(intel®) Look Inside”

Optimizing a Seismic Imaging Code on Intel Xeon Phi

Interesting Insights on How to Optimize for Cache on Xeon vs Xeon Phi

ISC15 Workshop/BOF/ Booth for Intel® Xeon Phi™ Processors Submission

Background

- TORTIA: A Reverse Time Migration (RTM) code:

» Developed in-house at Tullow Qil plc (Oil & Gas exploration)

> An explicit FD scheme of variable spatial order, and first order in time, to model wave
propagation in the three isotropy cases

» Based on an unconventional rotated staggered grid (RSG) method [1]

> We describe cache-blocking methods that provide interesting insights on Xeon vs Xeon
Phi optimizations

0.
DB: image_slices780.bov 4,
Time:10

P
. 2z Z40epth) (x10*3 m}

- Verticals/Domains:
» Energy, Geophysics

&

an 2

g g
ol
L]
B OEF R B

5
i

- Modes of Execution:
> Thisin an MPI + OpenMP code (with SIMD directives too) \
> Use a small pure OpenMP benchmark code for the investigation *

- Tools Used:
» C/C++, OpenMP 4.0, MPI, Intel Vector Advisor, VTune, Roofline Model

[1] G. O’Brien, 3D rotated and standard staggered finite-difference solutions to Biot's poroelastic wave equations: Stability condition and
dispersion analysis, Geophysics 75(4) (2010).

ISC15 Workshop/BOF/ Booth for Intel® Xeon Phi™ Processors Submission

TORTIA Kernel

*Each grid point (vertex) holds 1 vector quantity and 1 scalar quantity.
*Use the scalars to update the vectors, and vice versa, iteratively.
*To update the ‘pivot’ (target vertex), stencil specifies relative positions of vertices

that will contribute.

4 #pragma omp for)
for (int i=0; i<Ni; i++)
for (int j=0; j<Nj; j++) {
#pragma omp simd
for (int k=0; k<Nk, k++) { - .
// Load stencil elements 3D stencil offsets (indirect)

#pragma unroll w/
for(int n=0; n<Nstencil; n++)

stencil[n] = s[i][jl[k + offsets[n]];
// FD computation
calcUpdate(stencil); // inline vector function
vi[i][j]l[k] += A * stencil[@] + B * stencil[1];
v2[i][j]1[k] += C * stencil[2] + C * stencil[3];

_} J

* The stencil is incomplete for pivots near domain extremities.

« Additional external vertex values are required. This arises in:
1. Physical boundary conditions at the edge of the grid.
2. ‘Halo’ zones around MPI sub-domains.
3. Shared zones in multi-threaded decompositions.
4

Overlap regions of adjacent cache blocks.

ISC15 Workshop/BOF/ Booth for Intel® Xeon Phi™ Processors Submission

RSG Stencil

Theoretical data reuse

7 N
e As iteration proceeds along the fastest varying dimension the

stencil sweeps out an extruded ‘X’ shape through the grid.
« Vertices contribute twice as the stencil sweeps through k.

e This delivers 1 cache reuse per vertex.
\. J

e N
As iteration proceeds in the next dimension we can imagine the extruded

stencil in figure 2 sweeping to the right.
¢ Again, vertices are hit twice as we sweep through j.
e The data volume processed between these 2 hits is O(NKk).

¢ Cache reuse may occur if Nk is small enough not to evict data too soon.
\\ J

(o Finally, we sweep through the last dimension.)
+Again there are 2 hits per vertex, separated by O(Nk*Nj) other updates.
*This is typically too much data to fit in cache.

*Tackling the grid in ‘blocks’, we can limit the amount of data processed
between reuse opportunities, effectively reducing Nk and Nj.

* Blocking in both the k and j dimensions could yield benefits.

« Blocking in k reduces the unit-stride sweep, reducing performance.

* Modified prefetching could possibly alleviate this.

* Blocking in 'j’ should yields performance benefits.

_

Stencil sweeps through k, making an extruded ‘X’ shape
through the grid.

Cache blocking limits active grid size to increase cache
reuse. The block size in i, j and k can be tuned.

