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Radiographic Inspection for Oil Spill Prevention
Example - Tomography
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Machine Learning

In science and engineering we have a lot of prior

information

The Bayesian paradigm allow us to utilize this in

a principled probabilistic approach

p(✓|D) / p(D|✓)p(✓)

But we now need to perform inference...
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Inference

Example - Tomography

Figure 1: A Pipe Sampled From the Prior Distribution

Figure 2: A Pipe Sampled From the Prior Distribution
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Pipe sample 1 Pipe Sample 2

Rainforth, Mahendran, Osborne, Vedaldi, and Wood. Selecting, Stitching and Identifying Digital Data

used in Integrity Management. Project Report 2017.
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[Rainforth, Mahendran, Osborne, Vedaldi and Wood. Industry sponsored project 2017]

p(X)p(X|Y) p(Y|X)

Radiographic Inspection for Oil Spill Prevention
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CAPTCHA breaking

yx

text image
Mansinghka, Kulkarni, Perov, and Tenenbaum  

“Approximate Bayesian image interpretation using generative probabilistic graphics programs." NIPS (2013).

Can you write a  
program to do this?

SMKBDF



Captcha Generative Model
(defm sample-char []
 {:symbol (sample (uniform ascii))
  :x-pos (sample (uniform-cont 0.0 1.0))
  :y-pos (sample (uniform-cont 0.0 1.0))
  :size (sample (beta 1 2))
  :style (sample (uniform-dis styles))
  …})

(defm sample-captcha []
 (let [n-chars (sample (poisson 4))
        chars (repeatedly n-chars
                      sample-char)

noise (sample salt-pepper)
…]

gen-image))



Conditioning
(defquery captcha [true-image]
 (let [gen-image (sample-captcha)]

(observe (similarity-kernel gen-image)    
true-image)

gen-image))

(doquery :ipmcmc captcha true-image)

Inference

Generative 
Model 



2015 : Probabilistic Programming 
• Restricted (i.e. STAN, BUGS, infer.NET) 

• Easier inference problems -> fast 
• Impossible for users to denote some models 
• Fixed computation graph 

• Unrestricted (i.e. Anglican, WebPPL) 
• Possible for users to denote all models 
• Harder inference problems -> slow 
• Dynamic computation graph 

• Fixed, trusted model; one-shot inference



The AI/Repeated-Inference Challenge
“Bayesian inference is computationally expensive. Even 
approximate, sampling-based algorithms tend to take many 
iterations before they produce reasonable answers. In contrast, 
human recognition of words, objects, and scenes is extremely 
rapid, often taking only a few hundred milliseconds—only enough 
time for a single pass from perceptual evidence to deeper 
interpretation. Yet human perception and cognition are often 
well-described by probabilistic inference in complex models. 
How can we reconcile the speed of recognition with the expense 
of coherent probabilistic inference? How can we build systems, 
for applications like robotics and medical diagnosis, that exhibit 
similarly rapid performance at challenging inference tasks?”

Stuhlmüller A, Taylor J, Goodman N. Learning stochastic inverses. In Advances in Neural Information Processing Systems 2013 (pp. 3048-3056).



Resulting Trend In Probabilistic Programming

Probabilistic 
Programming ?

Inference 
Compilation

Unsupervised 
Deep 

Learning

Have fully-specified model?

Inference?

Yes No

One-shot

Repeated



Inference Compilation



Inference Compilation Desiderata 
• Denote a model and inference problem as a probabilistic 

programming language program 
• “Compile” for hours or days, depending on the problem, 

CPU/GPUs at disposal, etc. 
• Get a “compilation artifact” controller that enables fast, 

repeated inference in the original model that is compatible 
with asymptotically exact inference



Inference Compilation
Compilation

Probabilistic program
p0!;y)

Inference

Training data
!!!!); y!!)g

Test data
y

Posterior
p0! j y)

Training #

Expensive / slow Cheap / fast

SIS
NN architecture

Compilation artifact

q0! j y;#)

DKL 0p0! j y) jj
q0! j y;#))

Input: an inference problem denoted in a probabilistic programming language  

Output: a trained inference network (deep neural network “compilation artifact”) 

Le TA, Baydin AG, Wood F. Inference Compilation and Universal Probabilistic Programming. AISTATS. 2017. 

Now C++, Python, or Clojure!



Compiling Away Runtime Costs of Inference
Learn to invert the generative model, before seeing data
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Figure 2: a hierarchical Bayesian model. (left) A generative model for the data {xn};
(middle) with dependency structure inverted; (right) showing neural conditional density
estimators. Each yn ⇠ Poisson(�ntn), with �n ⇠ Gamma(↵,�) and gamma priors on ↵,�.
The learned factor '�n is replicated N times in the inverse model, allowing us to re-use the
weights.

p̃(x|y) =
NY

i=1

p̃(xi|fpa(xi))

The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both
in the context of population Monte Carlo (PMC) [3] and sequential Monte Carlo [4, 5, 9],
proposes a parametric family q(x|�), where � is a free parameter, and uses the reverse
Kullback-Leibler (KL) divergence DKL(⇡||q�) as an objective function, choosing � to mini-
mize

DKL(⇡||q�) =
Z

⇡(x) log


⇡(x)

q(x|�)

�
dx. (3)

This KL divergence between the true posterior distribution p(x|y) and proposal distribution
q(x|�) is also known as the relative entropy criterion, and is a preferred objective function
in situations in which the estimation goal construct a high-quality weighted sample repre-
sentation, rather than to minimize the variance of a particular expectation [4].

In an amortized inference setting, instead of learning � explicitly for a fixed value of y,
we learn a mapping from y to �. More explicitly, if y 2 Y and � 2 #, then learning an
explicit mapping ' : Y ! # allows performing approximate inference for p(x|y) with only
the computational complexity of evaluating the deterministic function '. The tradeo↵ is
that the training of ' itself may be quite involved.

We thus generalize the adaptive importance sampling algorithms by learning a family of
distributions q(x|y), parameterized by the observed data y. Suppose that � = '(⌘,y),
where the function ' is parameterized by a set of higher-level parameters ⌘. We would like
a choice of ⌘ which performs well across all datasets y. We can frame this as minimizing
the expected value of Eq. 3 under p(y), suggesting an objective function J (⌘) defined as

J (⌘) =

Z
DKL(⇡||q�)p(y)dy (4)

=

Z
p(y)

Z
p(x|y) log


p(x|y)

q(x|'(⌘,y))

�
dxdy (5)

= Ep(x,y) [� log q(x|'(⌘,y))] + const. (6)

which has a gradient r⌘J (⌘) = Ep(x,y) [�r⌘ log q(x|'(⌘,y))] .

Notice that these expectations are with respect to the tractable joint distribution p(x,y).
We can thus fit ⌘ by stochastic gradient descent, estimating the expectation of the gradient
r⌘J (⌘) by sampling synthetic full-data training examples {x,y} from the original model.
This procedure can be performed entirely o✏ine — we require only to be able to sample from
the joint distribution p(x,y) to generate candidate data points (e↵ectively providing infinite
training data). In any directed graphical model this can be achieved by ancestral sampling,
where the variables y are treated as as-yet unobserved. Furthermore, we do not need need
to be able to compute gradients of our model p(x,y) itself — we only need the gradients of
our recognition model q(x|'(⌘,y)), allowing use of any di↵erentiable representation for q.
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Figure 2: a hierarchical Bayesian model. (left) A generative model for the data {xn};
(middle) with dependency structure inverted; (right) showing neural conditional density
estimators. Each yn ⇠ Poisson(�ntn), with �n ⇠ Gamma(↵,�) and gamma priors on ↵,�.
The learned factor '�n is replicated N times in the inverse model, allowing us to re-use the
weights.

in the context of population Monte Carlo (PMC) [3] and sequential Monte Carlo [4, 5, 9],
proposes a parametric family q(x|�), where � is a free parameter, and uses the reverse
Kullback-Leibler (KL) divergence DKL(⇡||q�) as an objective function, choosing � to mini-
mize

DKL(⇡||q�) =
Z

⇡(x) log


⇡(x)

q(x|�)

�
dx. (3)

This KL divergence between the true posterior distribution p(x|y) and proposal distribution
q(x|�) is also known as the relative entropy criterion, and is a preferred objective function
in situations in which the estimation goal construct a high-quality weighted sample repre-
sentation, rather than to minimize the variance of a particular expectation [4].

