

▶ Each execution space has a default memory space, which is
used if Space provided is actually an execution space

▶ If no Space is provided, the view’s data resides in the default
memory space of the default execution space.

// Equivalent:

View <double*> a("A",N);

View <double*,DefaultExecutionSpace :: memory_space > b("B",N);

April 25, 2024 18/50

Memory spaces (1)

Important concept: Memory spaces

Every view stores its data in a memory space set at compile time.

▶ View<double***,MemorySpace> data(...);

▶ Available memory spaces:
HostSpace, CudaSpace, CudaUVMSpace, ... more
Portable: SharedSpace, SharedHostPinnedSpace

▶ Each execution space has a default memory space, which is
used if Space provided is actually an execution space

▶ If no Space is provided, the view’s data resides in the default
memory space of the default execution space.

// Equivalent:

View <double*> a("A",N);

View <double*,DefaultExecutionSpace :: memory_space > b("B",N);

April 25, 2024 18/50

Memory spaces (1)

Important concept: Memory spaces

Every view stores its data in a memory space set at compile time.

▶ View<double***,MemorySpace> data(...);

▶ Available memory spaces:
HostSpace, CudaSpace, CudaUVMSpace, ... more
Portable: SharedSpace, SharedHostPinnedSpace

▶ Each execution space has a default memory space, which is
used if Space provided is actually an execution space

▶ If no Space is provided, the view’s data resides in the default
memory space of the default execution space.

// Equivalent:

View <double*> a("A",N);

View <double*,DefaultExecutionSpace :: memory_space > b("B",N);

April 25, 2024 18/50

Memory spaces (1)

Important concept: Memory spaces

Every view stores its data in a memory space set at compile time.

▶ View<double***,MemorySpace> data(...);

▶ Available memory spaces:
HostSpace, CudaSpace, CudaUVMSpace, ... more
Portable: SharedSpace, SharedHostPinnedSpace

▶ Each execution space has a default memory space, which is
used if Space provided is actually an execution space

▶ If no Space is provided, the view’s data resides in the default
memory space of the default execution space.

// Equivalent:

View <double*> a("A",N);

View <double*,DefaultExecutionSpace :: memory_space > b("B",N);

April 25, 2024 19/50

Memory spaces (2)

Example: HostSpace

View <double**, HostSpace> hostView (... constructor arguments ...);

Example: CudaSpace

View <double**, CudaSpace> view (... constructor arguments ...);

April 25, 2024 19/50

Memory spaces (2)

Example: HostSpace

View <double**, HostSpace> hostView (... constructor arguments ...);

Example: CudaSpace

View <double**, CudaSpace> view (... constructor arguments ...);

April 25, 2024 20/50

Execution and Memory spaces (0)

Anatomy of a kernel launch:

1. User declares views, allocating.

2. User instantiates a functor with
views.

3. User launches
parallel something:
▶ Functor is copied to the device.
▶ Kernel is run.
▶ Copy of functor on the device is

released.

#define KL KOKKOS_LAMBDA

View <int*, Cuda > dev (...);

parallel_for("Label",N,

KL (int i) {

dev(i) = ...;

});

Note: no deep copies of array data are performed;
views are like pointers.

April 25, 2024 21/50

Execution and Memory spaces (1)

Example: one view

#define KL KOKKOS_LAMBDA

View <int*, Cuda > dev;

parallel_for("Label",N,

KL (int i) {

dev(i) = ...;

});

April 25, 2024 22/50

Execution and Memory spaces (2)

Example: two views

#define KL KOKKOS_LAMBDA

View <int*, Cuda > dev;

View <int*, Host > host;

parallel_for("Label",N,

KL (int i) {

dev(i) = ...;

host(i) = ...;

});

April 25, 2024 22/50

Execution and Memory spaces (2)

Example: two views

#define KL KOKKOS_LAMBDA

View <int*, Cuda > dev;

View <int*, Host > host;

parallel_for("Label",N,

KL (int i) {

dev(i) = ...;

host(i) = ...;

});

April 25, 2024 23/50

Execution and Memory spaces (3)

Example (redux): summing an array with the GPU

(failed) Attempt 1: View lives in CudaSpace

View <double*, CudaSpace> array("array", size);

for (int64_t i = 0; i < size; ++i) {

array(i) = ... read from file ...

