
Outline of Tutorial

•  Hadoop and Pig Overview
•  Hands-on

1

Hadoop and Pig Overview

Lavanya Ramakrishnan
Shane Canon

Lawrence Berkeley National Lab

October 2011

Overview

•  Concepts & Background
– MapReduce and Hadoop

•  Hadoop Ecosystem
– Tools on top of Hadoop

•  Hadoop for Science
– Examples, Challenges

•  Programming in Hadoop
– Building blocks, Streaming, C-HDFS API

3

Processing Big Data

•  Internet scale generates BigData
– Terabytes of data/day
–  just reading 100 TB can be overwhelming

•  using clusters of standard commodity
computers for linear scalability

•  Timeline
– Nutch open source search project

(2002-2004)
– MapReduce & DFS implementation and

Hadoop splits out of Nutch (2004-2006)

4

MapReduce

•  Computation performed on large
volumes of data in parallel
– divide workload across large number of

machines
– need a good data management scheme to

handle scalability and consistency
•  Functional programming concepts

– map
– reduce

5
OSDI 2004

Mapping

•  Map input to an output using some
function

•  Example
– string manipulation

6

Reduces

•  Aggregate values together to provide
summary data

•  Example
– addition of the list of numbers

7

Google File System

•  Distributed File System
– accounts for component failure
– multi-GB files and billions of objects

•  Design
– single master with multiple chunkservers

per master
–  file represented as fixed-sized chunks
– 3-way mirrored across chunkservers

8

Hadoop

•  Open source reliable, scalable distributed
computing platform
–  implementation of MapReduce
–  Hadoop Distributed File System (HDFS)
–  runs on commodity hardware

•  Fault Tolerance
–  restarting tasks
–  data replication

•  Speculative execution
–  handles stragglers

9

HDFS Architecture

10

HDFS and other Parallel
Filesystems

HDFS GPFS and Lustre
Typical Replication 3 1
Storage Location Compute Node Servers
Access Model Custom (except with

Fuse)
POSIX

Stripe Size 64 MB 1 MB
Concurrent Writes No Yes
Scales with # of Compute Nodes # of Servers
Scale of Largest
Systems

O(10k) Nodes O(100) Servers

User/Kernel Space User Kernel

Who is using Hadoop?

•  A9.com
•  Amazon
•  Adobe
•  AOL
•  Baidu
•  Cooliris
•  Facebook
•  NSF-Google

university initiative

•  IBM
•  LinkedIn
•  Ning
•  PARC
•  Rackspace
•  StumbleUpon
•  Twitter
•  Yahoo!

12

Hadoop Stack

Core Avro

MapReduce HDFS

Pig Chukwa Hive HBase

Source: Hadoop: The Definitive Guide

Zoo
Keeper

13

Constantly evolving!

Google Vs Hadoop

Google Hadoop
MapReduce Hadoop MapReduce
GFS HDFS
Sawzall Pig, Hive
BigTable Hbase
Chubby Zookeeper
Pregel Hama, Giraph

14

Pig

•  Platform for analyzing large data sets
•  Data-flow oriented language “Pig Latin”

– data transformation functions
– datatypes include sets, associative arrays,

tuples
– high-level language for marshalling data

•  Developed at Yahoo!

15

Hive

•  SQL-based data warehousing
application
–  features similar to Pig
– more strictly SQL-type

•  Supports SELECT, JOIN, GROUP BY,
etc

•  Analyzing very large data sets
–  log processing, text mining, document

indexing
•  Developed at Facebook

16

HBase

•  Persistent, distributed, sorted,
multidimensional, sparse map
– based on Google BigTable
– provides interactive access to information

•  Holds extremely large datasets (multi-
TB)

•  High-speed lookup of individual (row,
column)

17

ZooKeeper

•  Distributed consensus engine
– runs on a set of servers and maintains

state consistency
•  Concurrent access semantics

–  leader election
– service discovery
– distributed locking/mutual exclusion
– message board/mailboxes
– producer/consumer queues, priority

queues and multi-phase commit
operations

18

Other Related Projects [1/2]

•  Chukwa – Hadoop log aggregation
•  Scribe – more general log aggregation
•  Mahout – machine learning library
•  Cassandra – column store database on a P2P

backend
•  Dumbo – Python library for streaming
•  Spark – in memory cluster for interactive and

iterative
•  Hadoop on Amazon – Elastic MapReduce

19

Other Related Projects [2/2]

•  Sqoop – import SQL-based data to Hadoop
•  Jaql – JSON (JavaScript Object Notation)

based semi-structured query processing
•  Oozie – Hadoop workflows
•  Giraph – Large scale graph processing on

Hadoop
•  Hcatlog – relational view of HDFS
•  Fuse-DS – POSIX interface to HDFS

20

Hadoop for Science

21

Magellan and Hadoop

•  DOE funded project to determine
appropriate role of cloud computing for
DOE/SC midrange workloads

•  Co-located at Argonne Leadership
Computing Facility (ALCF) and National
Energy Research Scientific Center
(NERSC)

•  Hadoop/Magellan research questions
– Are the new cloud programming models

useful for scientific computing?

