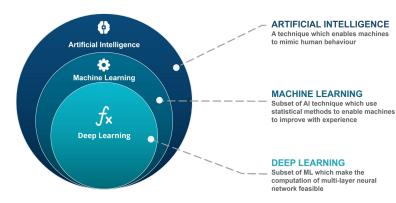
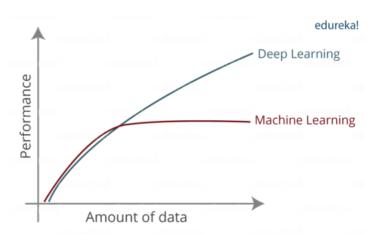
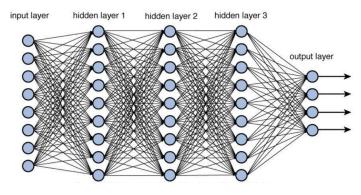
Deep Learning at NERSC

Grads@NERSC: How to Do Deep Learning with Jupyter Notebooks and Beyond April 11, 2024 Steven Farrell Shashank Subramanian Data, AI, and Analytics Services

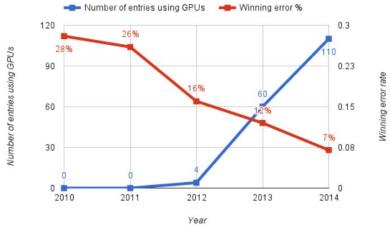
The Deep Learning revolution







ILSVRC GPU Usage and Winning error rate



AI is transforming science

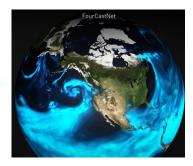
Across all domains

• Especially those with Big Data

Across many application areas

- Analyzing data better, faster
- Accelerating expensive simulations
- Control + design of complex systems

Embraced by the DOE and other funding agencies

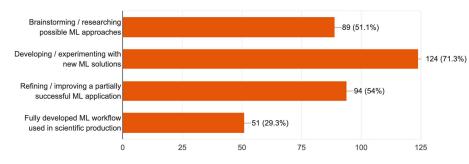


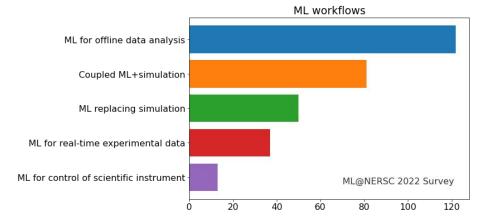
Office of

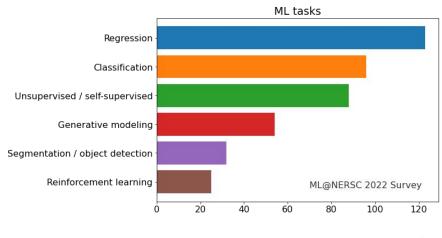
Science

Scientific AI users Science domains Physics - General Astrophysics Computer Science Chemistry High Energy Physics Cosmology Earth and Environmental Science Applied Mathematics Engineering Biosciences Nuclear Physics Geosciences Medical Fusion Energy Science ML@NERSC 2022 Survey Materials Science 10 15 20 25 30 35 40 Ó 5

What is the level of maturity of ML in your research? (mark all that apply to your projects) 174 responses







