Intel® Distribution for Python*
Scaling HPC and Big Data
Sergey Maidanov
Software Engineering Manager for
Intel® Distribution for Python*
Quick Facts

• Released Intel® Distribution for Python* in Sep’16
 • Out-of-the-box experience in HPC and Data Science, pip and conda support
 • Near-native performance for Linear Algebra, initial optimizations in FFT and NumExpr
 • Introduced TBB for threading composability, random_intel for fast RNG, pyDAAL

• Update release in Oct’16
 • Greater compatibility with Anaconda*
 • Performance and usability enhancements
 • Neural networks support in pyDAAL
 • Docker images

• Update 2 release in Feb’17
 • Memory optimizations in NumPy
 • Umath optimizations in NumPy
 • NumPy and SciPy FFT improvements
 • Scikit-learn optimizations
 • New pyDAAL features
What Problems We Solve: Scalable Performance

Make Python usable beyond prototyping environment by scaling out to HPC and Big Data environments
What Problems We Solve: Ease of Use

“Any articles I found on your site that related to actually using the MKL for compiling something were overly technical. I couldn't figure out what the heck some of the things were doing or talking about.” — Intel® Parallel Studio

2015 Beta Survey Response
Why Yet Another Python Distribution?

Configuration Info: apt/atlas: installed with apt-get, Ubuntu 16.10, python 3.5.2, numpy 1.11.0, scipy 0.17.0; pip/openblas: installed with pip, Ubuntu 16.10, python 3.5.2, numpy 1.11.1, scipy 0.18.0; Intel Python: Intel Distribution for Python 2017. Hardware: Xeon: Intel Xeon CPU E5-2698 v3 @ 2.30 GHz (2 sockets, 16 cores each, HT=off), 64 GB of RAM, 8 DIMMS of 8GB@2133MHz; Xeon Phi: Intel Xeon Phi™ CPU 7210 1.30 GHz, 96 GB of RAM, 6 DIMMS of 16GB@1200MHz

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. * Other brands and names are the property of their respective owners. Benchmark Source: Intel Corporation

Optimization Notice: Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice revision #20110804.
Scaling To HPC & Big Data Environments

• Hardware and software efficiency crucial in production (Perf/Watt, etc.)
• Efficiency = Parallelism
 – Instruction Level Parallelism with effective memory access patterns
 – SIMD
 – Multi-threading
 – Multi-node

Roofline Performance Model*

Intel® Advanced Vector Extensions

Evolution of Multicore

* Roofline Performance Model https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/
Intel® Xeon Phi™ x200 (Knights Landing) processor

Architectural Enhancements = ManyX Performance

Based on Intel® Atom™ core (based on Silvermont microarchitecture) with Enhancements for HPC

- 14nm process technology
- 4 Threads/Core
- Deep Out-of-Order Buffers
- Gather/Scatter
- Better Branch Prediction
- Higher Cache Bandwidth
 ... and many more

Core

- 60+ cores
- 3+ Teraflops
- 3x Single-Thread
- 2-D Core Mesh
- Cache Coherency

Server Processor

- High-Performance Memory
 - Over 5x STREAM vs. DDR4
 - Up to 16 GB at launch
- NUMA support

Integrated Fabric

DDR4

Capacity Comparable to Intel® Xeon® Processors
From SSE or AVX to AVX-512: Setting Right Expectations

- 2x vector length is typically <2x performance boost
 - Applications have scalar sections, so are subject to Amdahl’s Law
 - Some applications are limited by access to data
 - If throughput bound, MCDRAM may help
 - If latency bound, prefetching may help
 - Loops may need larger trip counts to get full benefit

- Gains from newly vectorized loops can be large

- Application hotspots may change significantly between AVX and AVX512 codes
Efficiency = Parallelism

- CPython as interpreter inhibits parallelism but...
- ... Overall Python tools evolved far toward unlocking parallelism

Packages (numpy*, scipy*, scikit-learn*, etc.) accelerated with MKL, DAAL, IPP

Composable multi-threading with Intel® TBB and Dask*

Multi-node parallelism with mpi4py* accelerated with Intel® MPI*

Language extensions for vectorization & multi-threading (Cython*, Numba*)

Integration with Big Data platforms and Machine Learning frameworks (pySpark*, Theano*, TensorFlow*, etc.)