ISC15 Workshop/BOF/ Booth for Intel® Xeon Phi™ Processors Submission

Boundary layers

("« Outer layers (halo) of the block facilitate consistency at block)

boundaries. Potential
e These halos are accessed sub-optimally.

¢ Hence, the surface to volume ratio of the cache block must be
minimized.

¢ This would motivate cubic blocks filling LLC.

e However, this can disrupt other optimizations (e.g. long ‘k’ sweep).)

(Shared caches outperform exclusive caches (of same aggregate \
size), by avoiding data replication and associated bandwidth
overhead.

eThreads may reuse data loaded by others, but contend for
bandwidth.

eFor optimal reuse, regardless of sharing, we must always aim to
maximise the locality of a limited data pool. This means blocking.
eMulti-threading over i and j is somewhat analogous to blocking,

by starting new iterations of outer loops before all earlier

iterations complete (and evict data).

eHence, multi-threading with a shared cache has similarities with

@ocking in an exclusive cache /

(intel ‘ 5
ISC15 Workshop/BOF/ Booth for Intel® Xeon Phi™ Processors Submission

Inter-thread data reuse

Data flow
17 LoadsA by 10 threads

Stencil I
2D projection .

X 10 threads
= 160 total

16 ‘k-columns

JG 4 2 0 0 0-=#uses

160 toEl uses
9.4 uses per load
Optimal: 16 uses per load
Efficiency: 59%

General case: N threads, stencil diameter D.

Totaluses=2*N*D

Total loads=N+D -1

Optimal usage: 2*D uses per load

Efficiency = (Total uses) / (Total loads) / (Optimal usage)
=N/(N+D-1)

* Efficiency improves asymptotically with increasing N.

* More threads with shared cache gives better performance.

* Inter-thread synchronised coherent locality replaces intra-thread spatial locality and spares
cache space

» Correct OpenMP scheduling is the key

ISC15 Workshop/BOF/ Booth for Intel® Xeon Phi™ Processors Submission

Roofline models

Rooflines Xeon E5-2660 v2 (lvy Bridge) Rooflines Xeon Phi 5110P (Knights Corner)
e Peak (FMA) @ Peak (no FMA) e Peak (FMA) e Peak (N0 FMA) s No cache e |nfinite cache
s NO cache e [nfinite cache
20487 =Initial == _=QOptimised e 4 data reuse e= e|nitial == «CPUoptimised =« ¢« -« J-tiling
2048.0 T T T
1024.0 1024.0
3120 [' ' ' 512.0

256.0

128.0 |

94
7T =

64.0

GFlops/s
GFlops/s

32.0

16.0
8.0 T L 8.0 I
0.26 3.75
0.125 0.25 0.5 1 2 4 8 16 32 64 128 0.125 0!.’2‘526 0.5 11'17 2 3 45 8 16 32 64 128
Flops/Byte Flops/Byte

Red and green cache “walls” enclose the domain and the roof covers it

Algorithm still memory-bound, even at the right-wall level (i.e., with maximum effective use of cache)
Actual performance proves effective reuse of data

Best performance is without tiling in I (thread synchronised locality) and K (vectorisation)

Xeon
» 55% of (infinite cache) peak performance =» not much more to gain

Xeon Phi
 Extra tiling in J yields some more performance (same tiling doesn't affect the CPU performance)
» 24% of (infinite cache) peak performance
« 77% of equivalent 4x data reuse (ie 2 dimensions out of 3 fully cached)
« Current limit is L2-L2 cache traffic =» maybe some hope here @ ‘ vé
ISC15 Workshop/BOF/ Booth for Intel® Xeon Phi™ Processors Submission

Conclusion

We used an uncommon method to maximize data reuse, based on synchronised
locality across threads and shared cache
> OpenMP scheduling central to the method: “dynamic” or “static,1"” does the trick

Extremely effective on Xeon, thanks to L3 shared cache

Somew hat effective on Xeon Phi, due to per-core L2 private caches
> 4 threads per core share the L2 cache
> Alot of L2-L2 data transfers across cores
> Same impact of this traffic as would have had memory to L2 data transfers

Overall relative performance increase due to memory optimisations here is
significant