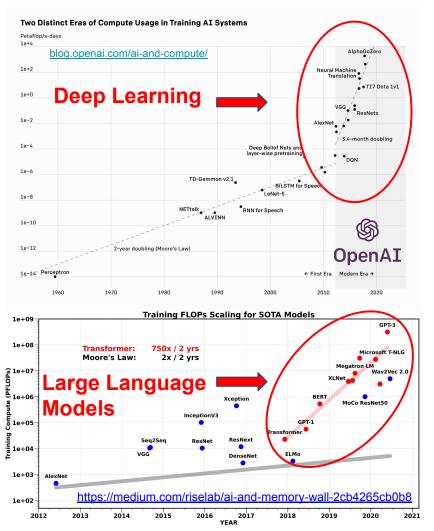
The need for HPC

Growing computational cost of training AI models

 bigger datasets + models, more complexity

Researchers need large scale resources

 Rapid iteration, reduce time to discovery



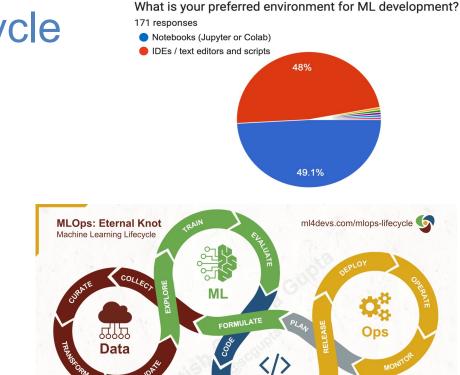
The AI for Science lifecycle

Experimentation

- Jupyter, interactive sessions
- Data engineering
- Testing architecture types
- Full scale training, hyperparameter tuning, validation
 - Batch jobs
 - Parallelism

Deployment

- Offline/online data processing
- Streaming, as-a-service



mons.org/licenses/by-nc-nd/4.0/

CC BY-NC-ND 4.0 International License

2022 Satish Chandra Gupta

Dev

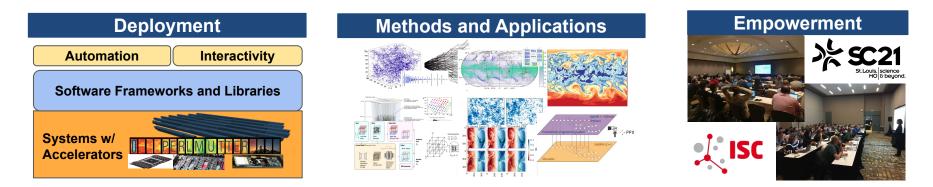
Office of Science

scgupta.me #

twitter.com/scgupta

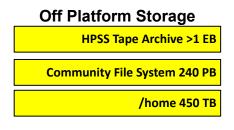
kedin.com/in/scoupta

NERSC AI Strategy



- **Deploy** optimized hardware and software systems
- **Apply** AI for science using cutting-edge methods
- *Empower* through seminars, workshops, training and schools

Perlmutter



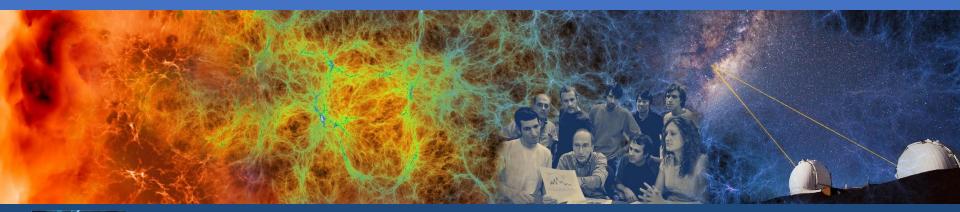
1,792 GPU-accelerated nodes

4 NVIDIA A100 GPUs + 1 AMD "Milan" CPU 448 TB (CPU) + 320 TB (GPU) memory

3,072 CPU-only nodes

2 AMD "Milan" CPUs 1,536 TB CPU memory HPE Slingshot 11 ethernet-compatible interconnect 4 NICs/GPU node, 1 NIC/CPU node

Deep Learning on Perlmutter: Software stack and best practices



Perlmutter deep learning software stack overview

General strategy:

- Provide functional, performant installations of the most popular frameworks and libraries
- Enable flexibility for users to customize and deploy their own solutions

Frameworks:

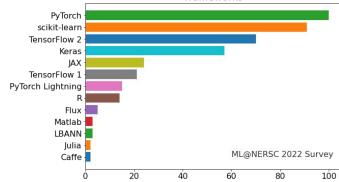
OPyTorch Keras TensorFlow

Distributed training libraries:

- PyTorch distributed
- NCCL, MPI
- Horovod

Productive tools and services:

• Jupyter, Shifter



Frameworks

https://docs.nersc.gov/machinelearning/

How to use the Perlmutter DL software stack

We have modules you can load which contain python and DL libraries:

```
module load pytorch/2.1.0-cu12
```

```
module load tensorflow/2.15.0
```

Check which software versions are available with:

module spider pytorch

You can install your own packages on top to customize:

```
pip install --user MY-PACKAGE
```

Or, clone a conda environment from our modules:

conda create -n my-env --clone /path/to/module/installation

Or, create custom conda environments from scratch:

conda create -n my-env MY-PACKAGES

More on how to customize your setup can be found in the docs (<u>PyTorch</u>, <u>TensorFlow</u>).

Containerized DL: using Shifter on Perlmutter

NERSC currently supports containers with Perlmutter via Shifter

• Easy, performant: our top500 entry used a container!

To see images currently available:

shifterimg images | grep pytorch

To pull desired docker images onto Perlmutter:

shifterimg pull <dockerhub_image_tag>

To use interactively:

shifter --module gpu --image=nersc/pytorch:ngc-23.07-v1

Use Slurm image shifter options for best performance in batch jobs:

```
#SBATCH --image=nersc/pytorch:ngc-23.07-v1
#SBATCH --module=gpu,nccl-2.18
srun shifter python my_python_script.py
```


Jupyter for deep learning

JupyterHub service provides a rich, interactive notebook ecosystem on Cori

- Very popular service with thousands of users
- A favorite way for users to develop ML code

Users can run their deep learning workloads

- on dedicated Perlmutter GPU nodes
- using our pre-installed DL software kernels
- using their own custom kernels

Distributed Deep Learning

Reference material: SC23 Deep Learning at Scale Tutorial

General strategy for optimizing deep learning at NERSC

Start with an appropriate model which trains on a single CPU or GPU

Optimize the single-node / single-GPU performance

- Using performance analysis tools
- Tuning and optimizing the data pipeline
- Make effective use of the hardware (e.g. mixed precision)

Distribute the training across multiple processors

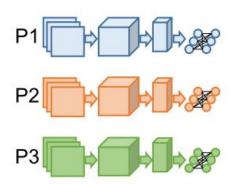
- Multi-GPU, multi-node training: data and/or model parallel
- Use best practices for large scale training and convergence
- Use best optimized libraries for communication, tune settings

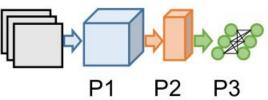
Advanced parallelism

- Model/hybrid parallelism design considerations
- Implementation & analysis



Parallel training strategies





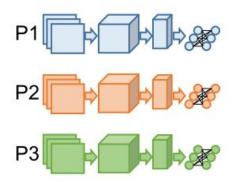
Data Parallelism

- Distribute input samples
- Model replicated across devices
- Most common

Model Parallelism

- Distribute network structure, within or across layers
- Needed for massive models that don't fit in device memory
- Becoming more common

Parallel training strategies



Data Parallelism

- Distribute input samples
- Model replicated across devices
- Most common

Conceptually simple Easy implementation

- PyTorch, TensorFlow have built-in functionality
- Some additional considerations
 - Data loading at scale
 - Modified hyperparameters