In an amortized inference setting, instead of learning � explicitly for a fixed value of y,
we learn a mapping from y to �. More explicitly, if y 2 Y and � 2 #, then learning an
explicit mapping ' : Y ! # allows performing approximate inference for p(x|y) with only
the computational complexity of evaluating the deterministic function '. The tradeo↵ is
that the training of ' itself may be quite involved.

We thus generalize the adaptive importance sampling algorithms by learning a family of
distributions q(x|y), parameterized by the observed data y. Suppose that � = '(⌘,y),
where the function ' is parameterized by a set of higher-level parameters ⌘. We would like
a choice of ⌘ which performs well across all datasets y. We can frame this as minimizing
the expected value of Eq. 3 under p(y), suggesting an objective function J (⌘) defined as

J (⌘) =

Z
DKL(⇡||q�)p(y)dy (4)

=

Z
p(y)

Z
p(x|y) log


p(x|y)

q(x|'(⌘,y))

�
dxdy (5)

= Ep(x,y) [� log q(x|'(⌘,y))] + const. (6)

which has a gradient r⌘J (⌘) = Ep(x,y) [�r⌘ log q(x|'(⌘,y))] .

Notice that these expectations are with respect to the tractable joint distribution p(x,y).
We can thus fit ⌘ by stochastic gradient descent, estimating the expectation of the gradient
r⌘J (⌘) by sampling synthetic full-data training examples {x,y} from the original model.
This procedure can be performed entirely o✏ine — we require only to be able to sample from
the joint distribution p(x,y) to generate candidate data points (e↵ectively providing infinite
training data). In any directed graphical model this can be achieved by ancestral sampling,
where the variables y are treated as as-yet unobserved. Furthermore, we do not need need
to be able to compute gradients of our model p(x,y) itself — we only need the gradients of
our recognition model q(x|'(⌘,y)), allowing use of any di↵erentiable representation for q.

In hierarchical models such as the model for failure rates of power plant pumps [6] in
Figure 2, conditional independence structure in an inverse model can be leveraged to break
down q(x|y) into a product of smaller conditional densities, each of the form qi(xi|fpa(xi)).
We take advantage of this structure by defining more parameter-e�cient representations of
q(x|·) that reuse replicated inverse conditional densities, and for more e�cient inference via
a sequential Monte Carlo algorithm.

3

Fully differentiable; 
can train entirely offline:

approximate with samples 
from the joint distribution

Paige B, Wood F. Inference Networks for Sequential Monte Carlo in Graphical Models. ICML. JMLR W&CP 48: 3040-3049. 2016. 



Example : Non-Conjugate Regression Graphical Model

tn

zn
w0

w1

w2 N

tn

zn
w0

w1

w2
N

tn

zn
w0

w1

w2

'w

N

Figure 1. A non-conjugate regression model, as (left) a Bayes net representing a generative model for the data {tn}; (middle) with
dependency structure inverted, as a generative model for the latent variables w0, w1, w2; (right) showing the explicit neural network
structure of the learned approximation to the inverse conditional distribution p̃(w0:2|z1:N , t1:N ). New datasets {zn, tn}Nn=1 can be input
directly into the joint density estimator 'w to estimate the posterior. Note that the ordering of the latent variables w0:2 used in this
example is chosen arbitrarily; any permutation of the latent variables would not change the overall structure of the inverse model.
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Figure 1. A non-conjugate regression model, as (left) a Bayes net representing a generative model for the data {tn}; (middle) with
dependency structure inverted, as a generative model for the latent variables w0, w1, w2; (right) showing the explicit neural network
structure of the learned approximation to the inverse conditional distribution p̃(w0:2|z1:N , t1:N ). New datasets {zn, tn}Nn=1 can be input
directly into the joint density estimator 'w to estimate the posterior. Note that the ordering of the latent variables w0:2 used in this
example is chosen arbitrarily; any permutation of the latent variables would not change the overall structure of the inverse model.
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Figure 1: a non-conjugate regression model, as (left) a Bayes net representing a generative
model for the data {tn}; (middle) with dependency structure inverted, a generative model
for the latent variables w0, w1, w2; (right) showing the explicit neural network structure of
the inverse conditional distribution p̃(w0:2|z1:N , t1:N ). Here we place a Laplace prior on each
regression weight wd, and have Student-t likelihoods p(tn|zn, w0:2). New datasets {zn, tn}Nn=1
can be input directly into the joint density estimator 'w to estimate the posterior.

2 Approach

A directed graphical model, or Bayesian network [10, 12], defines a joint probability distri-
bution and conditional independence structure via a directed acyclic graph. For each xi in
a set of random variables x1, . . . , xN , the network structure specifies a conditional density
pi(xi|pa(xi)), where pa(xi) denotes the parent nodes of xi. The joint distribution over N
latent random variables x and M observed random variables y is defined as

p(x,y) ,
NY

i=1

p (xi|pa(xi))
MY

j=1

p (yj |pa(yj)) ; (1)

the inference goal is to characterize the posterior distribution ⇡(x) ⌘ p(x|y).
Our approach is two-fold. First, given a Bayesian network that acts as a generative model for
our observed data y given latent variables x, we construct a new Bayesian network which acts
as a generative model for our latent x, given observed data y. This network is constructed
such that the joint distribution defined by the original model p(x,y) = p(x)p(y|x) is identical
to that of the new “inverse model”, which we will refer to as p̃(x,y) = p̃(y)p̃(x|y), but with
a di↵erent factorization [13].

Unfortunately, unlike the original forward model, the inverse model has conditional densities
which we do not in general know how to normalize or sample from. However, were we to know
the conditional densities comprising the inverse model p̃(x|y), then given a particular dataset
y we could directly draw posterior samples simply by ancestral sampling from the inverse
graphical model. Thus the second aspect is learning approximations for the conditionals
p̃(xi|fpa(xi)), where fpa(xi) are parents of xi in the inverse model. To do so we employ
neural density estimators [1, 2, 7, 14], and design a procedure to train these “o✏ine”, in the
sense that no real data is required.

As an example, consider the non-conjugate polynomial regression model shown in Figure 1,
along with its inverse graphical model, and the resulting neural network structure. Note
particularly that although the original graphical model which expressed p(y|x)p(x) factorizes
into products over yn which are conditionally independent given x, in the inverse model
p̃(x|y)p̃(y) due to the explaining-away phenomenon all latent variables depend on all others.

2.1 Learning a family of importance sampling densities

Simple importance sampling in a Bayesian network performs inference by sampling x from
some proposal density q(x|·), and computing importance weights w(x) = p(x,y)/q(x|·)
which, for K samples of x, yields a posterior approximation

p̂(x|y) =
KX

k=1

Wk�xk(x) Wk =
w(xk)PK
j=1 w(xj)

w(x) =
p(x,y)

q(x|�) (2)

The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both
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Inference Networks for Sequential Monte Carlo in Graphical Models
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Figure 3. Factorial HMM. (left) The generative model consists D independent Markov models, with observed data yt depending on
the current state of each latent HMM. (middle) An inverse model obtained by reversing the order of the generative model at each t.
Conditioned on the previous latent states at t� 1 and the next observation yt, all latent states at each t are dependent on one another and
must be modeled jointly. (right) The repeated structure at each t = 1, 2, . . . means that the same learned conditional density network can
be reused at every t.

hidden units labeled 0 to take as input only the dimensions
in fPA(x0). For single-dimensional data, where N = 1, all
hidden units are labeled 0 and all feed forward into the single
output x1, recovering a standard mixture density network
(Bishop, 1994).

To model non-binary data, MADE can be extended by
altering the output layer network to emit parameters of
any univariate probability density function. We take the
same approach by which RNADE (Uria et al., 2013) modi-
fies the binary autoregressive distribution estimator NADE
(Larochelle and Murray, 2011) to handle real-valued data,
with an output layer that parameterizes a univariate mixture
of D Gaussians for each dimension xi conditioned on its
parents. The probability of any particular xi is given by

q(xi|'i(⌘i,fPA(xi))) =
DX

d=1

↵i,dN (xi|µi,d,�
2
i,d)

where N (·) is the Gaussian probability density. This re-
quires an output layer with 3 ⇥ D dimensions, to predict
D each of means µi,d, standard deviations �i,d, weights
↵i,d; to enforce positivity of standard deviations we apply a
softplus function to the raw network outputs, and a softmax
function to ensure ↵i,· is a probability vector.

3.4. Training the neural network

Contrary to many standard settings in which one is limited
by the amount of data present, we are armed with a sam-
pler p(x,y) which allows us to generate effectively infinite
training data. This could be used to sample a “giant” syn-
thetic dataset, which we then use for mini-batch training via
gradient descent; however, then we must decide how large a
dataset is required. Alternatively, we could sample a brand
new set of training examples for every mini-batch, never
re-using previous samples.