}

double sum = 0;

Kokkos :: parallel_reduce("Label",

RangePolicy < Cuda >(0, size),

KOKKOS_LAMBDA (const int64_t index , double & valueToUpdate) {

valueToUpdate += array(index);

},

sum);

April 25, 2024 23/50

Execution and Memory spaces (3)

Example (redux): summing an array with the GPU

(failed) Attempt 1: View lives in CudaSpace

View <double*, CudaSpace> array("array", size);

for (int64_t i = 0; i < size; ++i) {

array(i) = ... read from file ...

}

double sum = 0;

Kokkos :: parallel_reduce("Label",

RangePolicy < Cuda >(0, size),

KOKKOS_LAMBDA (const int64_t index , double & valueToUpdate) {

valueToUpdate += array(index);

},

sum);

fault

April 25, 2024 24/50

Execution and Memory spaces (4)

Example (redux): summing an array with the GPU

(failed) Attempt 2: View lives in HostSpace

View <double*, HostSpace> array("array", size);

for (int64_t i = 0; i < size; ++i) {

array(i) = ... read from file ...

}

double sum = 0;

Kokkos :: parallel_reduce("Label",

RangePolicy < Cuda >(0, size),

KOKKOS_LAMBDA (const int64_t index , double & valueToUpdate) {

valueToUpdate += array(index);

},

sum);

What’s the solution?
▶ CudaUVMSpace

▶ CudaHostPinnedSpace (skipping)

▶ Mirroring

April 25, 2024 24/50

Execution and Memory spaces (4)

Example (redux): summing an array with the GPU

(failed) Attempt 2: View lives in HostSpace

View <double*, HostSpace> array("array", size);

for (int64_t i = 0; i < size; ++i) {

array(i) = ... read from file ...

}

double sum = 0;

Kokkos :: parallel_reduce("Label",

RangePolicy < Cuda >(0, size),

KOKKOS_LAMBDA (const int64_t index , double & valueToUpdate) {

valueToUpdate += array(index);

},

sum);

What’s the solution?
▶ CudaUVMSpace

▶ CudaHostPinnedSpace (skipping)

▶ Mirroring

illegal access

April 25, 2024 24/50

Execution and Memory spaces (4)

Example (redux): summing an array with the GPU

(failed) Attempt 2: View lives in HostSpace

View <double*, HostSpace> array("array", size);

for (int64_t i = 0; i < size; ++i) {

array(i) = ... read from file ...

}

double sum = 0;

Kokkos :: parallel_reduce("Label",

RangePolicy < Cuda >(0, size),

KOKKOS_LAMBDA (const int64_t index , double & valueToUpdate) {

valueToUpdate += array(index);

},

sum);

What’s the solution?
▶ CudaUVMSpace

▶ CudaHostPinnedSpace (skipping)

▶ Mirroring

illegal access

April 25, 2024 25/50

Execution and Memory spaces (5)

CudaUVMSpace

#define KL KOKKOS_LAMBDA

View <double*,

CudaUVMSpace> array;

array = ... from file ...

double sum = 0;

parallel_reduce("Label", N,

KL (int i, double & d) {

d += array(i);

},

sum);

Cuda runtime automatically handles data movement,
at a performance hit.

April 25, 2024 26/50

Views, Spaces, and Mirrors

Important concept: Mirrors

Mirrors are views of equivalent arrays residing in possibly different
memory spaces.

