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U.S. is getting hotter
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2012 Warmest Year on Record for U.S.

The 2012 annual temperature was 3.2°F above the 20th
century average, making it the warmest year on record for the
contiguous United States. Read more in the full report.

http://www.ncdc.noaa.gov/




California is in midst of drought
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Projections for California’s Snowpack
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Climate models serve to project Earth’s future
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Credit: NOAA

* Tool for predicting the future
* Tool for understanding the past
* Numerical “parallel Earth”

Credit: LANL



Extremes are a growing research focus
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Can we predict climate change at the timescales of
extreme climate events?

* Projections suggest:
— More intense hurricanes
— More intense downpours
— Stronger storms

* These require ultra high
resolution to detect and track
storms in centuries to millennia
of climate projections.




fastest computer’s operations per second

Extreme computing will transform projections
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Simulating extreme weather events

August 22 1979




Big data challenges for extreme weather

August 11979 =3
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Clouds scales and model resolution

Median cloud size (km) ) Cloud coverage (%)




Potential of adaptive atmospheric dynamics

-

« Many meteorological features
are localized in space and time

» Features can be: stationary,
move at advected speeds,
or evolve from wave dynamics

» Refinement can greatly reduce
computational resources needed

Examples:

 Tropical cyclones

« Squall lines / storm fronts
» Atmospheric rivers

« Sporadic “burst” events

080401/0103 RADAR

~ Refine where/when required Radar image of a squall line over central US
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Why non-hydrostatic?

~

* Below 20km resolution, non-
hydrostatic effects begin to emerge

* Overall, low-Mach number is
the appropriate regime, but little
benefit due to fast gravity waves
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* Cloud-resolving models, etc. are
growing trends in GCM, NWP

* DNS baselines will be needed for
stochastic / PDF formulations in the
(not so distant) future

* Refinement (ad nauseum) tests the
“convergence” of physics models and
time coupling

/




Goals of dynamic AMR atmospheric simulations
)

Create a high-resolution, high accuracy dycore to eliminate local numerical errors

* Fully non-hydrostatic dynamics (4th-order in space and time)
* Excellent scaling (100k+ cores) without vertical explicit acoustic CFL limitation
* Anisotropic adaptive mesh refinement in space, refinement in time

- 3 levels with 4x refinement produces > 5 more digits of accuracy

—> Starting with 1° base level, resolution < 500m, ~2s time steps




Chombo AMR code is well-established, scalable

Broad set of applications leveraging Chombo
framework with complex physics:

MHD for tokamaks (R. Samtaney, PPPL)
Cosmology: CFD + particles (Miniati, ETH)

Space plasmas: compressible CFD electromagnetic,
kinetic effects (G. Zank, UA)

Astro. MHD turbulence (McKee / Klein, UCB)
SF Bay Hydrology modelling (CA DWR)
Microscale fluids (UNC / UCD / LBNL EFRC)
Heat transfer in nuclear reactors (LBNL)

Nuclear reactor safety - hydrogen combustion
entrainment models (Calhoun, CEA-Saclay)

Type Il Supernovae (Woosley, UCSC, LLNL)
4D gyrokinetic tokamak edge plasmas (LLNL) ...

Long-term ASCR investment: SciDAC, FastMATH ...
- Target platforms extreme-scale / DoE LCF’s
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200k processor benchmark,
nearly ideal weak scaling

on similar hyperbolic problems!
[EuroPar2011]




BISICLES: Dynamic AMR for Ice Sheets

Objectives

Understanding ice sheet dynamics is crucial for credible predictions of

future sea level rise (SLR)

(below) Computed ice velocity for
Antarctica, mesh and grounding line

for Pine Island Glacier.

Very fine resolution (better than 1 km) needed to resolve dynamics of  wmagweiocity

. . . . . 5000. m/a
grounding lines — unfeasible for entire ice sheets IW
22.36

Dynamic Adaptive Mesh Refinement (AMR) brings fine resolution to
bear only where needed to resolve the dynamics.

Impact

Enables modeling grounding line
dynamics of marine ice sheets with
sufficient spatial resolution to
correctly model advance or retreat.

AMR models dynamics correctly (vs.
lo-res reduced or no mobility)

Enables continental-scale modeling of
ice sheets at the resolution /
computational cost for global climate
models (GCMs).