In testing we found that a hybrid training procedure, which
samples new synthetic datasets based on performance on
a held-out set of synthetic validation data, appeared more
efficient than resampling a new synthetic dataset for each

new gradient update. We perform mini-batch gradient up-
dates on ⌘ using synthetic training data, while evaluating on
the validation set. If the validation error increases, or after
a set maximum number of steps, we draw new sets of both
synthetic training and validation data from p(x,y).

In all experiments we use Adam (Kingma and Ba, 2015)
with the suggested default parameters to update learning
rates online, and use rectified linear activation functions.

4. Examples
4.1. Inverting a single factor

To illustrate the basic method for inverting factors, we con-
sider a non-conjugate polynomial regression model, with
global-only latent variables. The graphical model, its inver-
sion, and the neural network structure are shown in Figure 1.
Here we place a Laplace prior on the regression weights,
and have Student-t likelihoods, giving us

wd ⇠ Laplace(0, 101�d) for d = 0, 1, 2;

tn ⇠ t⌫(w0 + w1zn + w2z
2
n, ✏

2) for n = 1, . . . , N

for fixed ⌫ = 4, ✏ = 1, and zn 2 (�10, 10) uniformly. The
goal is to estimate the posterior distribution of weights for
the constant, linear, and quadratic terms, given any possible
collected dataset {zn, tn}Nn=1. In the notation of the pre-
ceding sections, we have latent variables x ⌘ {w0, w1, w2}
and observed variables y ⌘ {zn, tn}Nn=1.

Note particularly that although the original graphical model
which expressed p(y|x)p(x) factorizes into products over
yn which are conditionally independent given x, in the
inverse model p̃(x|y) due to the explaining-away phe-
nomenon all latent variables depend on all others: there
are no latent variables which can be d-separated from the
observed y, and all latent variables share y as parents.
This means we fit as proposal only a single joint density
q(w0:2|z1:N , t1:N ). Examples of representative output from
this network are shown in Figure 4. The trained network
used here 200 hidden units in each of two hidden layers, and
a mixture of 3 Gaussians as each output.
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Figure 3. Factorial HMM. (left) The generative model consists D independent Markov models, with observed data yt depending on
the current state of each latent HMM. (middle) An inverse model obtained by reversing the order of the generative model at each t.
Conditioned on the previous latent states at t� 1 and the next observation yt, all latent states at each t are dependent on one another and
must be modeled jointly. (right) The repeated structure at each t = 1, 2, . . . means that the same learned conditional density network can
be reused at every t.

hidden units labeled 0 to take as input only the dimensions
in fPA(x0). For single-dimensional data, where N = 1, all
hidden units are labeled 0 and all feed forward into the single
output x1, recovering a standard mixture density network
(Bishop, 1994).

To model non-binary data, MADE can be extended by
altering the output layer network to emit parameters of
any univariate probability density function. We take the
same approach by which RNADE (Uria et al., 2013) modi-
fies the binary autoregressive distribution estimator NADE
(Larochelle and Murray, 2011) to handle real-valued data,
with an output layer that parameterizes a univariate mixture
of D Gaussians for each dimension xi conditioned on its
parents. The probability of any particular xi is given by

q(xi|'i(⌘i,fPA(xi))) =
DX

d=1

↵i,dN (xi|µi,d,�
2
i,d)

where N (·) is the Gaussian probability density. This re-
quires an output layer with 3 ⇥ D dimensions, to predict
D each of means µi,d, standard deviations �i,d, weights
↵i,d; to enforce positivity of standard deviations we apply a
softplus function to the raw network outputs, and a softmax
function to ensure ↵i,· is a probability vector.

3.4. Training the neural network

Contrary to many standard settings in which one is limited
by the amount of data present, we are armed with a sam-
pler p(x,y) which allows us to generate effectively infinite
training data. This could be used to sample a “giant” syn-
thetic dataset, which we then use for mini-batch training via
gradient descent; however, then we must decide how large a
dataset is required. Alternatively, we could sample a brand
new set of training examples for every mini-batch, never
re-using previous samples.

In testing we found that a hybrid training procedure, which
samples new synthetic datasets based on performance on
a held-out set of synthetic validation data, appeared more
efficient than resampling a new synthetic dataset for each

new gradient update. We perform mini-batch gradient up-
dates on ⌘ using synthetic training data, while evaluating on
the validation set. If the validation error increases, or after
a set maximum number of steps, we draw new sets of both
synthetic training and validation data from p(x,y).

In all experiments we use Adam (Kingma and Ba, 2015)
with the suggested default parameters to update learning
rates online, and use rectified linear activation functions.

4. Examples
4.1. Inverting a single factor

To illustrate the basic method for inverting factors, we con-
sider a non-conjugate polynomial regression model, with
global-only latent variables. The graphical model, its inver-
sion, and the neural network structure are shown in Figure 1.
Here we place a Laplace prior on the regression weights,
and have Student-t likelihoods, giving us

wd ⇠ Laplace(0, 101�d) for d = 0, 1, 2;

tn ⇠ t⌫(w0 + w1zn + w2z
2
n, ✏

2) for n = 1, . . . , N

for fixed ⌫ = 4, ✏ = 1, and zn 2 (�10, 10) uniformly. The
goal is to estimate the posterior distribution of weights for
the constant, linear, and quadratic terms, given any possible
collected dataset {zn, tn}Nn=1. In the notation of the pre-
ceding sections, we have latent variables x ⌘ {w0, w1, w2}
and observed variables y ⌘ {zn, tn}Nn=1.

Note particularly that although the original graphical model
which expressed p(y|x)p(x) factorizes into products over
yn which are conditionally independent given x, in the
inverse model p̃(x|y) due to the explaining-away phe-
nomenon all latent variables depend on all others: there
are no latent variables which can be d-separated from the
observed y, and all latent variables share y as parents.
This means we fit as proposal only a single joint density
q(w0:2|z1:N , t1:N ). Examples of representative output from
this network are shown in Figure 4. The trained network
used here 200 hidden units in each of two hidden layers, and
a mixture of 3 Gaussians as each output.

Neural net proposal

Inference Networks for Sequential Monte Carlo in Graphical Models
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Figure 3. Factorial HMM. (left) The generative model consists D independent Markov models, with observed data yt depending on
the current state of each latent HMM. (middle) An inverse model obtained by reversing the order of the generative model at each t.
Conditioned on the previous latent states at t� 1 and the next observation yt, all latent states at each t are dependent on one another and
must be modeled jointly. (right) The repeated structure at each t = 1, 2, . . . means that the same learned conditional density network can
be reused at every t.

hidden units labeled 0 to take as input only the dimensions
in fPA(x0). For single-dimensional data, where N = 1, all
hidden units are labeled 0 and all feed forward into the single
output x1, recovering a standard mixture density network
(Bishop, 1994).

To model non-binary data, MADE can be extended by
altering the output layer network to emit parameters of
any univariate probability density function. We take the
same approach by which RNADE (Uria et al., 2013) modi-
fies the binary autoregressive distribution estimator NADE
(Larochelle and Murray, 2011) to handle real-valued data,
with an output layer that parameterizes a univariate mixture
of D Gaussians for each dimension xi conditioned on its
parents. The probability of any particular xi is given by

q(xi|'i(⌘i,fPA(xi))) =
DX

d=1

↵i,dN (xi|µi,d,�
2
i,d)

where N (·) is the Gaussian probability density. This re-
quires an output layer with 3 ⇥ D dimensions, to predict
D each of means µi,d, standard deviations �i,d, weights
↵i,d; to enforce positivity of standard deviations we apply a
softplus function to the raw network outputs, and a softmax
function to ensure ↵i,· is a probability vector.

3.4. Training the neural network

Contrary to many standard settings in which one is limited
by the amount of data present, we are armed with a sam-
pler p(x,y) which allows us to generate effectively infinite
training data. This could be used to sample a “giant” syn-
thetic dataset, which we then use for mini-batch training via
gradient descent; however, then we must decide how large a
dataset is required. Alternatively, we could sample a brand
new set of training examples for every mini-batch, never
re-using previous samples.

In testing we found that a hybrid training procedure, which
samples new synthetic datasets based on performance on
a held-out set of synthetic validation data, appeared more
efficient than resampling a new synthetic dataset for each

new gradient update. We perform mini-batch gradient up-
dates on ⌘ using synthetic training data, while evaluating on
the validation set. If the validation error increases, or after
a set maximum number of steps, we draw new sets of both
synthetic training and validation data from p(x,y).

