
Outline of Tutorial 

•  Hadoop and Pig Overview 
•  Hands-on  
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Overview 

•  Concepts & Background 
– MapReduce and Hadoop  

•  Hadoop Ecosystem 
– Tools on top of Hadoop 

•  Hadoop for Science  
– Examples, Challenges 

•  Programming in Hadoop 
– Building blocks, Streaming, C-HDFS API 
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Processing Big Data 

•  Internet scale generates BigData 
– Terabytes of data/day 
–  just reading 100 TB can be overwhelming 

•  using clusters of standard commodity 
computers for linear scalability 

•  Timeline 
– Nutch open source search project 

(2002-2004) 
– MapReduce & DFS implementation and 

Hadoop splits out of Nutch (2004-2006)  
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MapReduce 

•  Computation performed on large 
volumes of data in parallel 
– divide workload across large number of 

machines 
– need a good data management scheme to 

handle scalability and consistency 
•  Functional programming concepts 

– map 
– reduce 
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Mapping 

•  Map input to an output using some 
function   

•  Example 
– string manipulation 
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Reduces 

•  Aggregate values together to provide 
summary data 

•  Example 
– addition of the list of numbers 

7 



Google File System 

•  Distributed File System 
– accounts for component failure 
– multi-GB files and billions of objects 

•  Design 
– single master with multiple chunkservers 

per master 
–  file represented as fixed-sized chunks 
– 3-way mirrored across chunkservers 
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Hadoop 

•  Open source reliable, scalable distributed 
computing platform 
–  implementation of MapReduce 
–  Hadoop Distributed File System (HDFS) 
–  runs on commodity hardware 

•  Fault Tolerance 
–  restarting tasks 
–  data replication 

•  Speculative execution 
–  handles stragglers  

9 



HDFS Architecture 
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HDFS and other Parallel 
Filesystems 

HDFS GPFS and Lustre 
Typical Replication 3 1 
Storage Location Compute Node Servers 
Access Model Custom (except with 

Fuse) 
POSIX 

Stripe Size 64 MB 1 MB 
Concurrent Writes No Yes 
Scales with # of Compute Nodes # of Servers 
Scale of Largest 
Systems 

O(10k) Nodes O(100) Servers 

User/Kernel Space User Kernel 



Who is using Hadoop? 

•  A9.com  
•  Amazon 
•  Adobe 
•  AOL 
•  Baidu 
•  Cooliris 
•  Facebook 
•  NSF-Google 

university initiative 

•  IBM 
•  LinkedIn 
•  Ning 
•  PARC 
•  Rackspace 
•  StumbleUpon 
•  Twitter 
•  Yahoo! 
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Hadoop Stack 

Core Avro 

MapReduce HDFS 

Pig Chukwa Hive HBase 

Source: Hadoop: The Definitive Guide 

Zoo 
Keeper 
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Google Vs Hadoop 

Google Hadoop 
MapReduce Hadoop MapReduce 
GFS HDFS 
Sawzall Pig, Hive 
BigTable Hbase 
Chubby Zookeeper 
Pregel Hama, Giraph 
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Pig 

•  Platform for analyzing large data sets 
•  Data-flow oriented language “Pig Latin” 

– data transformation functions  
– datatypes include sets, associative arrays, 

tuples 
– high-level language for marshalling data 

•  Developed at Yahoo!  
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Hive 

•  SQL-based data warehousing 
application 
–  features similar to Pig  
– more strictly SQL-type 

•  Supports SELECT, JOIN, GROUP BY, 
etc 

•  Analyzing very large data sets 
–  log processing, text mining, document 

indexing  
•  Developed at Facebook 
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HBase 

•  Persistent, distributed, sorted, 
multidimensional, sparse map 
– based on Google BigTable 
– provides interactive access to information 

•  Holds extremely large datasets (multi-
TB) 

•  High-speed lookup of individual (row, 
column) 
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ZooKeeper 

•  Distributed consensus engine 
– runs on a set of servers and maintains 

state consistency 
•  Concurrent access semantics 

–  leader election 
– service discovery 
– distributed locking/mutual exclusion 
– message board/mailboxes 
– producer/consumer queues, priority 

queues and multi-phase commit 
operations 
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Other Related Projects [1/2] 

•  Chukwa – Hadoop log aggregation 
•  Scribe – more general log aggregation 
•  Mahout – machine learning library 
•  Cassandra – column store database on a P2P 

backend 
•  Dumbo – Python library for streaming 
•  Spark – in memory cluster for interactive and 

iterative  
•  Hadoop on Amazon – Elastic MapReduce 
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Other Related Projects [2/2] 

•  Sqoop – import SQL-based data to Hadoop  
•  Jaql – JSON (JavaScript Object Notation) 

based semi-structured query processing 
•  Oozie – Hadoop workflows 
•  Giraph – Large scale graph processing on 

Hadoop 
•  Hcatlog – relational view of HDFS 
•  Fuse-DS – POSIX interface to HDFS 
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Hadoop for Science 
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Magellan and Hadoop 

•  DOE funded project to determine 
appropriate role of cloud computing for 
DOE/SC midrange workloads 

•  Co-located at Argonne Leadership 
Computing Facility (ALCF) and National 
Energy Research Scientific Center 
(NERSC)   

•  Hadoop/Magellan research questions 
– Are the new cloud programming models 

useful for scientific computing?  