> 1.22x on Xeon

> 1.46x on Xeon Phi

Exact same code base for both architectures
> One single fully standard / portable source code

Opens up the possibility of genuine production accelerated code on KNL

inteD) | 8

ISC15 Workshop/BOF/ Booth for Intel® Xeon Phi™ Processors Submission

Supplementary material

ISC15 Workshop/BOF/ Booth for Intel® Xeon Phi™ Processors Submission

Memory-related Workshop

@teD | 10

ISC15 Workshop/BOF/ Booth for Intel® Xeon Phi™ Processors Submission

Memory Latency on KNC

(«) Elapsed Time: 9.411s

Clockticlks: 1.068.655,000,000
Instructions Retired: 172,120,000,000
CPl Rate: 6.209

The CFI may be too high. This could be caused by issues such as memory stalls, instruction starvation, branch misprediction or long latency instructions. Explore
the other hardware-related metrics to identify what is causing high CPI.

#® Cache Usage:

L1 Misses: 8,848,950.000
L1 Hit Ratio: 0.887

The L1 cache hit ratio should be as close to 1 as possible. A low value for this ratio may mean that the application does not use the cache effectively.
Estimated Latency Impact: 97.021

and Frames

Grouping: ‘ Function / Call Stack

¥ | | CPI Cache Usage
Function / Call Stack Clockticks - | Instructions Retired) T T
I | Rate | 11 Misses | L1 HitRatio Estimated Latency Impact

: | 267.975.000.000| _36.480.000.000 ik 7.344 e 0B

B updateStressACOUSTICLoop=(int)1> (175,500,000,000 30,510,000,000 5.752 1,883,900,000 0.863

B updateStressACOUSTICLoop=<{int)0> [175.375.000,000 25,955,000,000 5.855 1.895,375.000 0.859 73.786
B updateStressACOUSTICLoop=<{int)2> (l 171,595,000,000 29,295,000,000 5.857 1,850,275,000 0.859 73.804
B computeFd<(int)3> [23,200,000,000 1.905,000,000 12178 313,500,000 0.770 64 735
B computeFd<(int)1=> [l 14,335,000,000 1,235,000,000 11.807 276,000,000 0718 44,719
P computeFd<(int)0> [14,130,000,000 1.635.000,000 8679 290,500,000 0.791 39 437
4 computeFd<(int)2> [13,782,000,000 1,630,000,000 8437 273,025,000 0.807 40,531

[)[Import thunk _ kmpc_for_static_init_4] (| [#] 0 1
D[Import thunk _ kmpc_for_static_fini] {| 15,000,000
[)[Import thunk _ kmpc_barrier] [l 10,000,000 ;

ISC15 Workshop/BOF/ Booth for Intel® Xeon Phi™ Processors Submission

Memory Bandwidth on KNC

Intel VTune Amplifier XE 2015

& Bandwidth Bandwidth viewpoint (change)

& Bottom-up
" Sos Ruler Area

7 Region Instance

[J 7 OpenMP Barrier-to-Barrier Segment
Bandwidth, GB/sec

[¥] Wk Bandwidth, GB/sec

[¥] " Reard Bandwidth, GB/sec

% \Write Bandwidth, GB/sec
CPU Time

Muk CPU Time

5100ms 5150ms 5200ms 5250ms 5300ms 5350ms S5400ms 5450ms

[elel lellel] 4850ms 4300ms 4950ms 5000ms 5050ms

56.9
ackage_0 379
f e 19.0

Bandwidth, GB/sec

ISC15 Workshop/BOF/ Booth for Intel® Xeon Phi™ Processors Submission

Memory Latency on IB

@ unfilled Pipeline Slots (Stalls):
@ Back-End Bound: 0.743

ldentify slots where no uOps are delivered due to a lack of required resources for accepting more UOps in the back-end of the pipeline. Back-end metrics describe
a portion of the pipeline where the out-of-order scheduler dispatches ready uCps into their respective execution units, and, once completed, these ups get
retired according to program order. Stalls due to data-cache misses or stalls due to the overloaded divider unit are examples of back-end bound issues.