In all experiments we use Adam (Kingma and Ba, 2015)
with the suggested default parameters to update learning
rates online, and use rectified linear activation functions.

4. Examples
4.1. Inverting a single factor

To illustrate the basic method for inverting factors, we con-
sider a non-conjugate polynomial regression model, with
global-only latent variables. The graphical model, its inver-
sion, and the neural network structure are shown in Figure 1.
Here we place a Laplace prior on the regression weights,
and have Student-t likelihoods, giving us

wd ⇠ Laplace(0, 101�d) for d = 0, 1, 2;

tn ⇠ t⌫(w0 + w1zn + w2z
2
n, ✏

2) for n = 1, . . . , N

for fixed ⌫ = 4, ✏ = 1, and zn 2 (�10, 10) uniformly. The
goal is to estimate the posterior distribution of weights for
the constant, linear, and quadratic terms, given any possible
collected dataset {zn, tn}Nn=1. In the notation of the pre-
ceding sections, we have latent variables x ⌘ {w0, w1, w2}
and observed variables y ⌘ {zn, tn}Nn=1.

Note particularly that although the original graphical model
which expressed p(y|x)p(x) factorizes into products over
yn which are conditionally independent given x, in the
inverse model p̃(x|y) due to the explaining-away phe-
nomenon all latent variables depend on all others: there
are no latent variables which can be d-separated from the
observed y, and all latent variables share y as parents.
This means we fit as proposal only a single joint density
q(w0:2|z1:N , t1:N ). Examples of representative output from
this network are shown in Figure 4. The trained network
used here 200 hidden units in each of two hidden layers, and
a mixture of 3 Gaussians as each output.• Two layer MLP 

• 200 units 
• 3-component MOG for each output

automatic 
but  

suboptimal

hand

Paige B, Wood F. Inference Networks for Sequential Monte Carlo in Graphical Models. ICML. JMLR W&CP 48: 3040-3049. 2016. 



Example Non-Conjugate Regression

Figure 1: Representative output in the polynomial regression example. Plots show 100
samples each at 5% opacity, with the mean marked as a solid dashed line. These are all
proposed using the same neural network — not just the same neural network structure, but
also identical learned weights. The MCMC posterior is generated by thinning 10000 samples
by a factor 100, after 10000 samples of burnin. The neural network proposal density for the
weights yields estimated polynomial curves very close to the true posterior solution, albeit
slightly more di↵use. Any small mismatch is easily corrected via importance reweighing.

structure are shown in Figure 2. Here we place a Laplace prior on the regression weights,
and have Student-t likelihoods, giving us

wd ⇠ Laplace(0, 101�d) for d = 0, 1, 2;

tn ⇠ t⌫(w0 + w1zn + w2z
2
n, ✏

2) for n = 1, . . . , N

for fixed ⌫ = 4, ✏ = 1, and we place a uniform prior on (�10, 10) for zn. The goal is to
estimate the posterior distribution of weights for the constant, linear, and quadratic terms,
given any possible collected dataset {zn, tn}Nn=1. In the notation of the surrounding sections,
we have latent variables x ⌘ {w0, w1, w2} and observed variables y ⌘ {zn, tn}Nn=1.
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CSIS : Inf. Comp. for Higher-Order PPL 
• Same IS proposal learning objective 

• Inf. dim. graph so only evaluation/“forward” inference methods 
possible, i.e. SIS with unnormalized weights 

• “Forward”-structured proposal / controller

q(x|'(⌘,y)) ,
MY

j=1

q(xj |'(⌘,y,x1:j�1))

· · · =
QN

i=1 gi(yi|�i)
QM

j=1 fj(xj |✓j)
QM

j=1 q(xj |'(⌘,y,x1:j�1))
= w(k)

yn

�n

tn

↵

�

N

yn

�n

tn

↵

�
N

yn
'�n �n

tn

'↵�

↵

�
N

Figure 2: a hierarchical Bayesian model. (left) A generative model for the data {xn};
(middle) with dependency structure inverted; (right) showing neural conditional density
estimators. Each yn ⇠ Poisson(�ntn), with �n ⇠ Gamma(↵,�) and gamma priors on ↵,�.
The learned factor '�n is replicated N times in the inverse model, allowing us to re-use the
weights.

in the context of population Monte Carlo (PMC) [3] and sequential Monte Carlo [4, 5, 9],
proposes a parametric family q(x|�), where � is a free parameter, and uses the reverse
Kullback-Leibler (KL) divergence DKL(⇡||q�) as an objective function, choosing � to mini-
mize

DKL(⇡||q�) =
Z

⇡(x) log


⇡(x)

q(x|�)

�
dx. (3)

This KL divergence between the true posterior distribution p(x|y) and proposal distribution
q(x|�) is also known as the relative entropy criterion, and is a preferred objective function
in situations in which the estimation goal construct a high-quality weighted sample repre-
sentation, rather than to minimize the variance of a particular expectation [4].

In an amortized inference setting, instead of learning � explicitly for a fixed value of y,
we learn a mapping from y to �. More explicitly, if y 2 Y and � 2 #, then learning an
explicit mapping ' : Y ! # allows performing approximate inference for p(x|y) with only
the computational complexity of evaluating the deterministic function '. The tradeo↵ is
that the training of ' itself may be quite involved.

We thus generalize the adaptive importance sampling algorithms by learning a family of
distributions q(x|y), parameterized by the observed data y. Suppose that � = '(⌘,y),
where the function ' is parameterized by a set of higher-level parameters ⌘. We would like
a choice of ⌘ which performs well across all datasets y. We can frame this as minimizing
the expected value of Eq. 3 under p(y), suggesting an objective function J (⌘) defined as

J (⌘) =

Z
DKL(⇡||q�)p(y)dy (4)

=

Z
p(y)

Z
p(x|y) log


p(x|y)

q(x|'(⌘,y))

�
dxdy (5)

= Ep(x,y) [� log q(x|'(⌘,y))] + const. (6)

which has a gradient r⌘J (⌘) = Ep(x,y) [�r⌘ log q(x|'(⌘,y))] .

Notice that these expectations are with respect to the tractable joint distribution p(x,y).
We can thus fit ⌘ by stochastic gradient descent, estimating the expectation of the gradient
r⌘J (⌘) by sampling synthetic full-data training examples {x,y} from the original model.
This procedure can be performed entirely o✏ine — we require only to be able to sample from
the joint distribution p(x,y) to generate candidate data points (e↵ectively providing infinite
training data). In any directed graphical model this can be achieved by ancestral sampling,
where the variables y are treated as as-yet unobserved. Furthermore, we do not need need
to be able to compute gradients of our model p(x,y) itself — we only need the gradients of
our recognition model q(x|'(⌘,y)), allowing use of any di↵erentiable representation for q.

In hierarchical models such as the model for failure rates of power plant pumps [6] in
Figure 2, conditional independence structure in an inverse model can be leveraged to break
down q(x|y) into a product of smaller conditional densities, each of the form qi(xi|fpa(xi)).
We take advantage of this structure by defining more parameter-e�cient representations of
q(x|·) that reuse replicated inverse conditional densities, and for more e�cient inference via
a sequential Monte Carlo algorithm.
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discuss and demonstrate the brittleness of these regressors.
We demonstrate improved robustness by focusing on and
improving the generative model. In Section IV, we illustrate
the connection of the demonstrated brittleness with Bayesian
model mismatch. We end by explaining how the learned neural
network can be used to perform sample-based approximate
inference.

II. CAPTCHA-BREAKING

Assuming no access to the true Captcha [21] generating
system and a paucity of labeled training data, how does one go
about breaking Captchas? A hint appears in the probabilistic
programming community’s approach to procedural graphics
[22] where a generative model for Captchas is proposed and
then general purpose Markov chain Monte Carlo (MCMC)
Bayesian inference is used to computationally inefficiently
invert the said model. We will make the argument that this
is, effectively, the same as generating synthetic training data
in the manner of Jaderberg et al. [4, 5] to train a neural network
that regresses to the latent Captcha variables. In either case,
developing a flexible, well-calibrated synthetic training data
generator is our first concern.

