Lessons Learned from Selected NESAP Applications

Helen He

NCAR Multi-core 5 Workshop
Sept 16-17, 2015
The Big Picture

• The next large NERSC production system “Cori” will be Intel Xeon Phi KNL (Knights Landing) architecture
 – Self-hosted (not an accelerator). 72 cores per node, 4 hardware threads per core
 – Larger vector units (512 bits)
 – On package high-bandwidth memory (HBM)
 – Burst Buffer

• To achieve high performance, applications need to explore more on-node parallelism with thread scaling and vectorization, also to utilize HBM and burst buffer options.

• Hybrid MPI/OpenMP is a recommended programming model, to achieve scaling capability and code portability.
NERSC Exascale Science Application Program (NESAP)

• **Goal:** to prepare DOE Office of Science user community for Cori manycore architecture

• 20 applications were selected as Tier 1 (with postdocs) and Tier 2 applications to work closely with Cray, Intel and NERSC staff. Additional 26 Tier 3 teams. Share lessons learned with broader user community.

• **Available resources are:**
 – Access to vendor resources and staff including “dungeon sessions” with Intel and Cray Center of Excellence
 – Early access to KNL “whitebox” systems
 – Early access and time on Cori
 – Trainings, workshops, and hackathons
 – Intel Xeon Phi User Group (IXPUG)
NESAP Code Coverage

Breakdown of Application Hours on Hopper and Edison 2013

NEPAS Tier-1, 2 Code
NEPAS Proxy Code or Tier-3 Code
Lessons Learned from Selected Applications

• Presentation materials contributed by NERSC Application Readiness Team (NERSC Staff) and NESAP teams (application developers, NERSC liaisons, Cray Center of Excellence staff, and Intel staff)

<table>
<thead>
<tr>
<th>Application</th>
<th>Science Area</th>
<th>PI</th>
<th>NERSC Liaison</th>
</tr>
</thead>
<tbody>
<tr>
<td>BerkeleyGW</td>
<td>Material Sciences</td>
<td>Jack Deslippe</td>
<td>Jack Deslippe</td>
</tr>
<tr>
<td>CESM</td>
<td>Climate</td>
<td>John Dennis</td>
<td>Helen He</td>
</tr>
<tr>
<td>EmGeo</td>
<td>Earth Science</td>
<td>Gregory Newman</td>
<td>Scott French</td>
</tr>
<tr>
<td>NWChem</td>
<td>Chemistry</td>
<td>Wibe De Jong, Eric Bylaska</td>
<td>Zhengji Zhao</td>
</tr>
<tr>
<td>XGC1</td>
<td>Fusion</td>
<td>Choong-Seock Chang</td>
<td>Helen He</td>
</tr>
</tbody>
</table>
Recommended Optimization Path

Run in “Half Packed” Mode → Run at “Half Clock” Speed → Performance affected by Half-Clock Speed?

Yes → Partially CPU Bound

Yes → Improve OpenMP Scaling and Vectorization

No → Partially Memory Bandwidth Bound (can also use VTune to measure bandwidth usage)

Yes → Increase FLops per byte from memory in algorithm. Explore using HBM for key arrays

No → Reduce memory request per flop in algorithm. Use more virtual threads.
Kernel Optimizations Examples
BerkeleyGW Optimization Steps

- Target more on-node parallelism. (MPI model already failing users)
- Ensure key loops/kernels can be vectorized.

Refactor to Have 3 Loop Structure:

Outer: MPI
Middle: OpenMP
Inner: Vectorization

Add OpenMP

Ensure Vectorization
Emgeo: 7 SpMV Kernel Variants

- Span the space of likely optimizations to assess performance impact on non-KNL architectures
 - Alignment tweaks; Loop reordering, unrolling; Memory layout optimizations; Fortran “SIMD-ization”
- Ready for profiling when we have KNL access
- Winner: Only ~8% speedup over the original code
 - Only certain variants show vectorization speedup on HSW
What does the code look like?

Original

```fortran
$omp parallel do private(j,ztmp)
  do i = 1, m
    ztmp = (0.0d0, 0.0d0)
    do j = 1, ndiag
      ztmp = ztmp + mat(j,i) * x(ind(j,i))
    end do
    z(iorig(i)) = ztmp
  end do
end do
```

Too many streams?

```fortran
$omp parallel do private(ztmp)
  do i = 1, m / SIMDWIDTH
    ztmp = mat(:, 1,i) * x(ind(:, 1,i))
    ztmp = ztmp + mat(:, 2,i) * x(ind(:, 2,i))
    ztmp = ztmp + mat(:, 3,i) * x(ind(:, 3,i))
    ... snip ...
    z(iorig(i)) = ztmp
  end do
end do
```

HSW winner

```fortran
$omp parallel do private(ztmp)
  do i = 1, m / SIMDWIDTH
    ztmp = mat(:, 1,i) * x(ind(:, 1,i))
    ztmp = ztmp + mat(:, 2,i) * x(ind(:, 2,i))
    ztmp = ztmp + mat(:, 3,i) * x(ind(:, 3,i))
    ... snip ...
    z(iorig(i)) = ztmp
  end do
end do
```