Memory Bound: 0.371

This metric shows how memory subsystem issues affect the performance. Memory Bound measures a fraction of cycles where pipeline could be stalled
due to demand load or store instructions. This accounts mainly for incomplete in-flight memory demand loads that coincide with execution starvation in
addition to less common cases where stores could imply back-pressure on the pipeline.

@ L1 Bound: 0.282

This metric shows how often machine was stalled without missing the L1 data cache. The L1 cache typically has the shortest latency. However, in
certain cases like loads blocked on older stores, a load might suffer a high latency even though it is being satisfied by the L1.
DTLE Overhead: 0.038

Loads Elocked by Store Forwarding: 0000

Split Loads: 0.041
4K Aliasing: 0.024
@ L3 Bound: 0.121

This metric shows how often CPU was stalled on L2 cache, or contended with a sibling Core. Avoiding cache misses (L2 misses/L3 hits) improves
the latency and increases performance.
Contested Accesses:

Data Sharing: 0.000
L3 Latency: 0.m7

@ DRAM Bound: 0.028
Memory Bandwidth: 0.415

Memory Latency: Q515
Local DEAR: 0.004
Remote DREAM: 0.000

Remote Cache:
© sStore Bound: 0.000
@ Core Bound: 0.335

This metric shows how core non-memaory issues limit the performance when you run out of 00O resources or are saturating certain execution units (for
example, using FP-chained long-latency arithmetic operations).
Divider: 0.000
@ Port Utilization: 0.335

This metric represents a fraction of cycles during which an application was stalled due to Core non-divider-related issues. For example, heavy
data-dependency between nearby instructions, or a sequence of instructions that overloads specific ports.

Cycles of 0 Ports Utilized: 0.378

The number of cycles during which no port was utilized.
Cycles of 1 Port Utilized: 0.328

The number of cycles during which only 1 port was utilized.

Cycles of 2 Ports Utilized: 0.187

Cycles of 3+ Ports Utilized: 0.088
© Front-End Bound: 0.011

ISC15 Workshop/BOF/ Booth for Intel® Xeon Phi™ Processors Submission

Memory Bandwidth on IB

Intel VTune An

™ General Exploration Bandwidth viewpoint (change) @

@ o et / i g | | K Sur & Bottom-up
LeL=l0T Je Tl 2050ms 2100ms 2150ms 2200ms 2250ms 2309ms 2350ms 24OtIJms 2450ms 250E|Jms 2550ms 260£|Jms 2650ms Z?UIIJms

301
ackage_1201
P ge_ 100

2750ms ZEO(IJr

Bandwidth, GBfsec

packa . 2000%

ISC15 Workshop/BOF/ Booth for Intel® Xeon Phi™ Processors Submission

Vectorisation-related Workshop

@ |15

ISC15 Workshop/BOF/ Booth for Intel® Xeon Phi™ Processors Submission

Vectorisation rationales

- FD kernels take all the time that isn’'t IO or MPI

- Initial code not satisfactory
> FD order hard-coded

» We needed arbitrary FD order (run-time input from user)
» Not vectorisation friendly
» Auto-vectorisation wasn’t working at all
e Adding OpenMP SIMD pragmas had only a very limited impact

- Kernels fully re-written
» Arbitrary FD order
> Fully vectorisable

e Aligned memory whenever possible
e OpenMP pragma SIMD

» But even without that, the Intel compiler’s auto-vectoriser does the
right thing

intel' | 16
ISC15 Workshop/BOF/ Booth for Intel® Xeon Phi™ Processors Submission

Vectorisation metrics on Xeon

vectorisation enabled

Total Total Number of
Xeon vectorisation vectorisation vectorised Total time
gain efficiency kernel
Original kload baseli ith
.rlgma workloa afe |r1e Wi 1.00x 0 20010
disabled auto-vectorisation
Original workload baseline 1.00x 0.00% 0 20010
Simple manual vectorisation 1.55x 19.43% 4 12870
f ith
Code r.e a.ctoref:I wit 1.00x 0 11491
vectorisation disabled
Code refactored with
3.63x 45.38% 2 3165

