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A few facts

 GW calculations are more expensive than DFT calculations
 Much more if code is unoptimized

 People don't want to waste time/resources doing proper 
convergence tests

 Many calculations are under-converged
 Don't even have good estimate for error!

 Unconverged calculations can cloud understanding
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There are 5 convergence parameters

 Screened cutoff 

 Empty bands (dielectric matrix)

 Bands in CH summation (sigma)

 q-grid 

 Wavefunction cutoff (matrix elements)
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B.-C. Shih, et. al., Phys. Rev. Lett. 105, 146401 (2010)
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Weak kpoint dependence of conduction bands allows use 
of small q-grid when doing convergence wrt bands,cutoff

 2x2x2 grid is usually sufficient
 Allows you to check multiple gaps
 Different gaps converge with different

speed
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(              ) = 1 

 Cannot screen at small wavelengths/high energies
 Large |G| g-vectors only contribute to bare exchange
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B.D. Malone, M.L. Cohen, J. Phys.: Condens. Matter 25 105503 (2013)



  

Scheme for converging bands and screened cutoff 
together

1.  Calculate the dielectric matrix with 
“infinite” number of empty states and g-
vectors, test error in QP gaps as you 
vary number of bands used in CH 
summation

2. Test error as you vary the number of g-
vectors in your dielectric matrix while 
using an infinite number of empty 
states and and infinite number of bands 
in CH summation

3. Test error as you vary the number of 
empty states used in dielectric matrix 
while using an infinite number of g-
vectors and an infinite number of bands 
in the CH summation 

 Infinite = very large number

 Chosen from experience/physical 
considerations

 Best to be conservative

 Error = deviation from value calculated 
with largest value for the parameter 
under consideration

 In gaps because converge faster 
and physically relevant

 Step 2 cheap after step 1 because can 
set “screened cutoff” in sigma.inp

 Use close to final wavefunction cutoff
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Since wavefunction and q-grid convergence are 
independent, do separately later

 After pick desired number of empty states in epsilon, 
screened cutoff, and number of states in CH summation 
then use those values to do wavefunction cutoff and k-
point convergence tests

 Should used converged values because gaps change with better 
convergence, and error in gap will scale with gap

 Pick parameters based on desired total error
 Rule of thumb : 50% of error from kpoints, wavefunction cutoff  
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The necessary screened cutoff can be determined from 
curvature of screening electron wavefunctions

 For non-exotic semiconductors, e.g. Si, GaAs, Ge, when 
you include only the valence electrons a cutoff of ~15-20 
Ryd is sufficient for an accuracy of ~50 meV.

 For systems with elements that have active semicore 
electrons or that are in the 1st row of a new angular 
momentum block, e.g. 2p, 3d, a larger cutoff around 40-50 
Ryd is needed for a similar level of accuracy

 Generally don't need screened cutoffs larger than 100 ryd 
because screening is not present at those short 
wavelengths/high energies
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A rough estimate of the upper bound of number of bands 
needed is given by number of G-vectors corresponding to 
screened cutoff 

 All conduction states = plane waves : maximum number ≈ 
number of G-vectors

 Utility gsphere.py determines number of G-vectors 
corresponding to screened cutoff
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Example : Si with semicore electrons

 Si with only valence electrons : hundreds of bands, 15-20 
ryd cutoff to get 0.1 eV accuracy

 Semicore electrons more localized : more bands, higher 
screened cutoff : estimate ~1-2000 bands, 50 ryd cutoff

 ∞ : bands = 3900, screened cutoff = 90 ryd

 Wanted 20 meV error total

 Wavefunction cutoff = 800 ryd, qgrid = 2x2x2



  

Bands in CH summation

energy error (m
eV

)

Band in CH



  

Screened cutoff

energy error (m
eV

)

Screened cutoff



  

Empty bands in dielectric matrix

energy error (m
eV

)

Empty states in epsilon
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Chose 1500 bands in epsilon, sigma and 60 ryd 
screened cutoff for 10 meV error

 Wavefunction cutoff = 700 ry

 qgrid = 8x8x8
 Total of 10 meV error from these two sources

− Grand total of 20 meV error
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Systematic, physically motivated scheme to get well-
converged GW calculations

 Other methods exist
 Wavefunction cutoff from hartree-fock
 Screened cutoff from COHSEX 

 For BSE, different parameters matter
 BZ sampling critical

 Get accurate error estimate, right answer

 More examples of why important later
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