A. Generating synthetic training data

Our synthetic data generative model for Captcha specifies
joint densities ps(x, y), parameterized by style s, that describe
how to generate both the latent random variable x and the
corresponding Captcha image y. Referring to the first row of
Table I, style s pertains to different schemes (e.g., Baidu, eBay,
Wikipedia, Facebook) involving distinct character ranges,
fonts, kerning, deformations, and noise. Note that in the fol-
lowing equations we omit the style subscript while keeping in
mind that there is a separate unique model for each style. The
latent structured random variable x = {L, ✏1:K , i1:L} includes
L, the number of letters, ✏1:K , a multidimensional structured
parameter set controlling Captcha-rendering parameters such
as kerning and various style-specific deformations, and ii:L,
letter identities. Given these, we use a custom stochastic
Captcha renderer R to generate each Captcha image y, this
renderer and its fidelity being the primary component of the
synthetic data generation effort. The corresponding per-style
synthetic data generator corresponds to the model

x ⇠ p(x) (1)

y|x ⇠ R(x) , (2)

where p(x) is a style-specific prior distribution over the latent
variables including the character identities. For each different
style shown in Table I, we use different settings of the prior
parameters to drive the Captcha renderer. In particular, the
model places style-specific uniform distributions over different
intervals for L, ✏1:K , and i1:L. This is the mechanism for
generating synthetic training data {(x(n), y(n))}. Note that
p(y|x) cannot be evaluated for a given y, rather only sampled.

CNN

LSTM
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"

i! iL

y

x '

!

"! ""[ ]

! ! ! !

Output

Input

Sampling

i

Fig. 1. Neural network architecture mapping the Captcha image y to the
latent variables x of interest.

B. Neural network architecture

Our Captcha-breaking neural network is designed taking
into account architectures that have been shown to perform
well on image inputs and variable-length output sequences
[23, 24]. Specifically, we choose a combination of convolu-
tional neural networks (CNNs) and recurrent neural networks.

The core of our neural architecture (Figure 1) is a long short-
term memory (LSTM) network [25], the output of which at
each time step is passed through output layers corresponding
one-to-one to the components of the latent variable x in
the generative model (i.e., number of letters L, rendering
parameters ✏1:K , and letter identities i1:L) that constitute
the inputs to the Captcha renderer. Since the latent variable
x has T = 1 + K + L components, where K is style-
specific and L is instance-specific, the LSTM is run for T
time steps, and we represent by x1:T the components of
the latent x at each time step. The output layers are fully-
connected layers followed by a softmax function, distinct for
each latent variable, that parameterize a discrete probability
distribution. Since the LSTM has a fixed-dimensional output,
these output layers allow us to match the dimensions of the
discrete distributions for the corresponding latent variables.

A CNN is used to embed the Captcha image y into a fixed-
dimensional embedding vector CNN(y). At each time step, the
LSTM input is constructed as the concatenation of the image
embedding CNN(y), the value of the latent variable xt�1 of the
previous time step, and a label vector {0, 1}D corresponding to
each xt. During training, all x1:T are provided to the network
in a way similar to that used by Reed and de Freitas [26], using
the actual values that generated the synthetic image y. At test
time, the values of xt are sampled from the corresponding
discrete probability distribution.

We denote the combined set of parameters of the overall
architecture ✓ and its forward propagation function ⌘, so given
an input y, the output of the softmax layer at time step t corre-
sponding to xt is ⌘✓,t(y). In the running example of Figure 1,
x1 = L, x2:(2+K�1) = ✏1:K , and x(2+K):(2+K+L�1) = i1:L.

t

y(n)

x(n)
x(n)
1 x(n)

2 x(n)
t

· · · · · ·

Generic Structured Proposal Architecture
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x(n), y(n) ⇠ p(x, y)
synthetic data

Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997 Nov 15;9(8):1735-80. 
Reed S, de Freitas N. Neural programmer-interpreters. arXiv preprint arXiv:1511.06279. 2015 Nov 19.
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Captcha BreakingTABLE I
SYNTHETIC CAPTCHA BREAKING RESULTS. RR: RECOGNITION RATE, BT: BREAKING TIME.

Type Baidu (2011) Baidu (2013) eBay Yahoo reCaptcha Wikipedia Facebook

Our method RR 99.8% 99.9% 99.2% 98.4% 96.4% 93.6% 91.0%
BT 72 ms 67 ms 122 ms 106 ms 78 ms 90 ms 90 ms

Bursztein et al. [15] RR 38.68% 55.22% 51.39% 5.33% 22.67% 28.29%
BT 3.94 s 1.9 s 2.31 s 7.95 s 4.59 s

Starostenko et al. [16] RR 91.5% 54.6%
BT < 0.5 s

Gao et al. [17] RR 34% 55% 34%

Gao et al. [18] RR 51% 36%
BT 7.58 s 14.72 s

Goodfellow et al. [6] RR 99.8%

Stark et al. [8] RR 90%

C. Loss

By design, the softmax outputs determine the parameters for
the discrete probability distributions of the Captcha generator
parameters. The loss we minimize during training is the
negative sum of the log of the softmax outputs

L(✓) = 1

N

NX

n=1

"
�

TX

t=1

log
⇣
[⌘✓,t(y

(n))]
x(n)
t

⌘#
, (3)

where we use the notation [z]i to denote the ith element of
z. This is a standard loss used in training neural networks
for classification. The connection with Bayesian modeling in
which we interpret softmax outputs as probabilities of discrete
random variables in a joint importance sampling proposal
distribution is explored in more detail in Section IV-B.

III. EXPERIMENTS

We wrote synthetic data generative models for seven dif-
ferent Captcha styles, covering the types frequently found in
the Captcha breaking literature [16, 15, 18, 17]. For each
of these, we trained a neural architecture consisting of (1)
a CNN with six convolutions (3⇥3, with successively 64,
64, 64, 128, 128, 128 filters), max-pooling (2⇥2, step size
2) after the second, fifth, and sixth convolutions, and two
final fully-connected layers of 1024 units; (2) a stack of two
LSTMs of 512 hidden units each; and (3) fully-connected
layers of appropriate dimension mapping the LSTM output to
the corresponding softmax dimension of each latent variable.
ReLU activations were used after the convolutions and the
fully-connected layers overall.

We empirically verified that supplying the image embedding
CNN(y) to the LSTM at every time step makes the training
progress faster in our setup where we train the CNN from
scratch together with the rest of the components, compared

with the alternative of using CNN(y) only once and pretraining
CNN weights on an image recognition database as in Vinyals
et al. [21] and Karpathy and Fei-Fei [22].

The networks were implemented in Torch [25] and trained
with Adam [26] optimization, with initial learning rate ↵ =
0.0001, hyperparameters �1 = 0.9, �2 = 0.999, using mini-
batches of size 128. The generative models were implemented
in the Anglican probabilistic programming language [27]. A
ZeroMQ-based interface was developed to couple Torch with
Anglican.1

A. Initial results

As can be seen in Table I, this architecture, and our method
for training it using synthetic data, outperforms nearly all
state-of-the-art Captcha breakers in terms of both accuracy
and recognition times with the exception of Goodfellow et al.
[6], which used data drawn from the true reCaptcha generator.
The row labeled “our method” shows breaking results and
speeds for our neural network trained using synthetic data to
decode unlabeled Captchas from the same Captcha generator.
The Goodfellow et al. [6] and Stark et al. [8] rows show the
most directly comparable results, namely, using deep neural
networks to break unlabeled Captchas training on synthetic
data. The additional rows show breaking results for more
traditional segment-and-classify computer vision image pro-
cessing pipelines. These, in contrast to the others, do not have
access to the true Captcha generator but instead report test
results on real-world Captchas gathered in the wild. If robust,
> 90% accuracies would seem to confirm that Captcha, from
a computer security perspective [28, 29], is indeed broken.

While the capabilities of deep neural networks are impres-
sive, it should be noted that these kinds of results, on occasion,
can be somewhat misleading [13]. In particular, one should

1The full source code of our setup will be released in a public repository
by the camera-ready deadline.

$40M raise

Le TA, Baydin AG, Zinkov R, Wood F. Using Synthetic Data to Train Neural Networks is Model-Based Reasoning, IJCNN. 2017. 
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Inference Compilation : https://github.com/probprog/pyprob  
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event & detector simulators ATLAS detector output
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pencil & paper calculable from first principles 
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controlled approximation of first principles 
p(z2 | z1, ν₁)
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•Conceptually: Prob(detector response | particles ) 

•Implementation: Monte Carlo integration over micro-physics 

•Consequence: evaluation of the likelihood is intractable 
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Efficient Probabilistic Inference in the Quest for Physics Beyond the Standard Model. Submitted to NIPS.