–    
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Data Intensive Science 

•  Evaluating hardware and software 
choices for supporting next generation 
data problems 

•  Evaluation of Hadoop 
– using mix of synthetic benchmarks and 

scientific applications 
– understanding application characteristics 

that can leverage the model  
•  data operations: filter, merge, reorganization  
•  compute-data ratio  
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MapReduce and HPC 

•  Applications that can benefit from 
MapReduce/Hadoop 
– Large amounts of data processing 
– Science that is scaling up from the 

desktop 
– Query-type workloads 

•  Data from Exascale needs new 
technologies  
– Hadoop On Demand lets one run Hadoop 

through a batch queue 
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Hadoop for Science 

•  Advantages of Hadoop  
–  transparent data replication, data locality 

aware scheduling 
–  fault tolerance capabilities 

•  Hadoop Streaming 
– allows users to plug any binary as maps 

and reduces 
–  input comes on standard input 
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BioPig  

•  Analytics toolkit for Next-Generation 
Sequence Data 

•  User defined functions (UDF) for 
common bioinformatics programs 
– BLAST, Velvet 
– readers and writers for FASTA and FASTQ 
– pack/unpack for space conservation with 

DNA sequenceså 
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Application Examples 

•  Bioinformatics applications (BLAST) 
– parallel search of input sequences 
– Managing input data format 

•  Tropical storm detection 
– binary file formats can’t be handled in 

streaming 
•  Atmospheric River Detection  

– maps are differentiated on file and 
parameter 
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“Bring your application” Hadoop 
workshop 

•  When: TBD 
•  Send us email if you are interested 

– LRamakrishnan@lbl.gov 
– Scanon@lbl.gov 

•  Include a brief description of your 
application. 
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HDFS vs GPFS (Time) 
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•  Wikipedia data set 
•  On ~ 75 nodes, 

GPFS performs 
better with large 
nodes 

Application Characteristic Affect 
Choices 

•  Iden%cal	
  data	
  loads	
  
and	
  processing	
  load	
  

•  Amount	
  of	
  wri%ng	
  in	
  
applica%on	
  affects	
  
performance	
   



•  Deployment 
–  all jobs run as user “hadoop” affecting file 
permissions 
–  less control on how many nodes are used - 
affects allocation policies 

•  Programming: No turn-key solution 
–  using existing code bases, managing input 
formats and data  

•  Additional benchmarking, tuning 
needed, Plug-ins for Science  

Hadoop: Challenges 
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Comparison of MapReduce 
Implementations 
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Programming Hadoop 
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•  Map and reduce as Java programs 
using Hadoop API 
•  Pipes and Streaming can help with 
existing applications in other 
languages 
•  C- HDFS API 
•  Higher-level languages such as Pig 
might help with some applications 

Programming with Hadoop 
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Keys and Values 

•  Maps and reduces produce key-value 
pairs 
– arbitrary number of values can be output 
– may map one input to 0,1, ….100 outputs  
– reducer may emit one or more outputs 

•  Example: Temperature recordings 
– 94089  8:00 am, 59 
– 27704  6:30 am, 70 
– 94089 12:45 pm, 80 
– 47401   1 pm, 90  
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Keys divide the reduce space 

36 



Data Flow 
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Mechanics[1/2] 

•  Input files 
–  large 10s of GB or more, typically in HDFS 
–  line-based, binary, multi-line, etc. 

•  InputFormat 
–  function defines how input files are split up and 

read 
–  TextInputFormat (default), KeyValueInputFormat, 

SequenceFileInputFormat 
•  InputSplits 

–  unit of work that comprises a single map task 
–  FileInputFormat divides it into 64MB chunks 
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Mechanics [2/2] 

•  RecordReader 
–  loads data and converts to key value pair 

•  Sort & Partiton & Shuffle 
–  intermediate data from map to reducer 

•  Combiner 
– reduce data on a single machine 

•  Mapper & Reducer 
•  OutputFormat, RecordWriter 
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 public static class TokenizerMapper  
       extends Mapper<Object, Text, Text, IntWritable>{  
    private final static IntWritable one = new IntWritable(1); 
    private Text word = new Text(); 

    public void map(Object key, Text value, Context context 
                    ) throws IOException, InterruptedException { 
      StringTokenizer itr = new StringTokenizer(value.toString()); 
      while (itr.hasMoreTokens()) { 
        word.set(itr.nextToken()); 
        context.write(word, one); 
      } 
    } 
  } 