– 
22

Data Intensive Science

•  Evaluating hardware and software
choices for supporting next generation
data problems

•  Evaluation of Hadoop
– using mix of synthetic benchmarks and

scientific applications
– understanding application characteristics

that can leverage the model
•  data operations: filter, merge, reorganization
•  compute-data ratio

23

(collaboration w/ Shane Canon, Nick Wright, Zacharia Fadika)

MapReduce and HPC

•  Applications that can benefit from
MapReduce/Hadoop
– Large amounts of data processing
– Science that is scaling up from the

desktop
– Query-type workloads

•  Data from Exascale needs new
technologies
– Hadoop On Demand lets one run Hadoop

through a batch queue
24

Hadoop for Science

•  Advantages of Hadoop
–  transparent data replication, data locality

aware scheduling
–  fault tolerance capabilities

•  Hadoop Streaming
– allows users to plug any binary as maps

and reduces
–  input comes on standard input

25

BioPig

•  Analytics toolkit for Next-Generation
Sequence Data

•  User defined functions (UDF) for
common bioinformatics programs
– BLAST, Velvet
– readers and writers for FASTA and FASTQ
– pack/unpack for space conservation with

DNA sequenceså

26

Application Examples

•  Bioinformatics applications (BLAST)
– parallel search of input sequences
– Managing input data format

•  Tropical storm detection
– binary file formats can’t be handled in

streaming
•  Atmospheric River Detection

– maps are differentiated on file and
parameter

27

“Bring your application” Hadoop
workshop

•  When: TBD
•  Send us email if you are interested

– LRamakrishnan@lbl.gov
– Scanon@lbl.gov

•  Include a brief description of your
application.

28

HDFS vs GPFS (Time)

0

2

4

6

8

10

12

0 500 1000 1500 2000 2500 3000

Ti
m

e
(m

in
ut

es
)

Number of maps

Teragen (1TB)
HDFS

GPFS

Linear
(HDFS)
Expon.
(HDFS)
Linear
(GPFS)
Expon.
(GPFS)

29

•  Wikipedia data set
•  On ~ 75 nodes,

GPFS performs
better with large
nodes

Application Characteristic Affect
Choices

•  Iden%cal	
 data	
 loads	

and	
 processing	
 load	

•  Amount	
 of	
 wri%ng	
 in	

applica%on	
 affects	

performance	

•  Deployment
–  all jobs run as user “hadoop” affecting file
permissions
–  less control on how many nodes are used -
affects allocation policies

•  Programming: No turn-key solution
–  using existing code bases, managing input
formats and data

•  Additional benchmarking, tuning
needed, Plug-ins for Science

Hadoop: Challenges

31

Comparison of MapReduce
Implementations

32

40 50 60 70 80 90

0
50

10
0

15
0

Output data size (MB)

Pr
oc

es
sin

g
tim

e
(s

)

64 core Twister Cluster
64 core Hadoop Cluster
64 core LEMO−MR Cluster

Collaboration w/ Zacharia Fadika, Elif Dede, Madhusudhan
Govindaraju, SUNY Binghamton

0 10 20 30 40 50 60

0
10

20
30

40
50

Cluster size (cores)

Sp
ee

du
p

!

!

!

!

!

!! 64 core Twister Cluster
64 core LEMO−MR Cluster
64 core Hadoop Cluster

Hadoop Twister LEMO−MR

0
10

20 node1
node2
node3

Hadoop Twister LEMO−MR

Nu
m

be
r o

f w
or

ds
 p

ro
ce

ss
ed

 (B
illi

on
)

0
10

20

node1: (Under stress)
node2
node3

Producing random floating point numbers

Load balancing

Processing 5 million 33 x 33 matrices

Programming Hadoop

33

•  Map and reduce as Java programs
using Hadoop API
•  Pipes and Streaming can help with
existing applications in other
languages
•  C- HDFS API
•  Higher-level languages such as Pig
might help with some applications

Programming with Hadoop

34

Keys and Values

•  Maps and reduces produce key-value
pairs
– arbitrary number of values can be output
– may map one input to 0,1, ….100 outputs
– reducer may emit one or more outputs

•  Example: Temperature recordings
– 94089 8:00 am, 59
– 27704 6:30 am, 70
– 94089 12:45 pm, 80
– 47401 1 pm, 90

35

Keys divide the reduce space

36

Data Flow

37

Mechanics[1/2]

•  Input files
–  large 10s of GB or more, typically in HDFS
–  line-based, binary, multi-line, etc.

