
Scratch memory

Learning objectives:

▶ Understand concept of team and thread private scratch pads

▶ Understand how scratch memory can reduce global memory accesses

▶ Recognize when to use scratch memory

▶ Understand how to use scratch memory and when barriers are necessary

April 24, 2024 2/18

Types of Scratch Space Uses
Two Levels of Scratch Space

▶ Level 0 is limited in size but fast.

▶ Level 1 allows larger allocations but is equivalent to High Bandwidth Memory in
latency and bandwidth.

Team or Thread private memory

▶ Typically used for per work-item temporary storage.

▶ Advantage over pre-allocated memory is aggregate size scales with number of
threads, not number of work-items.

Manually Managed Cache

▶ Explicitly cache frequently used data.

▶ Exposes hardware specific on-core scratch space (e.g. NVIDIA GPU Shared
Memory).

Now: Discuss Manually Managed Cache Usecase.

April 24, 2024 2/18

Types of Scratch Space Uses
Two Levels of Scratch Space

▶ Level 0 is limited in size but fast.

▶ Level 1 allows larger allocations but is equivalent to High Bandwidth Memory in
latency and bandwidth.

Team or Thread private memory

▶ Typically used for per work-item temporary storage.

▶ Advantage over pre-allocated memory is aggregate size scales with number of
threads, not number of work-items.

Manually Managed Cache

▶ Explicitly cache frequently used data.

▶ Exposes hardware specific on-core scratch space (e.g. NVIDIA GPU Shared
Memory).

Now: Discuss Manually Managed Cache Usecase.

April 24, 2024 3/18

Example: contractDataFieldScalar (1)

One slice of contractDataFieldScalar:

for (qp = 0; qp < numberOfQPs; ++qp) {

total = 0;

for (i = 0; i < vectorSize; ++i) {

total += A(qp, i) * B(i);

}

result(qp) = total;

}

April 24, 2024 4/18

Example: contractDataFieldScalar (2)

contractDataFieldScalar:

for (element = 0; element < numberOfElements; ++ element) {

for (qp = 0; qp < numberOfQPs; ++qp) {

total = 0;

for (i = 0; i < vectorSize; ++i) {

total += A(element , qp, i) * B(element , i);

}

result(element , qp) = total;

}

}

April 24, 2024 5/18

Example: contractDataFieldScalar (3)

Parallelization approaches:

▶ Each thread handles an element.
Threads: numberOfElements

▶ Each thread handles a qp.
Threads: numberOfElements * numberOfQPs

▶ Each thread handles an i.
Threads: numElements * numQPs * vectorSize

April 24, 2024 5/18

Example: contractDataFieldScalar (3)

Parallelization approaches:

▶ Each thread handles an element.
Threads: numberOfElements

▶ Each thread handles a qp.
Threads: numberOfElements * numberOfQPs

▶ Each thread handles an i.
Threads: numElements * numQPs * vectorSize

April 24, 2024 5/18

Example: contractDataFieldScalar (3)

Parallelization approaches:

▶ Each thread handles an element.
Threads: numberOfElements

▶ Each thread handles a qp.
Threads: numberOfElements * numberOfQPs

▶ Each thread handles an i.
Threads: numElements * numQPs * vectorSize

April 24, 2024 5/18

Example: contractDataFieldScalar (3)

Parallelization approaches:

▶ Each thread handles an element.
Threads: numberOfElements

▶ Each thread handles a qp.
Threads: numberOfElements * numberOfQPs

▶ Each thread handles an i.
Threads: numElements * numQPs * vectorSize

April 24, 2024 6/18

Example: contractDataFieldScalar (4)

Teams kernel: Each team handles an element

operator ()(member_type teamMember) {

int element = teamMember.league_rank ();

parallel_for(

TeamThreadRange(teamMember , numberOfQPs),

[=] (int qp) {

double total = 0;

for (int i = 0; i < vectorSize; ++i) {

total += A(element , qp, i) * B(element , i);

}

result(element , qp) = total;

});

}

April 24, 2024 6/18

Example: contractDataFieldScalar (4)

Teams kernel: Each team handles an element

operator ()(member_type teamMember) {

int element = teamMember.league_rank ();

parallel_for(

TeamThreadRange(teamMember , numberOfQPs),

[=] (int qp) {

double total = 0;

for (int i = 0; i < vectorSize; ++i) {

total += A(element , qp, i) * B(element , i);

}

result(element , qp) = total;

});

} Idea: reduce global memory reads by caching B

April 24, 2024 7/18

Scratch memory (1)

Each team has access to a “scratch pad”.