High Peaks -- Our Battle to Control a SHERPA
• Controlled by PyProb 

• C++ prior model 
• SHERPA; 1M+ lines 
• Describes standard model 
• Only interface via intercepted U(0,1) RV’s 

• Python likelihood 
• ATLAS detector component simulator 

• Inf. comp. artifact first ever inference using LHC 
generative model software stack  

• Neural network SHERPA controller 1000x’s more 
efficient than MH or IS inference; potential for real-
time
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Figure 1: Top: branching ratios of the tau lepton, effectively the prior distribution of the decay
channels in the SHERPA simulation. Note that the scale is logarithmic. Bottom: Feynman diagrams
for tau decays illustrating these can produce multiple detected particles.

The ability to connect posterior samples to the simulator code is a key advantage of our method in89

scientific applications. This connection enables inference results to be interpretable in the context90

of the physically-motivated latent process encoded by the simulator. Such interpretability is crucial91

for applications in the physical sciences. For instance, this approach gives us the ability to inspect92

any aspect of the latent process encoded in the simulation, such as the chain of particle decays and93

interactions within the detector that led to particular posterior predictions. This capability is not94

possible in inference techniques that do not have access to the simulator, such as those solely based95

on neural networks.96

2.1 The Tau Lepton Decay97

The exact HEP use-case we focus on in depth in this paper is the decay of a tau lepton particle inside98

an LHC-like detector. This is is a real particle physics use-case under active current study by LHC99

physicists [2] and it is also of interest due to its importance to establishing the properties of the100

recently discovered Higgs boson [1, 5] through its decay to tau particles. Once produced, the tau101

decays to further particles which are observed within the detector according to certain channels. The102

probabilities of these decays or “branching ratios” are shown in Figure 1 which have been measured103

by other experiments and provide prior estimations for inference.104

3 Related Work105

3.1 Probabilistic Programming106

Recent developments in probabilistic programming systems (PPS) such as pyro [11], Edward [39],107

Prob Torch [37], pyprob [28], Stan [13] and others, provide ways to combine fast and scalable108

inference techniques [23, 22, 16]. By decoupling the model from the inference engine PPS provide109

a number of sophisticated tools for users to effectively analyze increasingly complex models and110

data structures, as the universality of PPL enables the user to represent any computable probability111

distribution. This utility enables the user to interpret the predictions of the inference performed,112

which is critical when interpretability is required for the given domain application [7, 6, 36].113

In this work, we extend inference compilation [28] to large-scale complex simulators. Inference114

compilation uses a deep neural network to amortize the cost inference by generating an approximation115

to the parametric distribution of the posterior over the latent variables random variables in the model,116

whilst taking a particular set of observed random variables as inputs at test time. The network then117

provides a computationally efficient way of generating proposals when inference is performed via118

importance sampling(IS). In addition to inference compilation and importance sampling we take119

3

Efficient Probabilistic Inference in the Quest for Physics Beyond the Standard Model. Submitted to NIPS.



Key Benefit
• Instant interpretability

Figure 1: An illustration of the framework, where the pyprob package in Python is controlling
SHERPA in C++ through the probabilistic programming execution (PPX) protocol. The bottom part
shows the actual probabilistic structure of the ⌧ decay simulator, excluding uncontrolled addresses.

inference algorithms to provide interpretable posterior samples. In this work, we take this approach,37

extend previous work in universal probabilistic programming [15] and inference compilation [16] to38

large-scale complex simulators, and demonstrate the ability to execute existing simulator codes under39

the control of general-purpose inference engines. This is achieved by a cross-platform probabilistic40

execution protocol (Figure 1) through which an inference engine can control simulators in a language-41

agnostic way. We implement a range of general-purpose inference engines from the Markov chain42

Monte Carlo (MCMC) [17] and importance sampling [18] families. The execution framework we43

develop currently has bindings in C++ and Python, which are languages of choice for many large-scale44

projects in science and industry, and it can be used by any other language pending the implementation45

of a lightweight front end.46

We demonstrate the technique in a particle physics setting, introducing probabilistic programming as47

a novel tool to determine the properties of particles at the Large Hadron Collider (LHC) [19, 20] at48

CERN. This is achieved by coupling our framework with SHERPA1 [21], a state-of-the-art Monte49

Carlo event generator of high-energy reactions of particles, which is commonly used with GEANT250

[22], a toolkit for the simulation of the passage of the resulting particles through detectors. In51

particular, we perform inference in the case of ⌧ (tau) lepton particle decay in a realistic detector,52

controlling the simulation within the standard SHERPA software with minimal modification and53

extracting posterior distributions in agreement with MCMC-based ground truths. To our knowledge54

this is the first time that universal probabilistic programming has been applied in this domain and55

in this scale, controlling a codebase of nearly 1M lines of code. Our approach is readily scalable to56

more complex events and full detector simulators, paving the way to its use in the discovery of new57

fundamental physics.58

2 Particle Physics and Probabilistic Inference59

Our work is primarily motivated by applications in high-energy physics (HEP), which studies elemen-60

tary particles and their interactions using energetic events created in particle accelerators such as the61

LHC at CERN. In this setting, the observed data are the result of interactions of particles generated in62

a collision event and observed through particle detectors. From these observations, we would like to63

infer the properties of the particles and interactions that generated them. Collisions happen millions of64

times per second, creating cascading particle decays in complex detectors instrumented with millions65

of electronics channels. These experiments then seek to filter the vast volume of (petabyte-scale)66

resulting data to make discoveries that shape our understanding of fundamental physics.67

The complexity of the underlying physics and of the detectors have, until now, prevented the commu-68

nity from employing inference techniques. However, they have developed sophisticated simulator69

packages such as SHERPA [21], GEANT [22], PYTHIA [23], Herwig++ [24], and MadGraph [25]70

1
Simulation of High-Energy Reactions of Particles. https://sherpa.hepforge.org/

2
Geometry and Tracking. https://geant4.web.cern.ch/
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• Thus we focus on creating an infrastructure for the interpretation of existing simulator packages as probabilistic 
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Challenges
• Sharply peaked likelihoods 

• Adversarial training? 
• Efficient forward model execution at test time 

• Surrogates? 
• Deep neural network training at scale



Massively Distributed 
Deep Network Training



Key Ideas
• Asynchronous distributed SGD (aka Hogwild) does not work “at scale” 
• Chen et al (Bengio/Google) [2016] suggest “obvious” idea 

• Drop straggling workers in synchronous SGD 
• Provided mini-batch data selection is uncorrelated with worker identity 

this is completely kosher in expectation 

• Our idea 
• Learn a deep nonlinear dynamical system model of cluster 

performance and use order statistics from said model to drop 
straggling workers 

• TL&DR 
• Higher throughput leads to faster training times despite dropping 

gradient mini-batch computations 
• Learned model does better than simple heuristics



Predicted Throughputs on 160 Node Xeon Cluster

3.1.1 Elfving Cutoff129

The first model of runtimes we consider assumes that they are are independent and identically130

distributed (iid) Gaussian. Under the assumption that xj = N(µx,�2
x) the distribution of each order131

statistic p(x̃(1)), p(x̃(2)), ..., p(x̃(n)) is independent and E[x̃(1)]  E[x̃(2)], ..., E[x̃(n)].132

Under the given iid normality assumption the distribution of the each order statistic has closed form:133

p(x̃(j)) = Z(n, j)

Z 1

�1
x[�(x)]j�1[1� �(x)]n�jp(x)dx

where �(x) is the cumulative distribution function (CDF) of N(µt,�2
t ) and Z(n, j) = n!

(j�1)!(n�j)!134

Note that each order statistic’s distribution, including the maximum, increases as the variance of the135

run-time distribution increases, while the average run-time does not.136

As a baseline in subsequent sections we will use a useful approximation of the expectations of order137

statistics under this iid normality assumption. This is known as the Elfving (1947) formula (Royston,138

1982):139

E[x̃(j)] ⇡ µt + ��1

✓
n� ⇡

8

j � ⇡
4 + 1

; 0, 1

◆
�t (3)

In practice, the parameters µt,�t are fit using maximum likelihood on the first fixed lagged window.140

Here, we note that the Elfving model requires full observability of runtimes to dynamically compute141

this.142

Further, it is not known how to derive the analytic form of the joint order statistic distribution of143

non-Gaussian distributed correlated random variables. However, a Monte Carlo approximation of144

the order statistics is straightforward: use a model to predict the joint distribution of the xj’s, then145

sample, sort, and record the values of all n sorted samples, and then repeat. Towards that end we146

developed a model of correlated compute times from which we will then be able to construct Monte147

Carlo order statistic estimates for use in determining the optimal cutoff threshold.148

Figure 1: Results of throughputs given by amortized inference. Each runtime plot (5 surrounding the
top figure) shows the individual runtimes of the worker (x-axis index) during an iteration of SGD
on a 158 node cluster. We highlight SGD iterations 1, 50, 100, 150, and 200 which highlight two
significantly different regimes of persistent time-and-machine-identity correlated worker runtimes.
The top large figure displays a comparison of throughputs achieved by waiting for all workers to finish
(green) and using the inferred cutoff method (red) relative to the ground truth maximum achievable
(oracle). The bottom figure displays the reduction in time per iteration when Cutoff SGD is used.