- Some traverse many streams of data concurrently
 - Others are more conservative (including the winning variant)
 - Will the more bandwidth-hungry variants do better on KNL? Also show largest instruction count drop from AVX2 to AVX512.

omitting alignment-related directives, etc.
Improve OpenMP Scaling Examples
XGC1: Remove “-heap-arrays 64” Compiler Flag

• This Intel compiler flag puts automatic arrays and temp of size 64 kbytes or larger on heap instead of stack.
• Surprisingly it slows down both the collision and push kernels by >6X.
• Allocation and access of private copies on the heap are very expensive.
• Does not affect explicit-shape arrays.
• Removed this flag for the collision kernel, and set OMP_STACKSIZE to a large value
• Run time improves from 348 sec to 43 sec.
• Alternative: use !$OMP THREADPRIVATE. Downside: data has to be static, not allocatable.
XGC1: Explore Nested OpenMP

- Always make sure to use best thread affinity. Avoid using threads across NUMA domains.
- Currently:

  ```
  export OMP_NUM_THREADS=6,4
  export OMP_PROC_BIND=spread,close
  export OMP_NESTED=TRUE
  Export OMP_STACKSIZE=8000000
  aprun -n 200 -N 2 -S 1 -j 2 -cc numa_node ./xgca
  
  export OMP_NUM_THREADS=24
  export OMP_NESTED=TRUE
  export OMP_STACKSIZE=8000000
  aprun -n 200 -d 24 -N 2 -S 1 -j 2 -cc numa_node ./xgca
  ```

- Is a bit slower than (work ongoing):

- Refer to NERSC “Nested OpenMP” web page for achieving process and thread affinity using different compilers on different NERSC systems:
NWChem: OpenMP “Reduce” Algorithm

- Plane wave Lagrange multiplier
 - Many matrix multiplications of complex numbers, $C = A \times B$
 - Smaller matrix products: FFM, typical size $100 \times 10,000 \times 100$
 - Original threading scaling with MKL not satisfactory
- OpenMP “Reduce” or “Block” algorithm
 - Distribute work on A and B along the k dimension
 - A thread puts its contribution in a buffer of size $m \times n$
 - Buffers reduced to produce C
 - OMP teams of threads
NWChem: OpenMP “Reduce” Algorithm

- Better for smaller inner dimensions, i.e. for FFM
- Multiple FFM can be done concurrently in different thread pools
- Threading enables us to use all 240 hardware threads
- Best Reduce: 10 MPI, 6 teams of 4 threads
NWChem: OpenMP Scaling in CCSD(T)

- Double terms usually dominate in (T) term
- Other terms become new performance bottleneck on many-core architectures - Amdahl’s Law
NWChem: OpenMP Scaling in CCSD(T)

- Threading enables us to use all 240 hardware threads
- Optimized code performs 2.5X better than baseline
- Up to 65X better compared to 1 MPI rank
Vectorization Examples
Original

```
real(8), dimension
((col_f_nvr-1),5,(col_f_nvz-1),
 (col_f_nvr-1)*(col_f_nvz-1)) :: Ms

do index_ip = 1, mesh_Nzm1
  do index_jp = 1, mesh_Nrm1
    index_2dp = index_jp+mesh_Nrm1*(index_ip-1)
    tmp_vol = cs2%local_center_volume(index_jp)
    tmp_f_half_v = f_half(index_jp, index_ip) * tmp_vol
    tmp_dfdr_v = dfdr(index_jp, index_ip) * tmp_vol
    tmp_dfdz_v = dfdz(index_jp, index_ip) * tmp_vol
    tmpr(index_jp,1) = tmpr(index_jp,1) + Ms(index_jp,1,index_ip,2D)*tmp_f_half_v
    tmpr(index_jp,2) = tmpr(index_jp,2) + Ms(index_jp,2,index_ip,2D)*tmp_f_half_v
    tmpr(index_jp,3) = tmpr(index_jp,3) + Ms(index_jp,3,index_ip,2D)*tmp_f_half_v
    tmpr(index_jp,4) = tmpr(index_jp,4) + Ms(index_jp,4,index_ip,2D)*tmp_dfdr_v
    tmpr(index_jp,5) = tmpr(index_jp,5) + Ms(index_jp,5,index_ip,2D)*tmp_dfdr_v
    tmpr(index_jp,6) = tmpr(index_jp,6) + Ms(index_jp,6,index_ip,2D)*tmp_dfdr_v
  enddo !index_jp
enddo !index_ip
```

