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Team members and goals of the project

Grzegorz has started his PhD at the University of Liverpool in April
2017, co-supervised by Michael Wehner and Vitaliy Kurlin.

Prabhat and Karthik have substantially contributed to the project.

I Find low-dimensional representations of data that capture
non-linear dependencies in climate data.

I Develop topological data analysis methods for detecting and
classifying patterns (“shapes”) in climate data.

I Design and implement algorithms that can be included into
the Toolkit of Extreme Climate Analysis (TECA) used at the
Berkeley Lab for distributed and parallel computing.
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Science Problem: Motivation

I Understand changes in extreme weather events or patterns.
An Atmospheric River (AR) is a long narrow high-moisture
filament. ARs play a key role in the global water-cycle.

I Produce useful frequency statistics for climate models based
on the number of AR occurrences during a year.

Left: an AR bringing water vapour from the tropics to the western
US. Right: a non-AR event without a filamentary structure. TMQ

is the Integrated Water Vapor (IWV) in kg/m2 (mass over area).
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Science Problem: Goals
I Avoid subjective thresholds on physical quantities such as

20 kg/m2 of Integrated Water Vapor (IWV).
I Provide a reliable weather/climate pattern recognition

method that can work without manual tuning of parameters
for di↵erent resolutions of climate models.

I Identify ARs with high accuracy and precision.

Atmospheric rivers (ARs) can have very di↵erent geometric shapes
and features (lengths and widths). Topological features of ARs
(connectivity, holes) are invariant under continuous deformations.
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Method: Pattern Recognition Method

We developed a two-stage method for AR pattern recognition
based on Topological Data Analysis, i.e., TDA algorithm, and a
machine learning algorithm, i.e., Support Vector Machine (SVM).

I Input: 2D scalar fields (IVW) on a regular grid.

I Output: binary labels: AR = 1, non-AR = 0.

The flowchart of two stages of the AR pattern recognition method.
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Method: Stage 1 of the proposed AR detection

I Stage 1: extract topological descriptors (sizes of connected
regions). The TDA algorithm uses the Union-Find data
structure and runs in time O(m logm) for m grid points.

Stage 1: extract topological descriptors from 2D scalar fields.
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Method. Stage 1: Topological Data Analysis

The algorithm monitors changes in superlevel sets consisting of all
grid points with IVW higher than a variable threshold.

At a critical moment, two locations (e.g., Hawaii and the West
Coast) will be covered by a single connected high moisture region.

Sizes of superlevel sets vs thresholds. Left: 100 random ARs;
Right: Averaged and normalized descriptors for the full dataset.
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Method. Stage 2: Support Vector Machines
I Vectorize topological descriptors, train SVM on TECA labels.
I Exhaustively search for best hyper-parameters in a grid, i.e.

loose and fine grid searching approaches are applied.
I Perform a cross-validation classification.

Stage 2: classify ARs using topological features of 2D scalar fields
and labels from TECA (the Toolkit for Extreme Climate Analysis).
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Method: Implementation

C++ and Python code:

I We have implemented TDA algorithm in C++ inside LBNL’s
parallel toolkit TECA (the Toolkit for Extreme Climate
Analysis) using distributed data parallelism and map-reduce.

I We can clean and optimize the current C++ implementation
of the TDA algorithm if needed.

I We have used Support Vector Machine classifier (SVM) from
the scikit-learn machine learning package in Python.
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Method: Implementation’s Performance

Runs on Cori:

I Runs on 2-15 “Haswell” nodes (32 cores each).

I Loads up to several dozens of GB.
I Execution time of the algorithm:

I TDA stage: 6 minutes - 15 minutes.
I SVM stage (exhaustive grid search for hyper-parameters

tuning): 40 minutes - 4.5 hours.

Performance or Scaling issues observed:

I SVM’s skitlearn implementation does not perform as expected,
i.e., it only provides parallelism for hyper-parameters tunning.