3.1.2 Bayesian Cutoff149

Before introducing the design of the generative model we use to predict worker run-times, first150

consider why a generative model here is nearly absolutely necessary, certainly in comparison to a151

4
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Figure 2: Runtime profiles of various iterations of SGD of the validation set in our training step.
The maximum throughput cutoff under the model predictions is shown in red, indicating a large
chunk of idle time is reduced as a result of stopping early. (A/B): selected observed runtimes vs
predicted runtime order statistics for a 158 node cluster. Notably, when there are exceptionally slow
workers present, the cutoff is set to proceed without any of them as seen in figure (A). (C/D): example
predicted vs. actual runtimes for 2175 node cluster. All predicted order statistics are shown with ±2
standard deviations

In particular we will directly approximate Equation 4 by189

p(xT+1|xT�`:T ) ⇡
Z

p✓(xT+1|zT+1)p✓(zT+1|zT )q�(zT�`:T |xT�`:T )dzT�`:T+1

⇡ 1

K

KX

k=1

p✓(xT+1|zT+1)p✓(zT+1|z(k)
T ) (5)

190

with z(k)
T being the last-time-step marginal of the kth of K samples from q�(zT�`:T |xT�`:T ).191

During training, and at test-time, we normalize the observations over the first batch. In doing so, we192

avoid retraining the model for neural networks and batch sizes that cause longer runtimes.193

3.1.4 Handling Censored Run-times194

As described, we use the learned inference network to predict future cutoffs rather than the generative195

model. Because variational inference jointly learns the model parameters along with the inference196

network, we could theoretically use an inference algorithm such as SMC Doucet et al. (2001) for197

more accurate estimates of the true posterior. However, our cutoff prediction must be done in an198

amortized setting, because we rely on it to be set for a gradient run prior to the updates returning199

from the workers. In a setting which requiring fast, repeated inference, using an amortized method is200

often the only approach, especially in large complex models.201

However, when using amortized inference, there is a practical implication of dealing with partially202

observed and in fact censored data. Since at run-time we are only waiting for c gradients up to203

the cutoff, and are in fact actually killing the straggling workers, we do not have the run-time204

information from the straggling workers that would have finished past the cutoff. This results in205

censored observations, and we know that censoring occurs right at f̃(c). Inference in the generative206

model could directly be made able to deal with censored data, however our inference network runs an207

RNN which was trained on fully observed run-time vectors and therefore requires fully observed input208

to function correctly. Because of this, we deploy an effective approximate technique for imputing the209

missing worker runtime values, which samples a new uncensored data point for every worker whose210

gradients are dropped. Because we push estimates of the approximate posterior through the generative211

model, we have a predictive run-time distribution for the current iteration of SGD before receiving212

actual updates from any worker. When eventually the cutoff is reached, and the corresponding rate213

censor is observed, we are left with run-time distributions, which are left truncated at x̃(c):214

p(x̃; x̃ > x̃c) =
p(x̃)R1

x̃(c)
p(x̃)dx̃

where we have left off the time index for clarity and x̃ is any one of the censored worker runtime215

observations.216
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Improved Training Time on MNIST
runtimes as a result. We include the transitional window of the competing job in our test data and244

demonstrate that the model has learned both dynamical modes.245

Figure 3: MNIST validation loss convergence for
our model based methods, Elfving and Bayesian,
and popular approaches. Batch size - 10112, learn-
ing rate scaled to 0.64 for sync and 0.004 (0.64 /
num workers) for async.

Figure 3 shows that our method achieves the246

fastest convergence to the lowest lost among247

comparison methods performing synchronous248

SGD. Hogwild outperforms our approach in249

wall-clock time, but its convergence is to a250

higher validation loss, as seen in the tails of251

the loss curves. Dashed vertical lines indicate252

the time at which the final iteration completed.253

4.2 Large Scale Computing254

We also ran experiments on a large compute255

cluster, with 32 nodes of a Cray XC40 su-256

percomputer, using 2175 8-core CPU workers257

in parallel. We tested with training WideRes-258

Nets (Zagoruyko and Komodakis, 2016) and259

64-layer ResNets on Cifar100. Figure 4 shows260

the substantial 4-6% improvement in training261

time for our dynamic method vs fixed cutoff,262

and the even greated 13% improvement over263

synchronous SGD. In our experiments, Chen et.264

al is compared to our BDSGD method as well265

as being a proxy for the Elfving method since the two result in very close cutoffs (2055 vs 2051).266

Furthermore, we find that the average throughput, as optimized by our model, is high but noisy when267

compared to to that of fixed cutoff.268

Figure 4 shows the overall decrease in training time for our model based approach compared to fixed269

cutoffs and synchronous SGD. We simulate even larger workloads with mini-batch sizes of 47850270

and 8700, while still training CIFAR100 to high validation loss. This allows us to benchmark our271

speedup in situations called for by the large amount of recent work on training with 10K+ minibatch272

sizes and high learning rates, (e.g. : Codreanu et al. (2017); You et al. (2017a,b); Smith et al. (2017))273

Figure 4 also demonstrates there is also a decreased efficiency gain in using any cutoff method when274

communication cost in the parameter sharing step is too high. ResNet-64 uses 958644 parameters275

with a relatively low communication cost to training time ratio, while the WideResNet contains276

17174324 parameters and results longer time to synchronize parameters. However, we point out that277

taking there is still a decrease in overall training time, and moreover, mitigating communication cost278

is an orthogonal research problem to our own, (e.g. : Cho et al. (2017); Strom (2015)).279

5 Discussion280

We have presented an improved, faster way to do synchronous distributed gradient descent. Our281

primary contributions include describing how a model of worker runtimes can be used to predict order282

statistics that allow for a near optimal choice of straggler cutoff that maximizes gradient computation283

throughput.284

While the focus throughout has been on on vanilla SGD, it should be clear that our method and285

algorithm can be nearly trivially extended to most optimizers of choice so long as they are stochastic286

in their operation on the training set. Most methods for learning deep neural network models today fit287

this description, including for instance the Adam optimizer (Kingma and Ba, 2014).288

We conclude with a note that our method implicitly assumes that every minibatch is of the same289

computational cost in expectation, which may not always be the case. Future work could be to extend290

the inference network further (Rezende and Mohamed, 2015) or to investigate variable length input291

in distributed training as in Ergen and Kozat (2017).292
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Improved Training Times for Large Neural Networks

Figure 4: We trained ResNet-64 and the WideResNet with 28 Layers and a width factor of 10.
Both networks are trained on CIFAR-100, with a batch-size of 47850 on ResNet-64 and 8700 on
WideResNet. All training curves train to 1100 iterations. Initial learning rates for both are set to 0.16,
with a 20% decay on WideResNet at t=500 and t=1000. The plots show in order: total throughput
over training, wall-clock validation accuracy over training time, and the ratio of training time vs.
inter-rank communication cost. On the validation loss curve in the center, dashed vertical lines
indicate when the final iteration completed.