Mirroring schematic

using view_type = Kokkos ::View <double**, Space >;
view_type view (...);

view_type ::HostMirror hostView =

Kokkos : : c r e a t e m i r r o r v i ew (view);

April 25, 2024 26/50

Views, Spaces, and Mirrors

Important concept: Mirrors

Mirrors are views of equivalent arrays residing in possibly different
memory spaces.

Mirroring schematic

using view_type = Kokkos ::View <double**, Space >;
view_type view (...);

view_type ::HostMirror hostView =

Kokkos : : c r e a t e m i r r o r v i ew (view);

April 25, 2024 27/50

Mirroring pattern

1. Create a view’s array in some memory space.
using view_type = Kokkos ::View <double*, Space >;
view_type view (...);

2. Create hostView, a mirror of the view’s array residing in the
host memory space.

view_type ::HostMirror hostView =

Kokkos : : c r e a t e m i r r o r v i ew (view);

3. Populate hostView on the host (from file, etc.).

4. Deep copy hostView’s array to view’s array.
Kokkos :: deep copy (view, hostView);

5. Launch a kernel processing the view’s array.
Kokkos :: parallel_for("Label",

RangePolicy < Space >(0, size),

KOKKOS_LAMBDA (...) { use and change view });

6. If needed, deep copy the view’s updated array back to the
hostView’s array to write file, etc.

Kokkos :: deep copy (hostView , view);

April 25, 2024 27/50

Mirroring pattern

1. Create a view’s array in some memory space.
using view_type = Kokkos ::View <double*, Space >;
view_type view (...);

2. Create hostView, a mirror of the view’s array residing in the
host memory space.

view_type ::HostMirror hostView =

Kokkos : : c r e a t e m i r r o r v i ew (view);

3. Populate hostView on the host (from file, etc.).

4. Deep copy hostView’s array to view’s array.
Kokkos :: deep copy (view, hostView);

5. Launch a kernel processing the view’s array.
Kokkos :: parallel_for("Label",

RangePolicy < Space >(0, size),

KOKKOS_LAMBDA (...) { use and change view });

6. If needed, deep copy the view’s updated array back to the
hostView’s array to write file, etc.

Kokkos :: deep copy (hostView , view);

April 25, 2024 27/50

Mirroring pattern

1. Create a view’s array in some memory space.
using view_type = Kokkos ::View <double*, Space >;
view_type view (...);

2. Create hostView, a mirror of the view’s array residing in the
host memory space.

view_type ::HostMirror hostView =

Kokkos : : c r e a t e m i r r o r v i ew (view);

3. Populate hostView on the host (from file, etc.).

4. Deep copy hostView’s array to view’s array.
Kokkos :: deep copy (view, hostView);

5. Launch a kernel processing the view’s array.
Kokkos :: parallel_for("Label",

RangePolicy < Space >(0, size),

KOKKOS_LAMBDA (...) { use and change view });

6. If needed, deep copy the view’s updated array back to the
hostView’s array to write file, etc.

Kokkos :: deep copy (hostView , view);

April 25, 2024 27/50

Mirroring pattern

1. Create a view’s array in some memory space.
using view_type = Kokkos ::View <double*, Space >;
view_type view (...);

2. Create hostView, a mirror of the view’s array residing in the
host memory space.

view_type ::HostMirror hostView =

Kokkos : : c r e a t e m i r r o r v i ew (view);

3. Populate hostView on the host (from file, etc.).

4. Deep copy hostView’s array to view’s array.
Kokkos :: deep copy (view, hostView);

5. Launch a kernel processing the view’s array.
Kokkos :: parallel_for("Label",

RangePolicy < Space >(0, size),

KOKKOS_LAMBDA (...) { use and change view });

6. If needed, deep copy the view’s updated array back to the
hostView’s array to write file, etc.

Kokkos :: deep copy (hostView , view);

April 25, 2024 27/50

Mirroring pattern

1. Create a view’s array in some memory space.
using view_type = Kokkos ::View <double*, Space >;
view_type view (...);

2. Create hostView, a mirror of the view’s array residing in the
host memory space.

view_type ::HostMirror hostView =

Kokkos : : c r e a t e m i r r o r v i ew (view);