Word Count Mapper 
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 public static class IntSumReducer   
    extends Reducer<Text,IntWritable,Text,IntWritable> { 
    private IntWritable result = new IntWritable(); 

    public void reduce(Text key, Iterable<IntWritable> values,                       
Context context) throws IOException, InterruptedException { 
      int sum = 0; 
      for (IntWritable val : values) { 
        sum += val.get(); 
      } 
      result.set(sum); 
      context.write(key, result); 
    } 
  } 

Word Count Reducer 
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public static void main(String[] args) throws Exception { 
    Configuration conf = new Configuration(); 
    String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs(); 
   …. 
    Job job = new Job(conf, "word count"); 
    job.setJarByClass(WordCount.class); 
    job.setMapperClass(TokenizerMapper.class); 
    job.setCombinerClass(IntSumReducer.class); 
    job.setReducerClass(IntSumReducer.class); 
    job.setOutputKeyClass(Text.class); 
    job.setOutputValueClass(IntWritable.class); 
    FileInputFormat.addInputPath(job, new Path(otherArgs[0])); 
    FileOutputFormat.setOutputPath(job, new Path(otherArgs[1])); 
    System.exit(job.waitForCompletion(true) ? 0 : 1); 

} 

Word Count Example 
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•  Allows C++ code to be used for 
Mapper and Reducer 
•  Both key and value inputs to pipes 
programs are provided as std::string 
•  $ hadoop pipes 

Pipes 
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•  Limited C API to read and write from HDFS 
#include "hdfs.h"  
int main(int argc, char **argv)  
{ 
  hdfsFS fs = hdfsConnect("default", 0);  
  hdfsFile writeFile = hdfsOpenFile(fs, writePath, 

O_WRONLY|O_CREAT, 0, 0, 0);  
   tSize num_written_bytes = hdfsWrite(fs, writeFile, 

(void*)buffer, strlen(buffer)+1); 
  hdfsCloseFile(fs, writeFile);  
 }   

C-HDFS API 
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•  Generic API that allows programs in 
any language to be used as Hadoop 
Mapper and Reducer implementations 
•  Inputs written to stdin as strings with 
tab character separating  
•  Output to stdout as key \t value \n 
•  $ hadoop jar contrib/streaming/
hadoop-[version]-streaming.jar 

Hadoop Streaming 
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•  Test core functionality separate 
•  Use Job Tracker 
•  Run “local” in Hadoop 
•  Run job on a small data set on a 
single node 
•  Hadoop can save files from failed 
tasks 

Debugging 
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Pig – Basic Operations 

•  LOAD – loads data into a relational 
form 

•  FOREACH..GENERATE – Adds or 
removes fields (columns) 

•  GROUP – Group data on a field 
•  JOIN – Join two relations 
•  DUMP/STORE – Dump query to 

terminal or file 
There are others, but these will be used 

for the exercises today 



Pig Example 

Find the number of gene hits for each model in an 
hmmsearch (>100GB of output, 3 Billion Lines) 

bash# cat * |cut –f 2|sort|uniq -c 

> hits = LOAD ’/data/bio/*' USING PigStorage() AS 
(id:chararray,model:chararray, value:float);!

> amodels = FOREACH hits GENERATE model;!
> models = GROUP amodels BY model;!
> counts = FOREACH models GENERATE group,COUNT

(amodels) as count;!
> STORE counts INTO 'tcounts' USING PigStorage();!



Pig - LOAD 

Example: 

hits = LOAD 'load4/*' USING PigStorage() AS 
(id:chararray, model:chararray,value:float);!

•  Pig has several built-in data types (chararray, float, 
integer) 

•  PigStorage can parse standard line oriented text files. 
•  Pig can be extended with custom load types written in 

Java. 
•  Pig doesn’t read any data until triggered by a DUMP or 

STORE 



Pig – FOREACH..GENERATE, 
GROUP 

Example: 

amodel = FOREACH model GENERATE hits;!
models = GROUP amodels BY model;!
counts = FOREACH models GENERATE group,COUNT

(amodels) as count;!

•  Use FOREACH..GENERATE to pick of specific fields or 
generate new fields. Also referred to as a projection 

•  GROUP will create a new record with the group name and a 
“bag” of the tuples in each group 

•  You can reference a specific field in a bag with <bag>.field (i.e. 
amodels.model) 

•  You can use aggregate functions like COUNT, MAX, etc on a 
bag  



Pig – Important Points 

•  Nothing really happens until a DUMP or 
STORE is performed. 

•  Use FILTER and FOREACH early to 
remove unneeded columns or rows to 
reduce temporary output 

•  Use PARALLEL keyword on GROUP 
operations to run more reduce tasks 



Questions? 

•  Shane Canon 
– Scanon@lbl.gov 

•  Lavanya Ramakrishnan 
– LRamakrishnan@lbl.gov 

52 