ISC15 Workshop/BOF/ Booth for Intel® Xeon Phi™ Processors Submission

Vectorisation metrics on Xeon Phi

vectorisation enabled

Total Total Number of
Xeon Phi vectorisation vectorisation vectorised Total time
gain efficiency kernel
Original kload baseli ith
'r|g|na workloa aée |r'1e Wi 1.00x 0 37963
disabled auto-vectorisation
Original workload baseline 1.00x 0.00% 0 37263
Simple manual vectorisation 4.61x 28.79% 4 8090
Cod factored with
cde retactoredwl 1.00x 0 37514
vectorisation disabled
Cod factored with
ode refactored i 13.84x 86.49% 2 2711

intel' | 18
ISC15 Workshop/BOF/ Booth for Intel® Xeon Phi™ Processors Submission

Optimisation insights

- Code portability and standard-compliance are
deemed essential
> Only use of OpenMP parallelisation and SIMD pragmas
» No proprietary intrinsics or language extensions
- Portable optimisations are important too
> Ok for pre-processor macros targeted for specific hardware

#11 defined(MIC]
#define VLENGTH 54
#elif defined(_ AVX_)
#define VLENGTH 32
#else
#define VLENGTH 18
#endl f

ISC15 Workshop/BOF/ Booth for Intel® Xeon Phi™ Processors Submission

Optimisation insights

- Use of vectorisation tools

» Auto-vectoriser works very well indeed
e But vectorisation reports weren't very explicit with old compilers
* So we had no clear view on our level of vectorisation

> Also vectorisation effectiveness is limited on Xeon
o We tired hard to push it further

» Vector advisor showed that vectorisation was actually as good as
could be

» The effectiveness is limited by something else, and that’s where we
should focus our efforts

- Remaining bottlenecks
> Not vectorisation-related
» Possibly related to TLB and L2-L2 cache transfers on Xeon Phi

» Although current vectorisation is perfectly fine, changing the
vectorisation strategy might help (on-going study)

(@teD | 20

ISC15 Workshop/ BOF/ Booth for Intel® Xeon Phi™ Processors Submission

Memory alignment

ISC15 Workshop/BOF/ Booth for Intel® Xeon Phi™ Processors Submission

How to align memory

- Code portability and standard-compliance are
deemed essential

» No proprietary intrinsics or language extensions

- With our data layout, what is important is that the
last dimensions of our arrays are aligned to the
end of the halo layer

> We want “a[i][j]1[haloSize]” aligned to the size of a vector register
for all i and j indexes

> We need padding before the full array to shift the start for
aligning with “haloSize”

> We need padding after the Nz size to ensure next line stays
aligned

> We use a standard allocation function: posix_memalign

@ |22

ISC15 Workshop/ BOF/ Booth for Intel® Xeon Phi™ Processors Submission

Sample code

static int padBeforeNz, padAfterNz;

vold computePadding(int Nz, int haloSize) {
int vIdx = VLENGTH / sizeof(float);
for (padBeforeNz=0; (padBeforeNz+haloSize) % vIdx != 0; padBeforeNz++ };
for (padafterNz=0; (Nz+2*haloSize+padAfterNz) % vIdx '= 0; padAfterMz++);
I

float ***alloc3dAlignedHalo(size t Nx, size t Ny, size t Nz) {
float ***<dummy = (float***)malloc(Nx*sizeof(float**));
dummy[0] = (float**)malloc(MNx*Ny*sizeof(float*));
posix_memalign((void**)&adummy[O][0], VLENGTH,
(Mx*Ny*(Nz+padAfternNz)+padBeforenNz) *sizeof(float));
dummy[0] [0] += padBeforenz;
for (size t 1=1; 1 < Nx; 1++) dummy[1] = dummy[1-1]1+Ny;
for (size t 1=1; 1 < Nx*Ny; 1++) dummy[o]l[1] = dummy[©][1i-1]+Nz+padAfteriz;
return dummy;

¥

void free3dAlignedHalo(float #*xdummy) {
free(dummy[0] [0]-padBeforenNz);
free(dummy[C]);
free(dummy J;

ISC15 Workshop/BOF/ Booth for Intel® Xeon Phi™ Processors Submission