3. Populate hostView on the host (from file, etc.).

4. Deep copy hostView’s array to view’s array.
Kokkos :: deep copy (view, hostView);

5. Launch a kernel processing the view’s array.
Kokkos :: parallel_for("Label",

RangePolicy < Space >(0, size),

KOKKOS_LAMBDA (...) { use and change view });

6. If needed, deep copy the view’s updated array back to the
hostView’s array to write file, etc.

Kokkos :: deep copy (hostView , view);

April 25, 2024 27/50

Mirroring pattern

1. Create a view’s array in some memory space.
using view_type = Kokkos ::View <double*, Space >;
view_type view (...);

2. Create hostView, a mirror of the view’s array residing in the
host memory space.

view_type ::HostMirror hostView =

Kokkos : : c r e a t e m i r r o r v i ew (view);

3. Populate hostView on the host (from file, etc.).

4. Deep copy hostView’s array to view’s array.
Kokkos :: deep copy (view, hostView);

5. Launch a kernel processing the view’s array.
Kokkos :: parallel_for("Label",

RangePolicy < Space >(0, size),

KOKKOS_LAMBDA (...) { use and change view });

6. If needed, deep copy the view’s updated array back to the
hostView’s array to write file, etc.

Kokkos :: deep copy (hostView , view);

April 25, 2024 28/50

Mirrors of Views in HostSpace

What if the View is in HostSpace too? Does it make a copy?

using ViewType = Kokkos ::View <double*, Space >;
ViewType view("test", 10);

ViewType ::HostMirror hostView =

Kokkos : : c r e a t e m i r r o r v i ew (view);

▶ create mirror view allocates data only if the host process
cannot access view’s data, otherwise hostView references the
same data.

▶ create mirror always allocates data.

▶ Reminder: Kokkos never performs a hidden deep copy.

April 25, 2024 29/50

Exercise #3: Flat Parallelism on the GPU, Views and Host Mirrors
Details:

▶ Location: Exercises/03/Begin/

▶ Add HostMirror Views and deep copy

▶ Make sure you use the correct view in initialization and Kernel

Compile for CPU

cmake -B build -openmp -DKokkos_ENABLE_OPENMP=ON

cmake --build build -openmp

Compile for GPU (we do not need UVM anymore)

cmake -B build -cuda -DKokkos_ENABLE_CUDA=ON

cmake --build build -cuda

Run on GPU

./build -cuda /03 _Exercise -S 26

Things to try:

▶ Vary problem size and number of rows (-S ...; -N ...)

▶ Change number of repeats (-nrepeat ...)

▶ Compare behavior of CPU vs GPU

April 25, 2024 30/50

View and Spaces Section Summary

▶ Data is stored in Views that are “pointers” to
multi-dimensional arrays residing in memory spaces.

▶ Views abstract away platform-dependent allocation,
(automatic) deallocation, and access.

▶ Heterogeneous nodes have one or more memory spaces.

▶ Mirroring is used for performant access to views in host and
device memory.

▶ Heterogeneous nodes have one or more execution spaces.

▶ You control where parallel code is run by a template
parameter on the execution policy, or by compile-time
selection of the default execution space.

April 25, 2024 31/50

Managing memory access patterns
for performance portability

Learning objectives:

▶ How the View’s Layout parameter controls data layout.

▶ How memory access patterns result from Kokkos mapping
parallel work indices and layout of multidimensional array data

▶ Why memory access patterns and layouts have such a
performance impact (caching and coalescing).

▶ See a concrete example of the performance of various memory
configurations.

April 25, 2024 32/50

Example: inner product (0)

Kokkos :: parallel_reduce("Label",

RangePolicy <ExecutionSpace >(0, N),

KOKKOS_LAMBDA (const size_t row , double & valueToUpdate) {

double thisRowsSum = 0;

for (size_t entry = 0; entry < M; ++entry) {

thisRowsSum += A(row , entry) * x(entry);

}

valueToUpdate += y(row) * thisRowsSum;

}, result);

Driving question: How should A be laid out in memory?