Mixed language profiling with Intel® VTune™ Amplifier
Out-of-the-box performance with accelerated numerical packages
Widespread optimizations in NumPy & SciPy FFT

- Up to 60x improvement in FFT for the range of different use cases in NumPy and SciPy
Memory optimizations for NumPy arrays

- Optimized array allocation/reallocation, copy/move
- Memory alignment and data copy vectorization & threading

![Memory optimizations for NumPy](image)

Intel(R) Distribution for Python* 2017 Update 2 vs. PSF

- **bench_io.Copy.time_memcpy-complex128**
- **bench_io.CopyTo.time_copyto**
- **bench_io.CopyTo.time_copyto_sparse**

![Intel Theano speedup](image)

Intel Theano speedup due to memory optimizations for NumPy
Optimizations for NumPy umath functions

- Optimized arithmetic/transcendental expressions on NumPy arrays
 - Up to 400x better performance due to vectorization & threading
 - 180x speedup for Black Scholes formula due to umath optimizations
Choosing right alternative for the best parallelism
Benchmark: Black Scholes Formula

- Problem: Evaluate fair European call- and put-option price, V_{call} and V_{put}, for underlying stock
- Model Parameters:
 - S_0 – present underlying stock price
 - X – strike price
 - σ - stock volatility
 - r – risk-free rate
 - T - maturity
- In practice one needs to evaluate many (n_{opt}) options for different parameters

$$V_{\text{call}} = S_0 \cdot \text{CDF}(d_1) - e^{-rT} \cdot X \cdot \text{CDF}(d_2)$$

$$V_{\text{put}} = e^{-rT} \cdot X \cdot \text{CDF}(-d_2) - S_0 \cdot \text{CDF}(-d_1)$$

$$d_1 = \frac{\ln \left(\frac{S_0}{X} \right) + \left(r + \frac{\sigma^2}{2} \right) T}{\sigma \sqrt{T}}$$

$$d_2 = \frac{\ln \left(\frac{S_0}{X} \right) + \left(r - \frac{\sigma^2}{2} \right) T}{\sigma \sqrt{T}}$$