April 24, 2024 8/18

Scratch memory (2)

Scratch memory (scratch pad) as manual cache:

▶ Accessing data in (level 0) scratch memory is (usually) much faster than global
memory.

▶ GPUs have separate, dedicated, small, low-latency scratch memories (NOT
subject to coalescing requirements).

▶ CPUs don’t have special hardware, but programming with scratch memory results
in cache-aware memory access patterns.

▶ Roughly, it’s like a user-managed L1 cache.

Important concept

When members of a team read the same data multiple times, it’s better to load the
data into scratch memory and read from there.

April 24, 2024 8/18

Scratch memory (2)

Scratch memory (scratch pad) as manual cache:

▶ Accessing data in (level 0) scratch memory is (usually) much faster than global
memory.

▶ GPUs have separate, dedicated, small, low-latency scratch memories (NOT
subject to coalescing requirements).

▶ CPUs don’t have special hardware, but programming with scratch memory results
in cache-aware memory access patterns.

▶ Roughly, it’s like a user-managed L1 cache.

Important concept

When members of a team read the same data multiple times, it’s better to load the
data into scratch memory and read from there.

April 24, 2024 9/18

Scratch memory (3)

Scratch memory for temporary per work-item storage:

▶ Scenario: Algorithm requires temporary workspace of size W.

▶ Without scratch memory: pre-allocate space for N work-items of size N x W.

▶ With scratch memory: Kokkos pre-allocates space for each Team or Thread of
size T x W.

▶ PerThread and PerTeam scratch can be used concurrently.

▶ Level 0 and Level 1 scratch memory can be used concurrently.

Important concept

If an algorithm requires temporary workspace for each work-item, then use Kokkos’
scratch memory.

April 24, 2024 9/18

Scratch memory (3)

Scratch memory for temporary per work-item storage:

▶ Scenario: Algorithm requires temporary workspace of size W.

▶ Without scratch memory: pre-allocate space for N work-items of size N x W.

▶ With scratch memory: Kokkos pre-allocates space for each Team or Thread of
size T x W.

▶ PerThread and PerTeam scratch can be used concurrently.

▶ Level 0 and Level 1 scratch memory can be used concurrently.

Important concept

If an algorithm requires temporary workspace for each work-item, then use Kokkos’
scratch memory.

April 24, 2024 10/18

API Details

Allocating scratch in different levels:

int level = 1; // valid values 0,1

policy.set_scratch_size(level ,PerTeam(bytes));

Using PerThread, PerTeam or both:

policy.set_scratch_size(level ,PerTeam(bytes));

policy.set_scratch_size(level ,PerThread(bytes));

policy.set_scratch_size(level ,PerTeam(bytes1),

PerThread(bytes2));

Using both levels of scratch:

policy.set_scratch_size (0,PerTeam(bytes0))

.set_scratch_size (1,PerThread(bytes1));

April 24, 2024 10/18

API Details

Allocating scratch in different levels:

int level = 1; // valid values 0,1

policy.set_scratch_size(level ,PerTeam(bytes));

Using PerThread, PerTeam or both:

policy.set_scratch_size(level ,PerTeam(bytes));

policy.set_scratch_size(level ,PerThread(bytes));

policy.set_scratch_size(level ,PerTeam(bytes1),

PerThread(bytes2));

Using both levels of scratch:

policy.set_scratch_size (0,PerTeam(bytes0))

.set_scratch_size (1,PerThread(bytes1));

April 24, 2024 10/18

API Details

Allocating scratch in different levels:

int level = 1; // valid values 0,1

policy.set_scratch_size(level ,PerTeam(bytes));