April 25, 2024 32/50

Example: inner product (0)

Kokkos :: parallel_reduce("Label",

RangePolicy <ExecutionSpace >(0, N),

KOKKOS_LAMBDA (const size_t row , double & valueToUpdate) {

double thisRowsSum = 0;

for (size_t entry = 0; entry < M; ++entry) {

thisRowsSum += A(row , entry) * x(entry);

}

valueToUpdate += y(row) * thisRowsSum;

}, result);

Driving question: How should A be laid out in memory?

April 25, 2024 33/50

Example: inner product (1)

Layout is the mapping of multi-index to memory:

LayoutLeft

in 2D, “column-major”

LayoutRight

in 2D, “row-major”

April 25, 2024 34/50

Layout

Important concept: Layout

Every View has a multidimensional array Layout set at
compile-time.

View <double ***, Layout , Space > name (...);

▶ Most-common layouts are LayoutLeft and LayoutRight.
LayoutLeft: left-most index is stride 1.
LayoutRight: right-most index is stride 1.

▶ If no layout specified, default for that memory space is used.
LayoutLeft for CudaSpace, LayoutRight for HostSpace.

▶ Layouts are extensible: ≈ 50 lines

▶ Advanced layouts: LayoutStride, LayoutTiled, ...

April 25, 2024 34/50

Layout

Important concept: Layout

Every View has a multidimensional array Layout set at
compile-time.

View <double ***, Layout , Space > name (...);

▶ Most-common layouts are LayoutLeft and LayoutRight.
LayoutLeft: left-most index is stride 1.
LayoutRight: right-most index is stride 1.

▶ If no layout specified, default for that memory space is used.
LayoutLeft for CudaSpace, LayoutRight for HostSpace.

▶ Layouts are extensible: ≈ 50 lines

▶ Advanced layouts: LayoutStride, LayoutTiled, ...

April 25, 2024 35/50

Exercise #4: Inner Product, Flat Parallelism

Details:

▶ Location: Exercises/04/Begin/

▶ Replace ‘‘N’’ in parallel dispatch with RangePolicy<ExecSpace>

▶ Add MemSpace to all Views and Layout to A

▶ Experiment with the combinations of ExecSpace, Layout to view
performance

Things to try:

▶ Vary problem size and number of rows (-S ...; -N ...)

▶ Change number of repeats (-nrepeat ...)

▶ Compare behavior of CPU vs GPU

▶ Compare using UVM vs not using UVM on GPUs

▶ Check what happens if MemSpace and ExecSpace do not match.

April 25, 2024 36/50

Exercise #4: Inner Product, Flat Parallelism

 0

 100

 200

 300

 400

 500

 600

 1 10 100 1000 10000 100000 1x106 1x107 1x108 1x109

B
an

dw
id

th
 (

G
B

/s
)

Number of Rows (N)

<y|Ax> Exercise 04 (Layout) Fixed Size
KNL: Xeon Phi 68c HSW: Dual Xeon Haswell 2x16c Pascal60: Nvidia GPU

HSW Left
HSW Right
KNL Left
KNL Right
Pascal60 Left
Pascal60 Right

Why?

April 25, 2024 37/50

Caching and coalescing (0)

Thread independence:

operator ()(int index , double & valueToUpdate) const {

const double d = _data(index);

valueToUpdate += d;

}

Question: once a thread reads d, does it need to wait?

▶ CPU threads are independent.
▶ i.e., threads may execute at any rate.

▶ GPU threads execute synchronized.
▶ i.e., threads in groups can/must execute instructions together.

In particular, all threads in a group (warp or wavefront) must
finished their loads before any thread can move on.

So, how many cache lines must be fetched before threads can
move on?