Data parallelism

Batches are sharded across GPUs

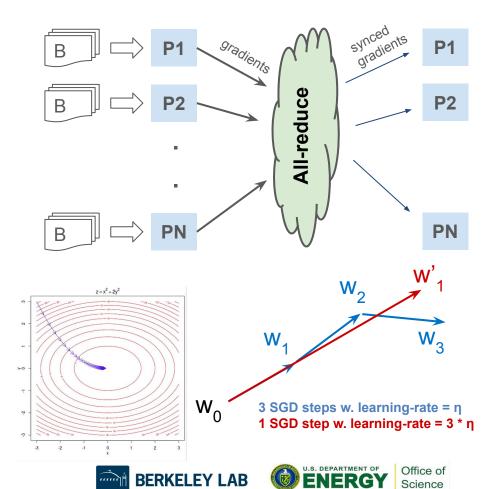
- Local batch-size = B
- Global batch-size = N * B

Gradients averaged across GPUs via all-reduce calls

- Incurs communication cost
- Can be partially overlapped (hidden) by computation

Speed up model training by scaling

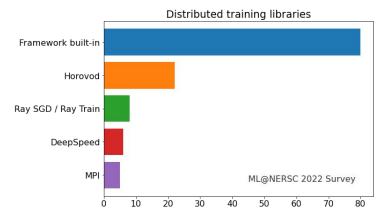
- More GPUs => larger batch size
- Increase learning rates for larger, faster steps to convergence



Distributed Training Tools

Framework built-in

- PyTorch DistributedDataParallel (DDP)
- TensorFlow Distribution Strategies
- Other popular libraries
 - Lightning: DDP + convenient features
 - **DeepSpeed:** ZeRO optimizations, 3D parallelism
 - HuggingFace accelerate: DDP + features
 - Ray: DDP + HPO
 - Horovod: MPI+NCCL, easy to use, examples
 - LBANN: multi-level parallelism, ensemble learning, etc., docs
- **Communication backends**
 - NCCL is the backend of choice for GPU nodes on Perlmutter
- The NCCL OFI plugin (from AWS) enables RDMA performance on the libfabric-based Perlmutter Slingshot network (see our docs)



Office of

Science

Workflow tools

Some high level tools will be vital to your success as you scale up

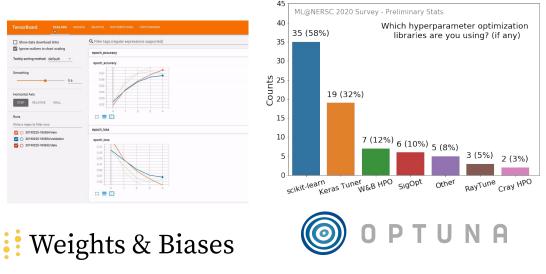
- Hyper-parameter optimization (HPO) is critical for getting the most out of your models and data, but can be complex and computationally expensive
- Experiment tracking and visualization tools make your work reproducible, shareable, and more interpretable

Helpers / examples / docs

NERSC HPO docs

RAY tur

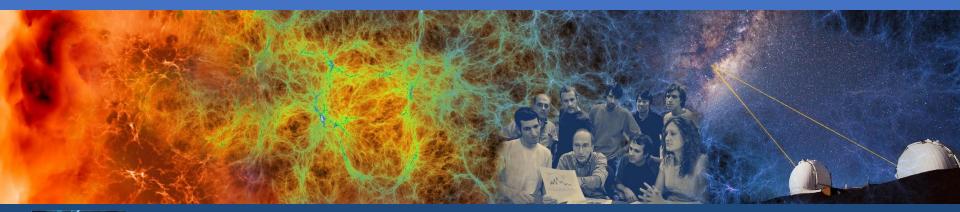
- W&B template (new)
- Ray cluster helper (new)
- Tensorboard jupyter launcher



Office of

Science

Outreach & additional resources



Training events

The Deep Learning for Science School at Berkeley Lab (<u>https://dl4sci-school.lbl.gov/</u>)

- Comprehensive program with lectures, demos, hands-on sessions, posters
- 2019 material (videos, slides, code) online: <u>https://sites.google.com/lbl.gov/dl4sci2019</u>
- 2020 webinar series material: <u>https://dl4sci-school.lbl.gov/agenda</u>