Using PerThread, PerTeam or both:

policy.set_scratch_size(level ,PerTeam(bytes));

policy.set_scratch_size(level ,PerThread(bytes));

policy.set_scratch_size(level ,PerTeam(bytes1),

PerThread(bytes2));

Using both levels of scratch:

policy.set_scratch_size (0,PerTeam(bytes0))

.set_scratch_size (1,PerThread(bytes1));

April 24, 2024 11/18

Kokkos Basics (1)
To use scratch memory, you need to:

1. Tell Kokkos how much scratch memory you’ll need.

2. Make scratch memory views inside your kernels.

TeamPolicy <ExecutionSpace > policy(numberOfTeams , teamSize);

// Define a scratch memory view type

using ScratchPadView =

View <double*,ExecutionSpace :: scratch_memory_space >;

// Compute how much scratch memory (in bytes) is needed

size_t bytes = ScratchPadView :: shmem_size(vectorSize);

// Tell the policy how much scratch memory is needed

int level = 0;

parallel_for(policy.set_scratch_size(level , PerTeam(bytes)),

KOKKOS_LAMBDA (const member_type& teamMember) {

// Create a view from the pre -existing scratch memory

ScratchPadView scratch(teamMember.team_scratch(level),

vectorSize);

});

April 24, 2024 11/18

Kokkos Basics (1)
To use scratch memory, you need to:

1. Tell Kokkos how much scratch memory you’ll need.

2. Make scratch memory views inside your kernels.
TeamPolicy <ExecutionSpace > policy(numberOfTeams , teamSize);

// Define a scratch memory view type

using ScratchPadView =

View <double*,ExecutionSpace :: scratch_memory_space >;

// Compute how much scratch memory (in bytes) is needed

size_t bytes = ScratchPadView :: shmem_size(vectorSize);

// Tell the policy how much scratch memory is needed

int level = 0;

parallel_for(policy.set_scratch_size(level , PerTeam(bytes)),

KOKKOS_LAMBDA (const member_type& teamMember) {

// Create a view from the pre -existing scratch memory

ScratchPadView scratch(teamMember.team_scratch(level),

vectorSize);

});

April 24, 2024 12/18

Example: contractDataFieldScalar (5)

Kernel outline for teams with scratch memory:

operator ()(member_type teamMember) {

ScratchPadView scratch(teamMember.team_scratch (0),

vectorSize);

// TODO: load slice of B into scratch

parallel_for(

TeamThreadRange(teamMember , numberOfQPs),

[=] (int qp) {

double total = 0;

for (int i = 0; i < vectorSize; ++i) {

// total += A(element , qp , i) * B(element , i);

total += A(element , qp, i) * scratch(i);

}

result(element , qp) = total;

});

}

April 24, 2024 13/18

Example: contractDataFieldScalar (6)

How to populate the scratch memory?
▶ One thread loads it all?

if (teamMember.team_rank () == 0) {

for (int i = 0; i < vectorSize; ++i) {

scratch(i) = B(element , i);

}

}

▶

scratch(team_rank) = B(element , team_rank);

▶

parallel_for(

TeamVectorRange(teamMember , vectorSize),

[=] (int i) {

scratch(i) = B(element , i);

});

April 24, 2024 13/18

Example: contractDataFieldScalar (6)

How to populate the scratch memory?
▶ One thread loads it all? Serial

if (teamMember.team_rank () == 0) {

for (int i = 0; i < vectorSize; ++i) {

scratch(i) = B(element , i);

}

}

▶ Each thread loads one entry?

scratch(team_rank) = B(element , team_rank);

▶

parallel_for(

TeamVectorRange(teamMember , vectorSize),

[=] (int i) {

scratch(i) = B(element , i);

});

April 24, 2024 13/18

Example: contractDataFieldScalar (6)

How to populate the scratch memory?
▶ One thread loads it all? Serial

if (teamMember.team_rank () == 0) {

for (int i = 0; i < vectorSize; ++i) {

scratch(i) = B(element , i);

}

}

▶ Each thread loads one entry? teamSize ̸= vectorSize

scratch(team_rank) = B(element , team_rank);