•  InputFormat
–  function defines how input files are split up and

read
–  TextInputFormat (default), KeyValueInputFormat,

SequenceFileInputFormat
•  InputSplits

–  unit of work that comprises a single map task
–  FileInputFormat divides it into 64MB chunks

38

Mechanics [2/2]

•  RecordReader
–  loads data and converts to key value pair

•  Sort & Partiton & Shuffle
–  intermediate data from map to reducer

•  Combiner
– reduce data on a single machine

•  Mapper & Reducer
•  OutputFormat, RecordWriter

39

 public static class TokenizerMapper
 extends Mapper<Object, Text, Text, IntWritable>{
 private final static IntWritable one = new IntWritable(1);
 private Text word = new Text();

 public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
 StringTokenizer itr = new StringTokenizer(value.toString());
 while (itr.hasMoreTokens()) {
 word.set(itr.nextToken());
 context.write(word, one);
 }
 }
 }

Word Count Mapper

40

 public static class IntSumReducer
 extends Reducer<Text,IntWritable,Text,IntWritable> {
 private IntWritable result = new IntWritable();

 public void reduce(Text key, Iterable<IntWritable> values,
Context context) throws IOException, InterruptedException {
 int sum = 0;
 for (IntWritable val : values) {
 sum += val.get();
 }
 result.set(sum);
 context.write(key, result);
 }
 }

Word Count Reducer

41

public static void main(String[] args) throws Exception {
 Configuration conf = new Configuration();
 String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
 ….
 Job job = new Job(conf, "word count");
 job.setJarByClass(WordCount.class);
 job.setMapperClass(TokenizerMapper.class);
 job.setCombinerClass(IntSumReducer.class);
 job.setReducerClass(IntSumReducer.class);
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(IntWritable.class);
 FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
 FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
 System.exit(job.waitForCompletion(true) ? 0 : 1);

}

Word Count Example

42

•  Allows C++ code to be used for
Mapper and Reducer
•  Both key and value inputs to pipes
programs are provided as std::string
•  $ hadoop pipes

Pipes

43

•  Limited C API to read and write from HDFS
#include "hdfs.h"
int main(int argc, char **argv)
{
 hdfsFS fs = hdfsConnect("default", 0);
 hdfsFile writeFile = hdfsOpenFile(fs, writePath,

O_WRONLY|O_CREAT, 0, 0, 0);
 tSize num_written_bytes = hdfsWrite(fs, writeFile,

(void*)buffer, strlen(buffer)+1);
 hdfsCloseFile(fs, writeFile);
 }

C-HDFS API

44

•  Generic API that allows programs in
any language to be used as Hadoop
Mapper and Reducer implementations
•  Inputs written to stdin as strings with
tab character separating
•  Output to stdout as key \t value \n
•  $ hadoop jar contrib/streaming/
hadoop-[version]-streaming.jar

Hadoop Streaming

45

•  Test core functionality separate
•  Use Job Tracker
•  Run “local” in Hadoop
•  Run job on a small data set on a
single node
•  Hadoop can save files from failed
tasks

Debugging

46

Pig – Basic Operations

•  LOAD – loads data into a relational
form

•  FOREACH..GENERATE – Adds or
removes fields (columns)

•  GROUP – Group data on a field
•  JOIN – Join two relations
•  DUMP/STORE – Dump query to

terminal or file
There are others, but these will be used

for the exercises today

Pig Example

Find the number of gene hits for each model in an
hmmsearch (>100GB of output, 3 Billion Lines)

bash# cat * |cut –f 2|sort|uniq -c

> hits = LOAD ’/data/bio/*' USING PigStorage() AS
(id:chararray,model:chararray, value:float);!

> amodels = FOREACH hits GENERATE model;!
> models = GROUP amodels BY model;!
> counts = FOREACH models GENERATE group,COUNT

(amodels) as count;!
> STORE counts INTO 'tcounts' USING PigStorage();!

Pig - LOAD

Example:

hits = LOAD 'load4/*' USING PigStorage() AS
(id:chararray, model:chararray,value:float);!

•  Pig has several built-in data types (chararray, float,
integer)

•  PigStorage can parse standard line oriented text files.
•  Pig can be extended with custom load types written in

Java.
•  Pig doesn’t read any data until triggered by a DUMP or

STORE

Pig – FOREACH..GENERATE,
GROUP

Example:

amodel = FOREACH model GENERATE hits;!
models = GROUP amodels BY model;!
counts = FOREACH models GENERATE group,COUNT

(amodels) as count;!

•  Use FOREACH..GENERATE to pick of specific fields or
generate new fields. Also referred to as a projection

•  GROUP will create a new record with the group name and a
“bag” of the tuples in each group

•  You can reference a specific field in a bag with <bag>.field (i.e.
amodels.model)

•  You can use aggregate functions like COUNT, MAX, etc on a
bag

Pig – Important Points

•  Nothing really happens until a DUMP or
STORE is performed.

•  Use FILTER and FOREACH early to
remove unneeded columns or rows to
reduce temporary output

•  Use PARALLEL keyword on GROUP
operations to run more reduce tasks

Questions?

•  Shane Canon
– Scanon@lbl.gov

•  Lavanya Ramakrishnan
– LRamakrishnan@lbl.gov

52