I Need to use Intel Data Analytics Acceleration Library (Intel
DAAL) for the SVM.
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Results: Science Results

I New way of analyzing and understanding the behaviour of
weather patterns, in particular Atmospheric Rivers (ARs).

I Novel technique for assessment of climate model by using
TDA & machine learning (SVM) framework.

I The method has no thresholds and works for di↵erent
resolutions of climate data in the table below.

These climate datasets were used to test the method.
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Classification Accuracy on the 3-hourly data

Climate
Dataset

#ARs
snapshots

#Non-ARs
snapshots

Train
ACC.

Test
ACC.

CAM5.1
(25km)

6838 6848 83% 83%

CAM5.1
(100km)

7182 7581 77% 77%

CAM5.1
(200km)

3914 3914 90% 90%

Table 1: Classification accuracy score for 3-hourly temporal resolution of
the Community Atmosphere Model, Version 5.1 with three di↵erent
spatial resolutions.
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Classification Accuracy on the daily data

Climate
Dataset

#ARs
snapshots

#Non-ARs
snapshots

Train
ACC.

Test
ACC.

CAM5.1
(25km)

624 624 78% 82%

CAM5.1
(100km)

700 700 85% 84%

CAM5.1
(200km)

397 397 89% 91%

Table 2: Classification accuracy score for daily temporal resolution of the
Community Atmosphere Model, Version 5.1 (CAM5.1) with three
di↵erent spatial resolutions.
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Classification Accuracy on the larger data

Climate
Dataset

#ARs
snapshots

#Non-ARs
snapshots

Train
ACC.

Test
ACC.

MERRA2
(50km)

13294 13434 80% 80%

Table 3: Classification accuracy score for 3-hourly temporal resolution of
the Modern-Era Retrospective Analysis for Research and Applications,
Version 2 (MERRA2) with 50 km spatial resolution.
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Results: Conclusions

I Topological algorithm reduced the feature extraction time to
couple of minutes in comparison with training of CNN
networks (i.e., hours or days);

I New technique for feature extraction of weather patterns
in climate data.

I Improved classification accuracy and precision up to 91% and
0.97, respectively.

16 / 25



Outcomes: Papers
I Shields, C. A., Rutz, J. J., Leung, L.-Y., Ralph, F. M., Wehner, M., Kawzenuk,

B., Lora, J. M., McClenny, E., Osborne, T., Payne, A. E., Ullrich, P.,
Gershunov, A., Goldenson, N., Guan, B., Qian, Y., Ramos, A. M., Sarangi, C.,
Sellars, S., Gorodetskaya, I., Kashinath, K., Kurlin, V., Mahoney, K.,
Muszynski, G., Pierce, R., Subramanian, A. C., Tome, R., Waliser, D., Walton,
D., Wick, G., Wilson, A., Lavers, D., Prabhat, Collow, A., Krishnan, H.,
Magnusdottir, G., and Nguyen, P.:
Atmospheric River Tracking Method Intercomparison Project (ARTMIP):
Project Goals and Experimental Design,
Geoscientific Model Development, published on 20 June 2018,
https://doi.org/10.5194/gmd-2017-295

I Muszynski, G., Kashinath, K., Kurlin, V., Wehner, M., Prabhat:
Topological Data Analysis and Machine Learning for Recognizing
Atmospheric River Patterns in Large Climate Datasets,
Geoscientific Model Development, under review since February 2018,
https://www.geosci-model-dev-discuss.net/gmd-2018-53/.

I Muszynski, G., Kurlin, V., Morozov, D., Kashinath, K., Wehner, M., Prabhat:
Topological Methods for Pattern Detection in Climate Data,
a book chapter for Wiley & Sons, under review since March 2018,
invited by Huang Thomas, Jet Propulsion Laboratory at Caltech.
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Outcomes: Talks

I Talk at Learning Algorithms session at the British Colloquium for Theoretical
Computer Science at Royal Holloway, University of London, the United
Kingdom, 26 March 2018.