▶ TeamVectorRange

parallel_for(

TeamVectorRange(teamMember , vectorSize),

[=] (int i) {

scratch(i) = B(element , i);

});

April 24, 2024 13/18

Example: contractDataFieldScalar (6)

How to populate the scratch memory?
▶ One thread loads it all? Serial

if (teamMember.team_rank () == 0) {

for (int i = 0; i < vectorSize; ++i) {

scratch(i) = B(element , i);

}

}

▶ Each thread loads one entry? teamSize ̸= vectorSize

scratch(team_rank) = B(element , team_rank);

▶ TeamVectorRange

parallel_for(

TeamVectorRange(teamMember , vectorSize),

[=] (int i) {

scratch(i) = B(element , i);

});

April 24, 2024 14/18

Example: contractDataFieldScalar (7)

(incomplete) Kernel for teams with scratch memory:

operator ()(member_type teamMember) {

ScratchPadView scratch (...);

parallel_for(TeamVectorRange(teamMember , vectorSize),

[=] (int i) {

scratch(i) = B(element , i);

});

// TODO: fix a problem at this location

parallel_for(TeamThreadRange(teamMember , numberOfQPs),

[=] (int qp) {

double total = 0;

for (int i = 0; i < vectorSize; ++i) {

total += A(element , qp, i) * scratch(i);

}

result(element , qp) = total;

});

}

Problem: threads may start to use scratch before all threads are done loading.

April 24, 2024 14/18

Example: contractDataFieldScalar (7)

(incomplete) Kernel for teams with scratch memory:

operator ()(member_type teamMember) {

ScratchPadView scratch (...);

parallel_for(TeamVectorRange(teamMember , vectorSize),

[=] (int i) {

scratch(i) = B(element , i);

});

// TODO: fix a problem at this location

parallel_for(TeamThreadRange(teamMember , numberOfQPs),

[=] (int qp) {

double total = 0;

for (int i = 0; i < vectorSize; ++i) {

total += A(element , qp, i) * scratch(i);

}

result(element , qp) = total;

});

}

Problem: threads may start to use scratch before all threads are done loading.

April 24, 2024 15/18

Example: contractDataFieldScalar (8)
Kernel for teams with scratch memory:

operator ()(member_type teamMember) {

ScratchPadView scratch (...);

parallel_for(ThreadVectorRange(teamMember , vectorSize),

[=] (int i) {

scratch(i) = B(element , i);

});

teamMember . t e am ba r r i e r () ;

parallel_for(TeamThreadRange(teamMember , numberOfQPs),

[=] (int qp) {

double total = 0;

for (int i = 0; i < vectorSize; ++i) {

total += A(element , qp, i) * scratch(i);

}

result(element , qp) = total;

});

}

April 24, 2024 16/18

Exercise: Scratch Memory

Use Scratch Memory to explicitly cache the x-vector for each element.

Details:

▶ Location: Exercises/team scratch memory/

▶ Create a scratch view

▶ Fill the scratch view in parallel using a TeamVectorRange

Things to try:

▶ Vary problem size and number of rows (-S ...; -N ...)

▶ Compare behavior with Exercises/team vector loop/

▶ Compare behavior of CPU vs GPU

April 24, 2024 17/18

Performance

 0

 100

 200

 300

 400

 500

 600

 1 10 100 1000 10000 100000 1x106

B
an

dw
id

th
 (

G
B

/s
)

Number of Rows (N)

Exercise 07 (Scratch Memory) Fixed Size
KNL: Xeon Phi 68c HSW: Dual Xeon Haswell 2x16c Pascal60: Nvidia GPU

06 HSW
07 HSW
06 KNL
07 KNL
06 Pascal60
07 Pascal60

April 24, 2024 18/18

Section Summary

▶ Scratch Memory can be use with the TeamPolicy to provide thread or team
private memory.

▶ Usecase: per work-item temporary storage or manual caching.

▶ Scratch memory exposes on-chip user managed caches (e.g. on NVIDIA GPUs)

▶ The size must be determined before launching a kernel.

▶ Two levels are available: small/fast (level 0) and large/slow (level 1).

