
Data Movement in
HEP

Outlook for the next 5-10 years
Brian Bockelman

WARNING:
Claims here are often generalizations.

HEP is a large enough field there is always a counter-example.
All this is done with LHC-tinted glasses.

Conway’s Law, redux

“Any piece of software reflects the
organizational structure that produced it”*

Before starting, think of Conway’s Law:

*Restated: “If you have four groups working on a compiler, you’ll get a 4-pass compiler.

I propose a corollary:

Distributed computing infrastructure reflects the
organizational structure that uses it.

Hence, I will take a minute to discuss how HEP computing
organizes

Collaborations in HEP
• Physicists distributed across institutions; available computing resources are similarly.

• Data movement between resources is essential.

• The biggest computing resource may not be the most important resource to the physicist.

• Ability to coordinate work is sometimes the limit, not available resources.

• Often collaborations are international:

• Much of collaborating is negotiation: no “common leverage” of a single funding agency.

• Data movement systems must interoperate or overlay resources that have drastically different
approaches and priorities.

• Often large enough to afford specialization:

• Computing organizations have highly knowledgeable computing experts they can depend on.

• A double-edged sword: sometimes enough specialization that advanced techniques can get
“locked” into a collaboration.

Computing in HEP
Central Processing Analysis Tasks

A fundamental dichotomy is central processing versus analysis

• Analyze datasets from central processing.

• Organized into “PI-plus-students-sized”
groups.

• Huge variety: can have several workflow
types per group.

• Work is continuous and chaotic - not
planned centrally.

• Not enough experts to optimize individual
workflows. Best hope is to optimize
common tools and use cases.

• Limitation is personnel time.

• Output is “papers and science”.

• Generate events, reconstruct
simulation and detector data.

• Fixed number of workflow types run
and developed.

• Work is planned centrally and
(hopefully) well in advance.

• Significant CPU and data use per
workflow type - cost-effective to
optimize.

• Limitation is hardware budget.

• Output is datasets to use in analysis.

Previous slides are fundamental
principles, 

invariant over decade-long
timescales

(Let’s look at technical items)

File-based Data
• Around 15 years ago, the HEP field invested significant time and money into object

databases.

• This was widely viewed as a failure; similar levels of effort were required to dis-invest.

• Since then, there’s a social knee-jerk reaction against event-level object storage.

• It’s hard to make such databases interoperate regardless. Where they can be
found, it’s usually self-contained within a single system.

• This reaction is fading as institutional memory fades; seeing more experimentation
again.

• However, while files are important, POSIX-like filesystems are not. Medium-to-large
experiments tend to keep file catalog outside the filesystem. Trends:

• Directly using object stores for storing files. (Ceph, AWS S3)

• Unifying disparate filesystems into a single data federation.

Custodial Data
• An important concept is custodial data; data a site is tasked to archive and make available for

the rest of the collaboration.

• The largest experiments sometimes keep multiple custodial copies; for the “average
experiment”, there is just one.

• Unlike additional copies, custodial data management is fairly static and deliberate.
“Custodiality” is almost never changed.

• Custodial data is, without exception, kept on tape. This solution is sufficiently cost-effective,
proven, and integrated into our processes that it is hard to see changes in the next 5-10 years.

• Observation: Use of HSM to make staging from tape transparent has widely been a failure for
largest users. Most explicitly separate within their workflow management.

• Challenges ahead: Ratio of (disk buffer) / (total archive) is currently large enough that we can
be sloppy with buffer management. May not be true in the future!

• Challenges ahead: The teams at the large DOE sites that manage custodial data are world-
class. How can we make sure all HEP experiments have access?

Data Movement between
Resources

• Data must be made available from the custodial location to other locations for processing.

• Users and workflow systems can then utilize a variety of computational resources.

• High level of automation is necessary - we cannot afford to have a human element.

• Important properties of solutions:

• When does the data move? Streamed to job? On demand?

• What happens when data is unexpectedly not available? Can we recover from an alternate source? Throw an
error? Crash?

• To what extent is data movement and workflow management integrated? Is there a feedback loop between the two
systems? Is it a single integrated system?

• What is the access paradigm? “Storage element”? Global file system? Data federation? Caches?

• There’s a fine balance here - CPU efficiency gains versus cost of storage.

• Within the WLCG, we have gone through many models - started with highly static preplacement of data. (Accelerating)
trend is toward dynamic placement, caching, and streaming. This simplifies our use of disk at increased reliance on
the network.

• In 5-10 years, 100Gbps is likely “entry-level”; this is 100Gbps to the ‘site storage’ and from offsite sto the compute
cluster.

Distributed Data
Management

• From a CS point-of-view, distributed data management is one of the most intriguing
problems.

• Wide solution space.

• Ample opportunities for modeling.

• Rich set of theoretical results - can pull in graph theory, autonomous agents,
distributed services, etc.

• Some solutions start to look like Name-Data-Networking, a new hot topic! Some of
our scales make this look like a “Big Data” problem - another hot topic!

• However, it’s also an area where pure CS research has made little impact “on the
ground.” The large-scale production systems have mostly come from within the physics
organization.