Good performance benchmark for stressing VPU and memory
Variant 1: Plain Python

```python
6 def black_scholes ( nopt, price, strike, t, rate, vol, call, put ):
7     mr = -rate
8     sig_sig_two = vol * vol * 2
9     for i in range(nopt):
10        P = float( price [i] )
11        S = strike [i]
12        T = t [i]
13        a = log(P / S)
14        b = T * mr
15        z = T * sig_sig_two
16        c = 0.25 * z
17        y = 1/sqrt(z)
18        w1 = (a - b + c) * y
19        w2 = (a - b - c) * y
20        d1 = 0.5 + 0.5 * erf(w1)
21        d2 = 0.5 + 0.5 * erf(w2)
22        Se = exp(b) * S
23        call [i] = P * d1 - Se * d2
24        put [i] = call [i] - P + Se
```
Variant 2: NumPy* arrays and Umath functions

```python
def black_scholes ( nopt, price, strike, t, rate, vol ):
    mr = -rate
    sig_sig_two = vol * vol * 2

    P = price
    S = strike
    T = t

    a = log(P / S)
    b = T * mr

    z = T * sig_sig_two
    c = 0.25 * z
    y = invsqrt(z)

    w1 = (a - b + c) * y
    w2 = (a - b - c) * y

    d1 = 0.5 + 0.5 * erf(w1)
    d2 = 0.5 + 0.5 * erf(w2)

    Se = exp(b) * S

    call = P * d1 - Se * d2
    put = call - P + Se

    return call, put
```
Variant 3: NumExpr* (proxy for Umath implementation)

```
import numexpr as ne

def black_scholes ( nopt, price, strike, t, rate, vol ):
    mr = -rate
    sig_sig_two = vol * vol * 2
    P = price
    S = strike
    T = t
    a = ne.evaluate("log(P / S )")
    b = ne.evaluate("T * mr ")
    z = ne.evaluate("T * sig_sig_two ")
    c = ne.evaluate("0.25 * z ")
    y = ne.evaluate("1/sqrt(z) ")
    w1 = ne.evaluate("(a - b + c) * y ")
    w2 = ne.evaluate("(a - b - c) * y ")
    d1 = ne.evaluate("0.5 + 0.5 * erf(w1) ")
    d2 = ne.evaluate("0.5 + 0.5 * erf(w2) ")
    Se = ne.evaluate("exp(b) * S ")
    call = ne.evaluate("P * d1 - Se * d2 ")
    put = ne.evaluate("call - P + Se ")
    return call, put

ne.set_num_threads(ne.detect_number_of_cores())
base_bs_erf.run("Numexpr", black_scholes)
```
Variant 4: NumExpr* (most performant)

```python
import base_bs_erf
import numexpr as ne

def black_scholes(nopt, price, strike, t, rate, vol):
    mr = -rate
    sig_sig_two = vol * vol * 2
    P = price
    S = strike
    T = t

    call = ne.evaluate("P * (0.5 + 0.5 * erf((log(P / S) - T * mr +" + "0.25 * T * sig_sig_two) * 1/sqrt(T * sig_sig_two))) - S * exp(T * mr)" + "+" + "+ (0.5 + 0.5 * erf((log(P / S) - T * mr - 0.25 * T * sig_sig_two) *" + "1/sqrt(T * sig_sig_two)))")
    put = ne.evaluate("call - P + S * exp(T * mr)")

    return call, put
```
Variant 5: Cython*

```python
# In order to release GIL for a parallel loop, the code in this block cannot
# manipulate Python objects in any way.
@boundscheck(False)
@bndobj(False)
@nsfmr(True)
@initializecheck(False)
def black_scholes(int nopt,
    double[:]: price,
    double[:]: strike,
    double[:]: t,
    double: rate,
    double: vol,
    double[:]: call,
    double[:]: put):

cdef int i

cdef double P, S, a, b, z, c, S0, y, T

cdef double d1, d2, w1, w2

cdef double mr = -rate

cdef double sig_sig_two = vol * vol * 2

with nogil, parallel():
    for i in range(nopt):
        P = price[i]
        S = strike[i]
        T = t[i]
        a = log(P / S)
        b = T * mr
        z = T * sig_sig_two
        c = 0.25 * z
        y = 1/sqrt(2(z))
        w1 = (a - b + c) * y
        w2 = (a - b - c) * y
        d1 = 0.5 + 0.5 * erf(w1)
        d2 = 0.5 + 0.5 * erf(w2)
        Se = exp(b) * S
        call[i] = P * d1 - Se * d2
        put[i] = call[i] - P + Se
```

3400 MOPS
Variant 5: Native C/C++ vs. Python variants

- C/C++: 4800 MOPS
- Cython: 3400 MOPS
- NumExpr: 1200 MOPS
- Numpy: 440 MOPS
Composable parallelism
Composable Multi-Threading With Intel® TBB

- Amhdal’s law suggests extracting parallelism at all levels
- If software components do not coordinate on threads use it may lead to oversubscription
- Intel TBB dynamically balances HW thread loads and effectively manages oversubscription
- Intel engineers extended Cpython* and Numba* thread pools with support of Intel® TBB