The Deep Learning at Scale Tutorial

- Jointly organized with NVIDIA (+ previously Cray, ORNL)
- Presented at SC18-23, ECP Annual 2019, ISC19
- Detailed lectures + hands-on material covering distributed training, scaling, profiling, and optimization on Perlmutter
- See the full SC23 material here

NERSC training events

- NERSC-NVIDIA LLM Bootcamp 2024 (Apply now!)
- NVIDIA AI for Science Bootcamp 2023
- Data Day 2024, New User Training Sep 2023
- NERSC Data Seminar Series:
 - <u>https://github.com/NERSC/data-seminars</u>
 - <u>https://www.youtube.com/playlist?list=PL20S5EeApOSvkewFluzzscAEkonBlizy</u>

Office of

Science

Conclusions

Deep learning for science is here and growing

- Powerful capabilities; enthusiastic community
- We're excited to see what you accomplish with it!

Perlmutter has a productive, performant software stack for deep learning

- Optimized frameworks and solutions for small to large scale DL workloads
- Support for productive workflows (Jupyter, HPO)

Join the <u>NERSC Users Slack</u>

Take the ML@NERSC 2024 Survey!!!

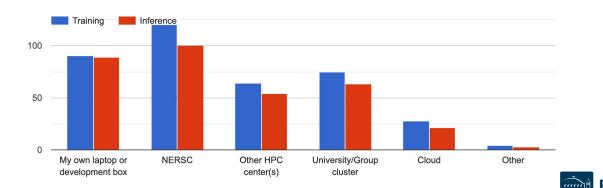
Thank You! Next: run through of <u>GitHub materia</u>

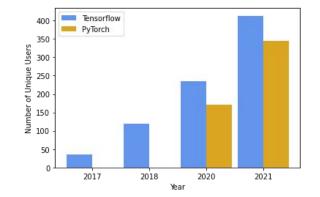
Growing scientific AI workload at NERSC

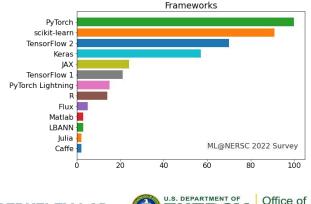
We track ML software usage

- Instrument user <u>python imports</u>
- DL users >10x from 2017 to 2021

Also track ML trends through 2-yearly survey







Bringing Science Solutions to the World

JFR

Science

NESAP and Perlmutter are Enabling Adoption of Large-scale and Groundbreaking AI Open Catalyst 2020 (OC20) Dataset

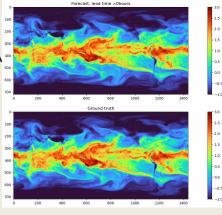
FourCastNet

Pathak et al. 2022 arXiv:2202.11214 Collab with Nvidia, Caltech, ... (+ now LBL EESA

- Forecasts global weather at high-resolution.
- Prediction skill of numerical model; 10000s times faster

Jaideep Pathak former NERSC Postdoc now NVIDIA

Subramanian NERSC Postdoc Former NERSC Postdoc now Staff



HEP-ML

Collab with LBL Physics division (and H1 Collaboration) 💈

2.5

- 1.0

0.5

-0.5

- 1.0

0.5

-0.5

- AI "Unfolding" extracts new physics insights from data
 - **Requires Perlmutter for** 1000s of UQ runs