April 25, 2024 37/50

Caching and coalescing (0)

Thread independence:

operator ()(int index , double & valueToUpdate) const {

const double d = _data(index);

valueToUpdate += d;

}

Question: once a thread reads d, does it need to wait?
▶ CPU threads are independent.

▶ i.e., threads may execute at any rate.

▶ GPU threads execute synchronized.
▶ i.e., threads in groups can/must execute instructions together.

In particular, all threads in a group (warp or wavefront) must
finished their loads before any thread can move on.

So, how many cache lines must be fetched before threads can
move on?

April 25, 2024 37/50

Caching and coalescing (0)

Thread independence:

operator ()(int index , double & valueToUpdate) const {

const double d = _data(index);

valueToUpdate += d;

}

Question: once a thread reads d, does it need to wait?
▶ CPU threads are independent.

▶ i.e., threads may execute at any rate.

▶ GPU threads execute synchronized.
▶ i.e., threads in groups can/must execute instructions together.

In particular, all threads in a group (warp or wavefront) must
finished their loads before any thread can move on.

So, how many cache lines must be fetched before threads can
move on?

April 25, 2024 37/50

Caching and coalescing (0)

Thread independence:

operator ()(int index , double & valueToUpdate) const {

const double d = _data(index);

valueToUpdate += d;

}

Question: once a thread reads d, does it need to wait?
▶ CPU threads are independent.

▶ i.e., threads may execute at any rate.

▶ GPU threads execute synchronized.
▶ i.e., threads in groups can/must execute instructions together.

In particular, all threads in a group (warp or wavefront) must
finished their loads before any thread can move on.

So, how many cache lines must be fetched before threads can
move on?

April 25, 2024 37/50

Caching and coalescing (0)

Thread independence:

operator ()(int index , double & valueToUpdate) const {

const double d = _data(index);

valueToUpdate += d;

}

Question: once a thread reads d, does it need to wait?
▶ CPU threads are independent.

▶ i.e., threads may execute at any rate.

▶ GPU threads execute synchronized.
▶ i.e., threads in groups can/must execute instructions together.

In particular, all threads in a group (warp or wavefront) must
finished their loads before any thread can move on.

So, how many cache lines must be fetched before threads can
move on?

April 25, 2024 38/50

Caching and coalescing (1)

CPUs: few (independent) cores with separate caches:

GPUs: many (synchronized) cores with a shared cache:

April 25, 2024 38/50

Caching and coalescing (1)

CPUs: few (independent) cores with separate caches:

GPUs: many (synchronized) cores with a shared cache:

April 25, 2024 39/50

Caching and coalescing (2)

Important point

For performance, accesses to views in HostSpace must be cached,
while access to views in CudaSpace must be coalesced.

Caching: if thread t’s current access is at position i,
thread t’s next access should be at position i+1.

Coalescing: if thread t’s current access is at position i,
thread t+1’s current access should be at position i+1.

Warning

Uncoalesced access on GPUs and non-cached loads on CPUs
greatly reduces performance (can be 10X)

April 25, 2024 39/50

Caching and coalescing (2)

Important point

For performance, accesses to views in HostSpace must be cached,
while access to views in CudaSpace must be coalesced.

Caching: if thread t’s current access is at position i,
thread t’s next access should be at position i+1.

Coalescing: if thread t’s current access is at position i,
thread t+1’s current access should be at position i+1.

Warning

Uncoalesced access on GPUs and non-cached loads on CPUs
greatly reduces performance (can be 10X)

April 25, 2024 40/50

Mapping indices to cores (0)

Consider the array summation example:

View <double*, Space> data("data", size);

... populate data ...

double sum = 0;

Kokkos :: parallel_reduce("Label",

RangePolicy < Space >(0, size),

KOKKOS_LAMBDA (const size_t index , double & valueToUpdate) {

valueToUpdate += data(index);

},

sum);

Question: is this cached (for OpenMP) and coalesced (for Cuda)?