Optimized

```
real (8), dimension
((col_f_nvr-1),5,(col_f_nvz-1),
 (col_f_nvr-1)*(col_f_nvz-1)) :: Ms

do index_ip = 1, mesh_Nzm1
  do index_jp = 1, mesh_Nrm1
    index_2dp = index_jp+mesh_Nrm1*(index_ip-1)
    tmp_vol = cs2%local_center_volume(index_jp)
    tmp_f_half_v = f_half(index_jp, index_ip) * tmp_vol
    tmp_dfdr_v = dfdr(index_jp, index_ip) * tmp_vol
    tmp_dfdz_v = dfdz(index_jp, index_ip) * tmp_vol
    tmpr(index_jp,1) = tmpr(index_jp,1) + Ms(index_jp,1,index_ip,2D)*tmp_f_half_v
    tmpr(index_jp,2) = tmpr(index_jp,2) + Ms(index_jp,2,index_ip,2D)*tmp_f_half_v
    tmpr(index_jp,3) = tmpr(index_jp,3) + Ms(index_jp,3,index_ip,2D)*tmp_f_half_v
    tmpr(index_jp,4) = tmpr(index_jp,4) + Ms(index_jp,4,index_ip,2D)*tmp_dfdr_v
    tmpr(index_jp,5) = tmpr(index_jp,5) + Ms(index_jp,5,index_ip,2D)*tmp_dfdr_v
    tmpr(index_jp,6) = tmpr(index_jp,6) + Ms(index_jp,6,index_ip,2D)*tmp_dfdr_v
  enddo !index_jp
enddo !index_ip
```

40% kernel speedup
BerkeleyGW

ngpown typically in 100’s to 1000s. Good for many threads.

Original inner loop. Too small to vectorize!

ncouls typically in 1000s - 10,000s. Good for vectorization.

Attempt to save work breaks vectorization and makes code slower.

3X faster on SandyBridge, 8X faster on KNC
• !$OMP SIMD ALIGNED (...)
 – OpenMP standard, portable
 – Tells the compiler that particular arrays in the list are aligned
 – Asserts there are no dependencies
 – Requires to use PRIVATE or REDUCTION clauses to ensure correctness
 – Forces the compiler to vectorize, whether or not it thinks it helps performance.

• !DIR ASSUME_ALIGNED (...)
 – Tells the compiler that particular arrays in the list are aligned
 – Intel specific, not portable

• !DIR VECTOR_ALIGNED
 – Tells the compiler all arrays in a loop are aligned
 – Intel specific, not portable
• Using the “ALIGNED” attribute achieved 8% performance gain when the list is explicitly provided.

• However, the process is tedious and error-prone, and often times impossible in large real applications.
 – !$OMP SIMD ALIGNED added in 48 loops in MG2 kernel, many with list of 10+ variables

• Inquired with Fortran Standard:
 – Equivalent of “!$DIR ATTRIBUTES ALIGNED: 64 :: A”
 • C/C++ standard: float A[1000] __attribute__((aligned(64)));
 • Not in Fortran standard yet
 – Equivalent of the “-align array64byte” compiler flag
 • Exist in Intel (Fortran only) and Cray compilers
 • What about other compilers?
Using HBM Examples
Simulate HBM Effect on a Dual Socket System

- **Identify the candidate (key arrays) for HBM**
 - VTune Memory Access tool can help to find key arrays
 - Using NUMA affinity to simulate HBM on a dual socket system
 - Use FASTMEM directives and link with jemalloc/memkind libraries

On Edison (NERSC Cray XC30):

```fortran
real, allocatable :: a(:,,:), b(:,,:), c(:)
!DIR$ ATTRIBUTE FASTMEM :: a, b, c
```

```bash
% module load memkind jemalloc
% ftn -dynamic -g -O3 -openmp mycode.f90
% export MEMKIND_HBW_NODES=0
% aprun -n 1 -cc numa_node numactl --membind=1 --cpunodebind=0 ./myexecutable
```

On Haswell:

```bash
% numactl --membind=1 --cpunodebind=0 ./myexecutable
```

<table>
<thead>
<tr>
<th>Application</th>
<th>All memory on far memory</th>
<th>All memory on near memory</th>
<th>Key arrays on near memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>BerkeleyGW</td>
<td>baseline</td>
<td>52% faster</td>
<td>52.4% faster</td>
</tr>
<tr>
<td>EmGeo</td>
<td>baseline</td>
<td>40% faster</td>
<td>32% faster</td>
</tr>
<tr>
<td>XGC1</td>
<td>baseline</td>
<td></td>
<td>24% faster</td>
</tr>
</tbody>
</table>
Conclusions

- NERSC is bringing a lot of resources to help users: training, postdocs, Cray and Intel staff, deep dive sessions.
- Optimizing code for Cori will likely require good OpenMP scaling, Vectorization and/or effective use of HBM.
- Applications can optimize on SandyBridge, IvyBridge, Haswell, and KNC architectures to prepare for Cori.
- Always profiling and understand your code first on where to work on improving performance. Use tools such as VTune, vector advisor.
- Creating kernels is much more efficient than working on full codes.
- Optimizing your code targeting KNL will improve performance on all architectures.
- Keep portability in mind, use portable programming models.
Thank you.