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Recent Developments on BerkeleyGW

• CPU computing 
à GPU computing

• Four DOE supercomputers
o Perlmutter - NVIDIA GPU
o Frontier - AMD GPU
o El Capitan - AMD GPU
o Aurora - Intel GPU
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Three Key Numbers

10,968 electrons
(Ground-Breaking for High Fidelity Excited-State Calculations)

105.9 PFLOP/s
(72% of the LINPACK Peak of Summit)

10 minutes
(Same Time to Make a Coffee)



GPU Implementation and Optimization
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Code Base: 
• ~100k LOC; Fortran; MPI/OpenMP on CPU
Computational motifs: 
• Large matrix multiplications (100k x 100m!)
• Fourier transforms 
• Large low-rank reductions
• Eigen problems
• Matrix inversions 

Scaling for computation vs memory: 
• Epsilon:    O(N4) vs O(N3)
• Sigma:     O(N3) vs O(N2) 

https://berkeleygw.orgBerkeleyGW
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• CPU code:       
o ~100k LOC; Fortran; MPI/OpenMP

• GPU porting and optimization:
o CUDA/C++ and OpenACC branches
o cuBLAS/cuFFT libraries and custom codes
o non-blocking cyclic communication scheme 
o CUDA streams
o batching operation
o data prestaging 
o Roofline analysis

https://berkeleygw.orgBerkeleyGW

Some optimizations are 
on the application level, 

and some are on the 
kernel level!
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App-level: Epsilon CHI-0

• Non-blocking cyclic communication: 
o overlap GPU computation with MPI 

communication
o point-to-point MPI vs. MPI collectives

• Batching mechanism: 
o avoid OOM on GPU and CPU

• Offload data preparation to device
o D-H is a weak link in accelerated computing
o utilize asynchronous D-H transfers

data layout for M matrix in CHI-0

non-blocking cyclic communication scheme
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App-level: Sigma GPP 

• Tensor contraction
• Abundance of parallelism

o inter-pool vs. intra-pool
o MPI ranks, CUDA streams, 

threadblocks, threads 
à large data reduction

• Kernel-level optimization
o execution latency, memory latency

• Roofline analysis 
o bandwidth bound à compute bound
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App-level: I/O optimization
• Exploit node-local solid-state memory (SSD) on Summit

o Prepare data à in a distributed form 
o Prestage data à to node-local SSDs
o Runtime à each rank reads from its own SSD

WFN file
HDF5
format
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Kernel-level: Sigma GPP

• Contributes to >90% of the runtime for Sigma
• Nsight System profile:

One of 3000 kernel invocations on each GPU
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Kernel-level: Sigma GPP

# pseudo code per invocation

for band = 1, nbands # O(1k)

for igp = 1, ngpown # O(10k)

for ig = 1, ncouls # O(100k)

for iw = 1, nw # small

Computation

Reduce to small arrays

• Tensor contraction
o Bandwidth bound

• Reduction of 1012 numbers
o Shared mem for partial sums

• Double complex numbers
o High register usage

• Multiple multi-dim arrays
o Memory access pattern

• Long-latency operations
o Divisions, square roots
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Kernel-level: Sigma GPP

1. Baseline*
2. Replace divides with reciprocals
3. Replace square roots with power of 2
4. Replace divides and square roots
5. Loop re-ordering
6. Further increase occupancy
7. Cache blocking
8. Add more arrays to shared memory

*with certain optimizations included retrospectively
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1. Reduce Execution Latency (v4)
• Before optimization • Replace complex divides 

by reciprocals
(a+bi)/(c+di) 

1.0/(c2+d2) 
* ((ac+bd)+(bc-ad)i)

• Replace square roots by power of 
2 calculations

abs(a+bi)>c

(a2+b2)>c2

Warps are stalled waiting on a 
fixed latency execution dependency

https://docs.nvidia.com/nsight-compute/ProfilingGuide/ 
index.html#statistical-sampler
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• Hierarchical Roofline chart