Given P threads, which indices do we want thread 0 to handle?

Contiguous:
0, 1, 2, ..., N/P

Strided:
0, N/P, 2*N/P, ...

CPU GPU
Why?

April 25, 2024 40/50

Mapping indices to cores (0)

Consider the array summation example:

View <double*, Space> data("data", size);

... populate data ...

double sum = 0;

Kokkos :: parallel_reduce("Label",

RangePolicy < Space >(0, size),

KOKKOS_LAMBDA (const size_t index , double & valueToUpdate) {

valueToUpdate += data(index);

},

sum);

Question: is this cached (for OpenMP) and coalesced (for Cuda)?

Given P threads, which indices do we want thread 0 to handle?

Contiguous:
0, 1, 2, ..., N/P

Strided:
0, N/P, 2*N/P, ...

CPU GPU
Why?

April 25, 2024 40/50

Mapping indices to cores (0)

Consider the array summation example:

View <double*, Space> data("data", size);

... populate data ...

double sum = 0;

Kokkos :: parallel_reduce("Label",

RangePolicy < Space >(0, size),

KOKKOS_LAMBDA (const size_t index , double & valueToUpdate) {

valueToUpdate += data(index);

},

sum);

Question: is this cached (for OpenMP) and coalesced (for Cuda)?

Given P threads, which indices do we want thread 0 to handle?

Contiguous:
0, 1, 2, ..., N/P

Strided:
0, N/P, 2*N/P, ...

CPU GPU
Why?

April 25, 2024 41/50

Mapping indices to cores (1)

Iterating for the execution space:

operator ()(int index , double & valueToUpdate) const {

const double d = _data(index);

valueToUpdate += d;

}

As users we don’t control how indices are mapped to threads, so
how do we achieve good memory access?

Important point

Kokkos maps indices to cores in contiguous chunks on CPU
execution spaces, and strided for Cuda.

April 25, 2024 41/50

Mapping indices to cores (1)

Iterating for the execution space:

operator ()(int index , double & valueToUpdate) const {

const double d = _data(index);

valueToUpdate += d;

}

As users we don’t control how indices are mapped to threads, so
how do we achieve good memory access?

Important point

Kokkos maps indices to cores in contiguous chunks on CPU
execution spaces, and strided for Cuda.

April 25, 2024 42/50

Mapping indices to cores (2)

Rule of Thumb

Kokkos index mapping and default layouts provide efficient access
if iteration indices correspond to the first index of array.

Example:

View <double ***, ...> view (...);

...

Kokkos :: parallel_for("Label", ... ,

KOKKOS_LAMBDA (int workIndex) {

...

view (..., ... , workIndex) = ...;

view (... , workIndex , ...) = ...;

view(workIndex , ... , ...) = ...;

});

...

April 25, 2024 43/50

Example: inner product (2)

Important point

Performant memory access is achieved by Kokkos mapping parallel
work indices and multidimensional array layout appropriately for
the architecture.

Analysis: row-major (LayoutRight)

▶ HostSpace: cached (good)

▶ CudaSpace: uncoalesced (bad)

April 25, 2024 43/50

Example: inner product (2)

Important point

Performant memory access is achieved by Kokkos mapping parallel
work indices and multidimensional array layout appropriately for
the architecture.

Analysis: row-major (LayoutRight)

▶ HostSpace: cached (good)

▶ CudaSpace: uncoalesced (bad)

April 25, 2024 43/50

Example: inner product (2)

Important point

Performant memory access is achieved by Kokkos mapping parallel
work indices and multidimensional array layout appropriately for
the architecture.

Analysis: row-major (LayoutRight)

▶ HostSpace: cached (good)

▶ CudaSpace: uncoalesced (bad)

April 25, 2024 44/50

Example: inner product (3)

Important point

Performant memory access is achieved by Kokkos mapping parallel
work indices and multidimensional array layout optimally for the
architecture.