¥ m/a
m/a
—1.495 m/a

—0.1000 m/a

Amundsen Embayment Ice Sheet Simulati

One possible climate scenario (Payne et al.)
simulated using SciDAC-funded BISICLES code
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Cubed Sphere Formulation

/° Use a “multi-block” mapping between rectangular index space and CS panels

* Use an arbitrary stretched grid in the radial direction (pressure coordinate, etc.)




onservative FV on Cubed Sphere “Shells”

e Riemannian form of compressible Euler
[Ullrich Jabl. JCP 2012]

* Cubed sphere metrics calculated
* Conservative, in flux divergence form,

analytically, mapped to unit sphere
* “Shells” because we neglect
with “~” indicating deviation from

the radial metric dependencies
constant hydrostatic background state
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What makes this harder than hydrostatic?

/° At 1° resolution, lower atmosphere
cells can have ~1000:1 aspect ratio

* Euler has (fast) acoustic waves,

(almost as fast) gravity waves
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* Sound wave-based CFL for explicit
methods = 1000x smaller time step

* Need an alternative to explicit time
integration in the vertical direction!
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Horizontal acoustic waves ok
within a wide aspect ratio cell

Vertical acoustic
Waves Cross
thin cells too
quickly for
explicit CFL!
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Tricks from aero / combustion CFD

/° Equation of state is used to derive an equivalent equation
for the pressure perturbation:

* If we evolve this separately from

@ey will diverge, so

connect with a Lagrange multiplier to EoS:
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Adaptive Mesh Refinement
4 N

To achieve 4th-order accuracy in space on
adaptive mapped grids:

* Interpolate coarse to fine “ghost cells” in space
(4th-order least-squares) and time

* Algorithm advances fine level in time

* Covered coarse solution is average of fine

* Coarse fluxes must be “corrected” with fine
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Demo calculation

Dynamics: Prescribed Hadley circulation
Physics: Large-scale condensation
Lower boundary:  Aquaplanet

H20 processes: Advection & condensation
Movie: 3D vapor and surface rainfall
Simulation time: 30 days

AMR grid: 0.7° resolution,

3 mesh tiers




Near-term Future Plans for AMR

What are we hoping to accomplish?

 4th-order in space and time, without limitation of vertical explicit CFL

* Near-perfect scaling (CHOMBO explicit implementations have gone to 100k+)
* Anisotropic adaptive mesh refinement, 4t-order in space, refinement in time
- 4 levels of 4x refinement produces almost 5 more digits of accuracy

- 1° base level, that would be < 500m resolution, not feasible with uniform grid

Future plans:
* Finish non-hydrostatic implementation,
* Add orography

* Integrate with various “column physics” to
observe refinement behavior

* Support “grid insensitive,”
time-accurate physics parameterizations

-




Projections of Sea Level Rise
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Projections 3x over AR4.

Land ice sheets contribute
1/3 of total by 2100.

Land ice contributes are
dominant on long term.

Long-range sea-level rise is
about 2.3 meters/°C.

IPCC AR5 Fig. 13.27



Motivation: Future Sea Level Rise (SLR)

Projections: For RCP8.5, [projected] global mean SLR for 2081-2100 (relative to
1986—-2005) [is] 0.45—0.81 m ... range at 2100 is 0.53—0.97 m

Based on current understanding, only the collapse of marine-based sectors of the
Antarctic ice sheet, if initiated, could cause [215 century SLR] substantially

above the likely range

Paleoclimate record:

Pliocene warm intervals: CO, levels 250-400 ppm; temperatures 2°C to 3.5°C
warmer than pre-industrial; records suggest deglaciation of West Antarctica and
parts of East Antarctica with global mean sea level not >20 m above present

Last Interglacial: global temperatures were not more than 2°C above pre-industrial;
global mean sea level at least 5 m higher than present; Greenland likely
contributed 1.4 - 4.3 m, implying a contribution from Antarctica

IPCC AR5 (2013), WG1 Technical Summary



Motivation: Future Sea Level Rise (SLR)

further thinning

thinning ¢

melt ponds

Qin Q out Qin Oout-
‘ ‘ ‘enhanced melt
<+—— flotation
and retreat warm water intrusion

«4— further retreat

IPCC AR5 (2013), WG1 Technical Summary, Ch.13

Observations and modeling argue for the importance of ice-
ocean interactions in causing changes in submarine melt rates,

with consequent dynamic ice sheet response, including
grounding line retreat and increased mass flux to the oceans.!: 2