>python -m TBB myapp.py
Composable Multi-Threading Example: Batch QR Performance

```
import time, numpy as np
x = np.random.random((100000, 2000))
t0 = time.time()
q, r = np.linalg.qr(x)
test = np.allclose(x, q.dot(r))
assert(test)
print(time.time() - t0)
```

```
import time, dask, dask.array as da
x = da.random.random((100000, 2000), chunks=(10000, 2000))
t0 = time.time()
q, r = da.linalg.qr(x)
test = da.all(da.isclose(x, q.dot(r)))
assert(test.compute()) # threaded
print(time.time() - t0)
```

System info: 32x Intel(R) Xeon(R) CPU E5-2698 v3 @ 2.30GHz, disabled HT, 64GB RAM; Intel(R) MKL 2017.0 Beta Update 1 Intel(R) 64 architecture, Intel(R) AVX2; Intel(R) TBB 4.4.4; Ubuntu 14.04.4 LTS; Dask 0.10.0; Numpy 1.11.0.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. * Other brands and names are the property of their respective owners. Benchmark Source: Intel Corporation

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice revision #20110804.
Machine Learning
Skt-Learn* Optimizations With Intel® MKL

Speedups of Scikit-Learn Benchmarks

Intel® Distribution for Python* 2017 Update 1 vs. system Python & NumPy/Scikit-Learn

Effect of optimizations in NumPy* and SciPy*

- Approximately 0x
- Fast K-means
- GLM
- GLM net
- LASSO
- Lasso path
- Least angle regression, OpenMP
- Non-negative matrix factorization
- Regression by SGD
- Sampling without replacement
- SVD

System info: 32x Intel® Xeon® CPU E5-2698 v3 @ 2.30GHz, disabled HT, 64GB RAM; Intel® Distribution for Python* 2017 Gold; Intel® MKL 2017.0.0; Ubuntu 14.04.4 LTS; Numpy 1.11.1; scikit-learn 0.17.1.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. * Other brands and names are the property of their respective owners. Benchmark Source: Intel Corporation

Optimization Notice: Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice revision #20110804.
More Scikit-Learn* optimizations with pyDAAL

• Accelerated key Machine Learning algorithms with Intel DAAL
 • Distances, K-means, Linear & Ridge Regression, PCA
 • Up to 160x speedup on top of MKL initial optimizations
Why you may need pyDAAL in addition to Scikit-learn
Ideas Behind Intel® DAAL: Heterogeneous Analytics

- Data is different, data analytics pipeline is the same
- Data transfer between devices is costly, protocols are different
 - Need data analysis proximity to Data Source
 - Need data analysis proximity to Client
 - Data Source device ≠ Client device
 - Requires abstraction from communication protocols

Pre-processing
Transformation
Analysis
Modeling
Validation
Decision Making

Data Source Edge
Compute (Server, Desktop, ...)
Client Edge

Decompression, Filtering, Normalization
Aggregation, Dimension Reduction
Summary Statistics Clustering, etc.
Machine Learning (Training) Parameter Estimation Simulation
Hypothesis testing Model errors
Forecasting Decision Trees, etc.
Ideas Behind Intel® DAAL: Effective Data Management, Streaming and Distributed Processing

<table>
<thead>
<tr>
<th>Big Data Attributes</th>
<th>Computational Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distributed across different devices</td>
<td>• Distributed processing with communication-avoiding algorithms</td>
</tr>
<tr>
<td>Huge data size not fitting into device memory</td>
<td>• Distributed processing</td>
</tr>
<tr>
<td></td>
<td>• Streaming algorithms</td>
</tr>
<tr>
<td>Data coming in time</td>
<td>• Data buffering & asynchronous computing</td>
</tr>
<tr>
<td></td>
<td>• Streaming algorithms</td>
</tr>
<tr>
<td>Non-homogeneous data</td>
<td>• Categorical→Numeric (counters, histograms, etc)</td>
</tr>
<tr>
<td></td>
<td>• Homogeneous numeric data kernels</td>
</tr>
<tr>
<td></td>
<td>• Conversions, Indexing, Repacking</td>
</tr>
<tr>
<td>Sparse/Missing/Noisy data</td>
<td>• Sparse data algorithms</td>
</tr>
<tr>
<td></td>
<td>• Recovery methods (bootstraping, outlier correction)</td>
</tr>
</tbody>
</table>
Ideas Behind Intel® DAAL: Storage & Compute