Analysis: column-major (LayoutLeft)

▶ HostSpace: uncached (bad)

▶ CudaSpace: coalesced (good)

April 25, 2024 44/50

Example: inner product (3)

Important point

Performant memory access is achieved by Kokkos mapping parallel
work indices and multidimensional array layout optimally for the
architecture.

Analysis: column-major (LayoutLeft)

▶ HostSpace: uncached (bad)

▶ CudaSpace: coalesced (good)

April 25, 2024 45/50

Example: inner product (4)

Analysis: Kokkos architecture-dependent

View <double**, Execut ionSpace > A(N, M);

parallel_for(RangePolicy < Execut ionSpace >(0, N),

... thisRowsSum += A(j, i) * x(i);

(a) OpenMP (b) Cuda

▶ HostSpace: cached (good)

▶ CudaSpace: coalesced (good)

April 25, 2024 46/50

Example: inner product (5)

 0

 100

 200

 300

 400

 500

 600

 1 10 100 1000 10000 100000 1x106 1x107 1x108 1x109

B
an

dw
id

th
 (

G
B

/s
)

Number of Rows (N)

<y|Ax> Exercise 04 (Layout) Fixed Size
KNL: Xeon Phi 68c HSW: Dual Xeon Haswell 2x16c Pascal60: Nvidia GPU

HSW Left
HSW Right
KNL Left
KNL Right
Pascal60 Left
Pascal60 Right

coalesced

cached

uncoalesced

cached
uncached

April 25, 2024 47/50

Memory Access Pattern Summary

▶ Every View has a Layout set at compile-time through a
template parameter.

▶ LayoutRight and LayoutLeft are most common.

▶ Views in HostSpace default to LayoutRight and Views in
CudaSpace default to LayoutLeft.

▶ Layouts are extensible and flexible.

▶ For performance, memory access patterns must result in
caching on a CPU and coalescing on a GPU.

▶ Kokkos maps parallel work indices and multidimensional array
layout for performance portable memory access patterns.

▶ There is nothing in OpenMP, OpenACC, or OpenCL to manage
layouts.
⇒ You’ll need multiple versions of code or pay the
performance penalty.

April 25, 2024 48/50

Module 2: Summary

Kokkos View

▶ Multi Dimensional Array.

▶ Compile and Runtime Dimensions.

▶ Reference counted like a std::shared ptr to an array.

Kokkos ::View <int*[5]> a("A", N);

a(3,2) = 7;

Execution Spaces

▶ Parallel operations execute in a specified Execution Space

▶ Can be controlled via template argument to Execution Policy

▶ If no Execution Space is provided use
DefaultExecutionSpace

// Equivalent:

parallel_for("L", N, functor);

parallel_for("L",

RangePolicy <DefaultExecutionSpace >(0, N), functor);

April 25, 2024 49/50

Module 2: Summary

Memory Spaces

▶ Kokkos Views store data in Memory Spaces.

▶ Provided as template parameter.

▶ If no Memory Space is given, use
Kokkos::DefaultExecutionSpace::memory space.

▶ deep copy is used to transfer data: no hidden memory copies
by Kokkos.

View <int*, CudaSpace > a("A", M);

// View in host memory to load from file

auto h_a = create_mirror_view(a);

load_from_file(h_a);

// Copy

deep_copy(a,h_a);

April 25, 2024 50/50

Module 2: Summary

Layouts

▶ Kokkos Views use an index mapping to memory determined
by a Layout.

▶ Provided as template parameter.

▶ If no Layout is given, derived from the execution space
associated with the memory space.

▶ Defaults are good if you parallelize over left most index!

View <int**, LayoutLeft > a("A", N, M);

View <int**, LayoutRight > b("B", N, M);

parallel_for("Fill", N, KOKKOS_LAMBDA(int i) {

for(int j = 0; j < M; j++) {

a(i,j) = i * 1000 + j; // coalesced

b(i,j) = i * 1000 + j; // cached

}

});