1Joughin & Alley (Nat. Geosc., 4, 2011) 2 Straneo et al. (BAMS, 94, 2013)




Previous Work (mainly Antarctic)

*** Previous work exploring coupled ice-ocean evolution:

idealized, stand-alone ocean modeling

Idealized, stand-along ice sheet modeling

realistic, low / high res., stand-alone ocean modeling

realistic, low / high res., stand-alone ice sheet modeling

idealized, fully coupled ice-ocean modeling

Goal of current work: realistic, high resolution, fully coupled ice-
ocean modeling

*** Grosfeld et al. (1997); Holland & Jenkins (2001); Walker et al. (2007,2008); Losch (2008);
Holland et al. (2008); Thoma et al. (2008); Pollard et al. (2009); Joughin et al. (2010); Yin et
al. (2011); Cornford et al. (2012); Mueller et al. (2012); Schodlok et al. (2012); Heimbach &
Losch (2012); Goldberg et al. (2012a,b); Gladish et al. (2012); Little et al. (2012); Hellmer et
al. (2012); Timmerman et al. (2013); Kushara et al. (2013); Sergienko et al. (2013a,b);
Parizek et al. (2013); Wilson (2013); Robinson (2013) ... plus many more.



lce Sheet Model: BISICLES

“L1L2” momentum balance 1

« formally 15t-order approximation to Stokes equations 2
» velocities: 2d elliptic solve + SIA vertical column solve

Block-Structured AMR for improved accuracy in regions of dynamic
complexity (e.g., grounding lines)

MISMIP3d 3 — demonstrates grounding line “reversibility” with results
very similar to simulations using high-resolution Stokes 4

Optimization on sliding param. & ice softness to match obs. vels.

Coupled to Community Ice Sheet Model (CISM)

1Cornford et al. (2012); 2Schoof and Hindmarsh (2010); 3Pattyn et al. (2013); 4Pattyn & Durand (2013)



Ocean Model: POP2x

« POP2 = Parallel Ocean Program version 2 (hydrostatic,
Boussinesq, primitive equations)’

« z-level vertical coordinate, partial bottom cells

« “X" = eXtended to include ice shelf cavity circulation using
partial top cells?

« sub-shelf mixed layer thickness = dz (vert. mixing scheme?,
not physics based)

« For idealized experiments?, sub-shelf circulation in POP2x
compares very well with previously published results

1Smith et al., (2010); 2Losch (2008)



Realistic uncoupled experiments
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Amundsen Sea Embayment Simulation

" Ice Velocity
Amundsen Embayment -- 4km Resolution ~5000. m/a
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Movies courtesy of S. Cornford and D. Martin



POP2x: realistic experiments (uncoupled)

POP Rignot et al. (2013)
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Amundsen Sea Embayment Simulation

Same forcing as previous run with

submarine melting constant after 2200

In +400 yr run, Thwaites fairly stable

(until it's not)
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Whole Antarctic Ice Sheet Simulations

Mag(Velocity)
3000.
I 228.0
-17.32
1.316
0.1000

Max: 5381.
Min: 0.000

Velocity magnitude [m/yr]

1000 km

Ross Ice Sh
; University
108t |cg Shelf

Dibble

- base level res. of 5 km, refinement to 625 m -

180

(courtesy of D. Martin & S. Cornford) Rignot et al., Science, 333 (2011)



POP2x: realistic experiments (uncoupled)
circumpolar simulation domain
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Vertical Grid:
. Z-level: 80 levels .
. dz=10-250 m - & Horiz. Resolution:
. dz ~55 m at 1km depth 0.1° ~5 km




Fully coupled ocean/land-ice experiments
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Coupled, realistic experiments (8 yrs)

Mag(lce Velocity) (m/a)
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Antarctic Volume Change: BISICLES + POP2x
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Summary & Future Work

High-resolution, whole-Antarctic forward model integrations with realistic,

large-scale ocean-model forcing are stable on decadal (to century?)
timescales

Future work will focus on:

Correcting ocean-model biases

Validation of ice sheet, ocean, and coupled model output
Coupled, forward model integrations under range of RCPs
Static shelf coupling in CESM? (active ocean + data ice sheet)

Development of ice-ocean coupling capability in MPAS-Ocean