• For discussion: Why is this? Is CS too interested in prototypes? Is HEP too insular?

Data to the Cores
• The foundational IO layer in almost every HEP experiment is based on ROOT.

• When advances are made here, they propagate to the rest of the field over due time.

• Improvements to this layer are often more drastic than generational improvements in hardware. Can be
order-magnitude without change hardware.

• Data delivered to cores from storage tends to be non-sequential but mostly deterministic.

• Data rates per “Haswell core” span from 100KB/s to 10MB/s, depending on the application.

• Distribution of data rates can have even further outliers at 100MB/s.

• As CPU time increases with detector complexity, data rates have remained remarkably consistent in the
past decade.

• For most workflows, earlier processing stages are more CPU-bound than later stages.

• For some setups, data must come offsite - outgoing TCP is necessary.

• ROOT was born around the dawn of C++. Hardware has changed significantly since then. For applications
on top to scale, we need better interfaces and APIs for vectorization, parallelization, and memory efficiency.

What is Missing?
• Notably absent is “industry standard Big Data” tools.

• Think Dremel, Hadoop, Spark, etc.

• Several research prototypes have been done.

• Significant effort is still needed for ROOT IO to interoperate with these higher-level
frameworks.

• A key issue left unsolved is how interoperability works between these tools:

• Batch systems result in a common API: the Unix process.

• Virtualization- and container-based systems can use a common image.

• How does one establish a common runtime between Hadoop and Spark?

• Unless we solve the issue of a homogeneous interface, I don’t see adoption as
possible.

Projects To Watch
Want to see the future?

Watch these projects for a hint
of where the field is going!

SAMGrid
• Data management system originally developed for the Tevatron Run 2

experiments.

• Modernized and updated for FIFE (FabrIc for Frontier Experiments).

• Handles file locations, dataset definitions, namespace management,
bookkeeping.

• Scale and complexity is smaller than LHC experiments.

• Although there is an increased focus on dynamic dataset definition.

• Importantly, this is re-used by about a dozen experiments.

• Question: What technical or organizational advantages does this
software have that they have achieved wider reusability?

ATLAS Event Service
• Core idea: instead of

breaking work into
arbitrarily-sized jobs,
have jobs work on
smallest granularity
possible. Gains
tremendous flexibility
for workflow systems.

• Note use of object
store for intermediate
data management.

Questions? Ask next speaker, Torre!

AAA: Any Data, Any Time,
Anywhere

• Goal: increase data accessibility within HEP through the use of data federations.

• Data Federation: A collection of disparate resources transparently accessible across a wide are via a
common namespace.

• Simply put, the user can access any of their experiment’s data from anywhere in the world without
having to know details about location.

• Key aspect: overlay on top of existing storage system, as opposed to requiring special functionality.

• Significant R&D issues in IO provisioning, monitoring, and load-balancing a global system.

• Formal grant period wrapping up, but we’ve been highly successful in demonstrating the concept,
operating a production service, and showing the popularity with users.

Site A Site B Site C

Global Xrootd
Redirector

Xrootd Xrootd Xrootd

POSIX Storage Hadoop Storage dCache Storage

User
Application

Q: Open /store/foo
A: Check Site A

Q: Open /store/foo
A: Success!

Cmsd Cmsd Cmsd

Xrootd Cmsd

Site D

Xrootd Storage

Cmsd Xrootd

Questions? 
Ask me!

ROOT IO
• In the end, all data moves through ROOT. If you want to make data movement faster / better, this

is your first stop.

• ROOT IO was designed in an era of no vector units and with lower ratio of (memory latency) :
(CPU cycle).

• These APIs currently inhibit vectorization, parallelization, and make for poor memory locality.

• With the Knight’s Landing architecture around the corner, we must make targeted
improvements!

• As the common layer in HEP, changes here can help pull the field into future architectures.

• If we’d like to make progress on interoperating with other data processing stacks (Hadoop,
Spark), we will need support on this layer.

• The ROOT team is aggressive and talented. For example, they just switched to a modern
compiler architecture, allowing them to remove 500,000 lines of code!

• For another case study in modernizing interfaces for parallelism, look at CMSSW’s
multithreading effort!

Take-aways
• Computing is a critical component of a successful HEP experiment. However, the underlying

organization of these collaborations put interesting boundary conditions on how solutions are
designed. These boundary conditions appear invariant on the 5-10 year scale.

• Limiting factor can be organization, not necessary hardware resources!

• Managing custodial data is one of the most critical tasks, and perhaps the most mature.

• Wide area data movement is tightly coupled with larger workflow systems.

• Trend is toward more dynamic systems which require less specialized services and less
human intervention.

• This is a significant, difficult optimization problem involving network, CPU, storage, and IO.
Volumes of CS research in this area, but they’ve had little impact in this field.

• Largest systems are built “in house” - although we’re seeing signs of greater re-use.

• Within a site, the whole field has a common layer - ROOT IO - making it an ideal layer for
investment. It will be critical to adapt ROOT to tomorrow’s architectures.