I Talk at Big data and machine learning in geosciences session at the European
Geosciences Union General Assembly (EGU), Vienna, Austria, 9 April 2018.

I Invited talk at Algorithms, Computational Geometry and Topology seminar at
the Institute of Science and Technology Austria (IST Austria), Vienna,
Austria, 11 April 2018, invited by Wagner Hubert, Edelsbrunner Group.

I Talk at Postgraduate Workshop at the Department of Computer Science,
University of Liverpool, the United Kingdom, 1 May 2018.

I Talk at Applied and Computational Topology Meeting organized by Applied
Algebraic Topology network, University of Southampton, Southampton, the
United Kingdom, 30 April 2018.

I Lighting talk at Data-Driven Modelling of Complex Systems at The Alan
Turing Institute, London, the United Kingdom, 8 May 2018.

I Talk at 2018 International Atmospheric Rivers Conference, SCRIPPS Institute
of Oceanography at University of California San Diego, the United States, 26
June 2018 (given by Karthik Kashinath).
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Outcomes: Posters

I Poster at Spring School on Applied and Computational Algebraic Topology at
Hausdor↵ Research Institute for Mathematics, Bonn, Germany, 24-28 April 2017.

I Poster at the Conference on Applied and Computational Algebraic Topology
at Hausdor↵ Research Institute for Mathematics, Bonn, Germany, 2-6 May 2017.

I Poster at the Computing Sciences Summer Student poster session at
Lawrence Berkeley Lab, Berkeley, California, United States, 10 August 2017.

I Poster at the An Object-Oriented View of Atmospheric Science: Feature
Detection and Characterization in Big Data, the American Geophysical Union
Fall meeting in New Orleans, United States, 11 December 2017.

I Poster at 2nd ARTMIP | Atmospheric River Tracking Method
Intercomparison Project workshop, Gaithersburg, Maryland, the United States,
23-24 April 2018 (presented by Vitaliy Kurlin).

I Poster at Data-Driven Modelling of Complex Systems at The Alan Turing
Institute, London, the United Kingdom, 8-10 May 2018.
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Outcomes: Community Outreach

I Discussions with a world-leading practitioners of applied
topology, like Professor Gunnar Carlsson (co-founder of
Ayasdi company) and Professor John Harer (Duke).

I Meeting with one of the world-leading groups in
algorithms, computational geometry and topology (i.e.,
Edelsbrunner group) at Institute of Science and Technology
Austria (IST Austria).
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Future Work: more science problems and motivations

I Detect persistent patterns (e.g., swirling vortices) in fluid flow
simulation data.

I Detect climate patterns (e.g., atmospheric blocking - high
pressure pattern) in climate simulation and reanalysis data.

I Design and develop a detection method of patterns in fluid
flow simulation and climate data.

I We plan to combine dynamical systems theory, manifold
learning and topological data analysis methods.
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Future Work: new framework
New framework combines: Taken’s time-delay coordinate
embedding, di↵usion maps dimensionality reduction algorithm and
topological data analysis (i.e. persistent homology).

The flowchart above illustrates the approach to topological pattern
detection in fluid or climate simulation data.
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Future Work: a proof-of-concept

Preliminary results for fluid flow (upper row) and climate data
(lower row). 23 / 25



Future Work: potential performance

I Computing Taken’s time-delay (sliding window) coordinate
embedding: O(mn) for n timesteps and window size of m.

I Computing sparse di↵usion maps dimensionality reduction
algorithm: O(k) for k elements in matrix.

I Computing topological data analysis, i.e. persistent homology
using Ripser1 that outperforms other implementations by a
factor of more than 40 in computation time and a factor of
more than 15 in memory e�ciency.

1
Ulrich Bauer, Ripser (C++), https://github.com/Ripser/ripser
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Thank you!

Vitaliy Kurlin and Grzegorz Muszynski would like to
thank Intel for funding the IPCC at Liverpool and
NERSC for computational resources!

We also thank Prabhat, Karthik Kashinath, and
Michael Wehner and other NERSC sta↵!
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