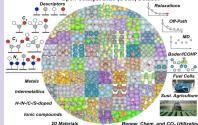


Chanussot et al. 2021 Collab with CMU, MetaAI, ... arXiv:2010.09990

NeurIPS 2021-23

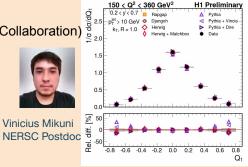
Competitions

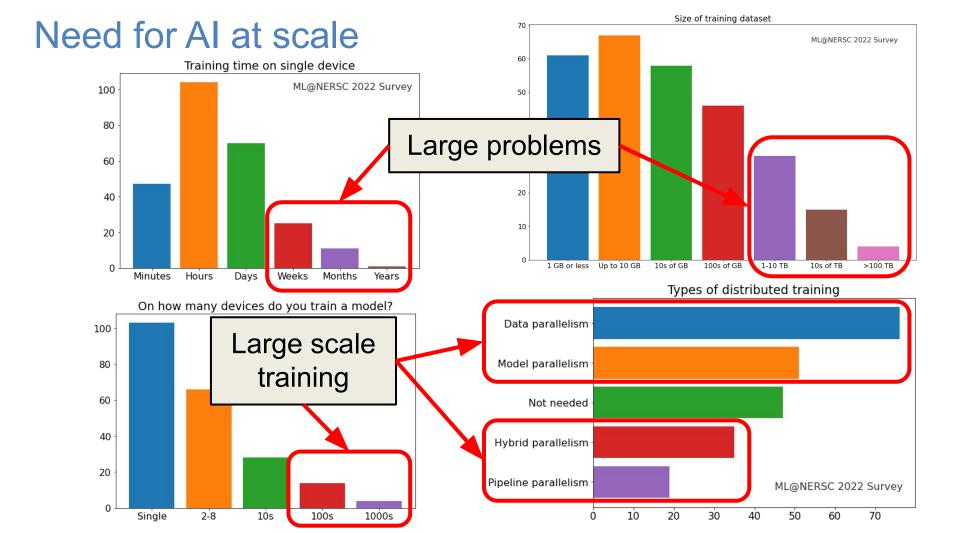
Pre-trained models now used with DFT e.g. FineTuna; <u>AdsorbML</u>



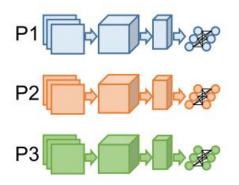
Brandon Wood former NERSC Postdoc now Meta Al

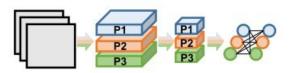
Wenbin Xu NERSC postdoc

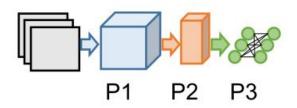




Deep Learning parallelization strategies







Data Parallelism

Model (tensor) Parallelism

Distribute input samples. Distribute network structure (layers).

Layer Pipelining Partition by layer.

Fig. credit: arXiv:1802.09941

Hybrid parallelism example: Megatron-Turing NLG 530B

Best Practices for DL + Shifter on Perlmutter

NVIDIA provides containers optimized for deep learning on GPUs with

- Pytorch or TensorFlow+Horovod
- Optimized drivers, CUDA, NCCL, cuDNN, etc
- Many different versions available

We also provide images based on NVIDIA's, which have a few useful extras

You can also build your own custom containers (easy to build on top of NVIDIA's)

Notes

- <u>Customization</u>: from inside the container, do pip install --user MY-PACKAGE (make sure to set \$PYTHONUSERBASE to a custom path for the desired container)
- NVIDIA NGC containers use OpenMPI, which requires specific options if you require MPI. Instructions: <u>https://docs.nersc.gov/development/shifter/how-to-use/#shifter-mpich-module</u>

General guidelines for deep learning at NERSC

NERSC documentation: <u>https://docs.nersc.gov/analytics/machinelearning/overview/</u>