1. Reduce Execution Latency (v4)
• After optimization

Warp Waits have dropped significantly, 
even though Long Scoreboard has 

become more pronounced
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2. Gain Arithmetic Intensity (v5)
# Before optimization (v4)

for band = 1, nbands # O(1,000)

for igp = 1, ngpown # O(10,000)

for ig = 1, ncouls # O(100,000)

…
 

# After optimization (v5) (more kernels)

for igp = 1, ngpown # O(10,000)

for ig = 1, ncouls # O(100,000)

for band = 1, nbands # O(100)

…

• Parallelism
• Memory access  
• Cache blocking
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2. Gain Arithmetic Intensity (v5)

• Higher HBM arithmetic intensity
• Compute bound now !

• What’s the peak for V100? 
o 6.7 TFLOP/s vs 7.8 TFLOP/s
o 1312 MHz vs 1530 MHz

80×32×2×1312e6 = 6.7	TFLOP/s

Try nvidia-smi or Nsight Compute

24% runtime
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3. More Compute Resources (v6)

• GPU computing is all about latency hiding! 
• Keep an eye on kernel launch parameters
• Experiment with maxregcount

o Trade register spill for higher occupancy
o Do this when the code is stable (register usage might change)



Performance Results
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Benchmark Setup
• Summit (OLCF)

4,608 nodes, each with 2 IBM POWER9 CPUs and 6 NVIDIA V100 GPUs

• Cori-GPU (NERSC)
18 nodes, each with 2 Intel Xeon Skylake CPUs and 8 NVIDIA V100 GPUs

• Cori-Haswell (NERSC)
2,688 Haswell nodes, each with 2 Intel Xeon E5-2698v3 CPUs

Cori
NERSC

Summit
OLCF
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Benchmark Setup

• Point defects in semiconductors 
• silicon / silicon carbide for qubit prototypes

• Up to 2,742 atoms and 10,968 electrons

Large-scale calculation:
100s of TBs memory!

10s of EFLOPs compute!

Isosurface for one of the in-gap states 
associated with a divacancy defect in Silicon
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GPU vs CPU Speedup
Epsilon
Si-214, Skylake CPU vs. V100 GPU on Cori, 
2 nodes total (4 CPUs vs. 16 GPUs)

25x 23.5x 18.6x

Sigma
Si-510, Cori Haswell CPU vs. Summit V100 GPU,
node-to-node (2 CPUs vs. 6 GPUs)

18.6x speedup! 86x speedup!
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Weak Scaling

Epsilon on Summit
• Most computationally intensive: CHI-0
• The number of GPUs is scaled according to 

the computational complexity O(N4).  

Sigma on Summit 
• The number of GPUs is scaled according to the 

O(N3) computational complexity in Cases A, B 
and C, and to the number of quasiparticles in 
Cases C, D and E.
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Strong Scaling and Best Performance

• [Top left] Throughput of Epsilon CHI-0 and Sigma 
GPP for SiC-998 and Si-2742 on Summit

• [Top right and Bottom] Strong scaling and best 
performance (PFLOP/s) of Sigma on Summit
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Best Performance
GPP per GPU: 3.9 TFLOP/s

Application BerkeleyGW
Benchmark Si-2742
# of GPUs 27,648 (full Summit)

Compute Time 592 s
I/O Time 39 s

Throughput 105.9 PFLOP/s (FP64)
% of Rpeak 52.7% of 200.79 PFLOP/s
% of Rmax 71.3% of 148.60 PFLOP/s1
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Sigma on Full Summit: 105.9 PFLOP/s
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Three Key Numbers

10,968 electrons
(Ground-Breaking for High Fidelity Excited-State Calculations)

105.9 PFLOP/s
(72% of the LINPACK Peak of Summit)

10 minutes
(Same Time to Make a Coffee)
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