- Optimizing storage ≠ optimizing compute
 - Storage: efficient non-homogeneous data encoding for smaller footprint and faster retrieval
 - Compute: efficient memory layout, homogeneous data, contiguous access
 - Easier manageable for traditional HPC, much more challenging for Big Data
Ideas Behind Intel® DAAL: Languages & Platforms

DAAL has multiple programming language bindings

- C++ – ultimate performance for real-time analytics with DAAL
- Java*/Scala* – easy integration with Big Data platforms (Hadoop*, Spark*, etc)
- Python* – advanced analytics for data scientist
Performance profiling with Intel® VTune™ Amplifier
• Right tool for high performance application profiling at all levels
 • Function-level and line-level hotspot analysis, down to disassembly
 • Call stack analysis
 • Low overhead
 • Mixed-language, multi-threaded application analysis
 • Advanced hardware event analysis for native codes (Cython, C++, Fortran) for cache misses, branch misprediction, etc.

<table>
<thead>
<tr>
<th>Feature</th>
<th>cProfile</th>
<th>Line_profiler</th>
<th>Intel® VTune™ Amplifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profiling technology</td>
<td>Event</td>
<td>Instrumentation</td>
<td>Sampling, hardware events</td>
</tr>
<tr>
<td>Analysis granularity</td>
<td>Function-level</td>
<td>Line-level</td>
<td>Line-level, call stack, time windows, hardware events</td>
</tr>
<tr>
<td>Intrusiveness</td>
<td>Medium (1.3-5x)</td>
<td>High (4-10x)</td>
<td>Low (1.05-1.3x)</td>
</tr>
<tr>
<td>Mixed language programs</td>
<td>Python</td>
<td>Python</td>
<td>Python, Cython, C++, Fortran</td>
</tr>
</tbody>
</table>
1. Get a quick snapshot

Thread Concurrency Histogram

This histogram represents a breakdown of the Elapsed Time. It visualizes the percentage of the wall time the specific number of threads were considered running if they are either actually running on a CPU or are in the runnable state in the OS scheduler. Essentially, Thread Concurrency that were not waiting. Thread Concurrency may be higher than CPU usage if threads are in the runnable state and not consuming CPU time.
Intel® VTune™ Amplifier XE
2. Identify Hotspots

- Hottest Functions
- Hottest Call Stack
3. Look for common patterns

- Coarse Grain Locks
- High Lock Contention
- Load Imbalance

Low Concurrency
Intel® VTune™ Amplifier XE
Navigation through your code

Adjust Data Grouping
- Function - Call Stack
- Module - Function - Call Stack
- Source File - Function - Call Stack
- Thread - Function - Call Stack

Double Click Function to View Source

Click [+] for Call Stack

Filter by Timeline Selection (or by Grid Selection)

Tuning Opportunities Shown in Pink. Hover for Tips
• Intel created the Python* distribution for out-of-the-box performance and scalability on Intel® Architecture
 – With minimum to no code modification Python aims to scale
• Multiple technologies applied to unlock parallelism at all levels
 – Numerical libraries, libraries for parallelism, Python code compilation/JITing, profiling
 – Enhancing mature Python packages and bringing new technologies, e.g. pyDAAL, TBB
• With multiple choices available Python developer needs to be conscious what will scale best
 – Intel® VTune™ Amplifier helps making conscious decisions

Intel Distribution for Python is free!
Commercial support included for Intel® Parallel Studio XE customers!
Easy to install with Anaconda* https://anaconda.org/intel/