Use our provided modules/containers if appropriate

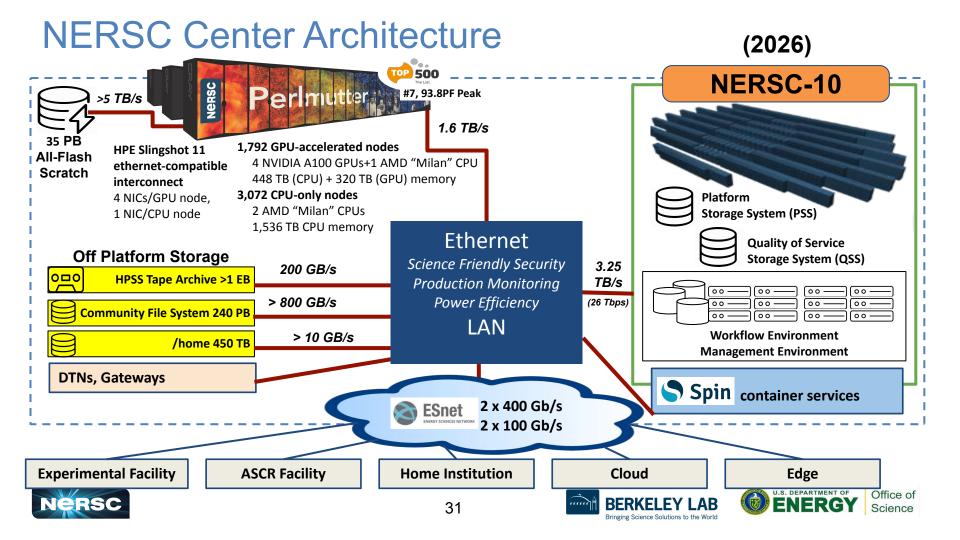
- They have the recommended builds and libraries tested for functionality and performance
- We can track usage which informs our software support strategy

For developing and testing your ML workflows

- Use interactive QOS or Jupyter for on-demand compute resources
- Visualize your models and results with TensorBoard or Weights & Biases

For performance tuning

- Check cpu/gpu utilization to indicate bottlenecks (e.g. with top, nvidia-smi)
- Data pipeline is the most common source of bottlenecks
 - Use framework-recommended APIs/formats for data loading
 - Use multi-threaded data loaders and stage data if possible
- Profile your code, e.g. with Nvidia Nsight Systems or TensorBoard Profiler



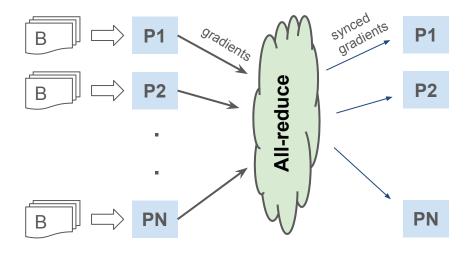
Synchronous data parallel scaling

Weak scaling (fixed local batch size)

- Global batch size grows with number of workers
- Computation grows with communication; good scalability
- Large batch sizes can negatively affect convergence

Strong scaling (fixed global batch size)

- Local batch size decreases with number of workers
- Convergence behavior unaffected
- Communication can become a bottleneck



Local batch-size = B

Global batch-size = N * B

Hyper-parameter optimization (HPO) solutions

Model selection/tuning are critical for getting the most out of deep learning

- Many methods and libraries exist for tuning your model hyper-parameters
- Usually very computationally expensive because you need to train many models
 => Good for large HPC resources

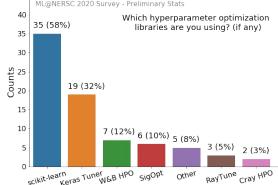
Helpers / examples

- W&B template (new)
- Ray cluster helper (new)

Users can use whatever tools work best for them

SIGOPT

Ask us for help if needed!



Office of Science

TensorBoard at NERSC

TensorBoard is the most popular tool for visualizing and monitoring DL experiments, widely adopted by TensorFlow and PyTorch communities. We <u>recommend</u> running TensorBoard in Jupyter using <u>nersc-tensorboard helper module</u>.

import nersc_tensorboard_helper

%load_ext tensorboard

%tensorboard --logdir YOURLOGDIR --port 0

then get an address to your TensorBoard GUI:

nersc_tensorboard_helper.tb_address()