When a censored value is required, we take its corresponding predicted run-time distribution and217

sample from the right tail truncated distribution to get an approximate value for that missing run-218

time. We find that this method works well to propagate the model forward, leading to still accurate219

predictions.220

4 Experiments221

To test our model’s ability to accurately predict joint worker runtimes, we perform experiments on222

two clusters of different architectures and sizes. In addition, we show that model based estimates of223

expected runtimes are sufficient to derive a straggler cutoff from their order statistics that leads to224

faster training times in real world situations.225

Both compute cluster generative models are trained with respective training data and subsequently226

display high performance on validation sets, where we test by comparing the next available vector227

of run-times against the predicted run-times emitted by the preceding 20 timestep sequence (see228

Figure 2). In all experiments we use a twenty-timestep lag, i.e. ` = 20229

4.1 Small Compute Cluster230

On one cluster comprised of four nodes of forty logical Intel Xeon processors, we benchmark our231

two model based cutoff predictors against the fully synchronous and fully asynchronous SGD. At232

this scale, and on a toy model, we are still able to deploy a Hogwild training scheme that does not233

diverge. We gathered one hour of training data on this machine by recording the runtimes emitted by234

each worker looping on gradient computations.235

In Figure 1 there is clear evidence that the strong assumptions of independence and identically236

distributed runtimes required to use the iid normality assumption do not hold on this cluster. Figure 1237

clearly shows what can happen on a highly contentious cluster, which produced different levels of238

correlated worker runtimes throughout a period. In order to reduce the total wait times, a model of a239

compute cluster is required.240

We find that the appearance of multiple runtime regimes to be caused by concurrent job scheduling241

on the 158 node cluster. While we gathered training data, a different job was batched onto a machine242

of 40 shared nodes, causing the workers on those 40 nodes to contend for resources and emit higher243

7



Vision
• A learned computational artifact for rapid, even real-time, 

interpretable LHC event processing 
• Trigger 

• A framework for model criticism and new physics using high-
quality importance sampling-based evidence estimates 

• A framework for efficiently training simulator controllers for 
various industry applications 
• Leverage existing simulator code 
• Use general purpose compute 
• Useful for realtime anomaly detection, advanced analytics, 

etc.
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Abstract

We introduce a general method for improving the convergence rate of gradient-
based optimizers that is easy to implement and works well in practice. We analyze
the effectiveness of the method by applying it to stochastic gradient descent,
stochastic gradient descent with Nesterov momentum, and Adam, showing that
it improves upon these commonly used algorithms on a range of optimization
problems; in particular the kinds of objective functions that arise frequently in
deep neural network training. Our method works by dynamically updating the
learning rate during optimization using the gradient with respect to the learning
rate of the update rule itself. Computing this “hypergradient” needs little additional
computation, requires only one extra copy of the original gradient to be stored in
memory, and relies upon nothing more than what is provided by reverse-mode
automatic differentiation.

1 Introduction
In nearly all gradient descent algorithms the choice of learning rate remains central to efficiency;
Bengio [4] asserts that it is “often the single most important hyper-parameter” and that it always
should be tuned. This is because choosing to follow your gradient signal by something other than the
right amount, either too much or too little, can be very costly in terms of how fast the overall descent
procedure achieves a particular level of objective value.

Understanding that adapting the learning rate is a good thing to do, particularly on a per parameter
basis dynamically, led to the development of a family of widely-used optimizers including AdaGrad
[9], RMSProp [28], and Adam [14]. However, a persisting commonality of these methods is that they
are parameterized by a “pesky” fixed global learning rate hyperparameter which still needs tuning.
There have been methods proposed that do away with needing to tune such hyperparameters altogether
[21] but their adoption has not been widespread, owing perhaps to their complexity, applicability in
practice, or performance relative to the aforementioned family of algorithms.

Our initial conceptualization of the learning rate adaptation problem was one of automatic differenti-
ation [2]. We hypothesized that the derivative of a parameter update procedure with respect to its
global learning rate ought to be useful for improving optimizer performance. This conceptualization
is not unique, having been explored, for instance, by Maclaurin et al. [16]. While the automatic
differentiation perspective was integral to our conceptualization, the resulting algorithm turns out
to simplify elegantly and not require additional automatic differentiation machinery. In fact, it is
easily adaptable to nearly any gradient update procedure while only requiring one extra copy of
a gradient to be held in memory and very little computational overhead; just a dot product in the
dimension of the parameter. Considering the general applicability of this method and adopting the
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• Dynamically adjust the learning rate in gradient descent by using automatic 
differentiation to differentiate wrt the learning rate through the gradient update 
procedure itself 

Noting that                                             the chain rule yields 

suggesting a simple learning rate update rule 

Simple Idea

name “hypergradient” introduced by Maclaurin et al. [16] to mean a derivative taken with respect to
a hyperparameter, we call our method hypergradient descent.

To our knowledge, our rediscovery appeared first in the largely neglected paper of Almeida et al. [1],
who arrived at the same hypergradient procedure as us. However, none of the aforementioned modern
gradient-based optimization procedures existed at the time of its publication so the only examples
considered were gradient and stochastic gradient descent on relatively simple functions. Having
rediscovered this approach, we develop it further and demonstrate that adapting existing gradient
descent procedures to use hypergradient descent to dynamically adjust global learning rates improves
stochastic gradient descent (SGD), stochastic gradient descent with Nesterov momentum (SGDN),
and Adam; particularly so on large-scale neural network training problems.

In addition to outperforming the regular variants of algorithms in their class, hypergradient algorithms
significantly reduce the need for the expensive and time consuming practice of hyperparameter search
[10], which in practice is being performed with grid search, random search [5], Bayesian optimization
[26], and model-based approaches [6, 11].

2 Hypergradient Descent
We define the hypergradient descent (HD) method by applying gradient descent on the learning rate
of an underlying gradient descent algorithm, independently discovering a technique that has been
previously considered in the optimization literature, most notably by Almeida et al. [1]. This differs
from the reversible learning approach of Maclaurin et al. [16] in that we apply gradient-based updates
to a hyperparameter (in particular, the learning rate) at each iteration in an online fashion, instead of
propagating derivatives through an entire inner optimization that consists of many iterations.

The method is based solely on the partial derivative of an objective function—following an update
step—with respect to the learning rate, and directly follows from the chain rule of differential calculus,
involving no other arbitrary terms originating from empirical insights or running estimates. In this
paper we consider and report the case where the learning rate ↵ is a scalar. It is straightforward to
generalize the introduced method to the case where ↵ is a vector of per-parameter learning rates.

The most basic form of HD can be derived from regular gradient descent as follows. Regular gradient
descent, given an objective function f and previous parameters ✓t�1, evaluates the gradient rf(✓t�1)
and moves against it to arrive at updated parameters

✓t = ✓t�1 � ↵rf(✓t�1) , (1)
where ↵ is the learning rate. In addition to this update rule, we would like to derive an update rule
for the learning rate ↵ itself. For this, we will compute @f(✓t�1)/@↵ , the partial derivative of the
objective f with respect to the learning rate ↵. Noting that ✓t�1 = ✓t�2�↵rf(✓t�2), i.e., the result
of the previous update step, and applying the chain rule, we get

@f(✓t�1)

@↵
= rf(✓t�1) ·

@(✓t�2 � ↵rf(✓t�2))

@↵
= rf(✓t�1) · (�rf(✓t�2)) , (2)

which allows us to compute the needed hypergradient with a simple dot product and the memory cost
of only one extra copy of the original gradient. Using this hypergradient, we construct a higher level
update rule for the learning rate as

↵t = ↵t�1 � �
@f(✓t�1)

@↵
= ↵t�1 + �rf(✓t�1) ·rf(✓t�2) , (3)

introducing � as the hypergradient learning rate. We then modify Eq. 1 to use the sequence ↵t to
become

✓t = ✓t�1 � ↵t rf(✓t�1) . (4)

Equations 3 and 4 thus define the most basic form of the HD algorithm, updating both ✓t and ↵t at
each iteration. Note that this derivation is applicable to any gradient-based optimization algorithm
with an update rule expressed in the form of Eq. 1, where the multiplier of ↵ in the original update
rule will appear on the right-hand side of the dot product in the formula for @f/@↵ in Eq. 2.

Applying these derivation steps to stochastic gradient descent (SGD) (Algorithm 1), we arrive at the
hypergradient variant of SGD that we abbreviate as SGD-HD (Algorithm 4). As all gradient-based
algorithms that we consider have a common core where one iterates through a loop of gradient
evaluations and parameter updates, for the sake of brevity, we define all algorithmic variants with

2

name “hypergradient” introduced by Maclaurin et al. [16] to mean a derivative taken with respect to
a hyperparameter, we call our method hypergradient descent.

To our knowledge, our rediscovery appeared first in the largely neglected paper of Almeida et al. [1],
who arrived at the same hypergradient procedure as us. However, none of the aforementioned modern
gradient-based optimization procedures existed at the time of its publication so the only examples
considered were gradient and stochastic gradient descent on relatively simple functions. Having
rediscovered this approach, we develop it further and demonstrate that adapting existing gradient
descent procedures to use hypergradient descent to dynamically adjust global learning rates improves
stochastic gradient descent (SGD), stochastic gradient descent with Nesterov momentum (SGDN),
and Adam; particularly so on large-scale neural network training problems.

In addition to outperforming the regular variants of algorithms in their class, hypergradient algorithms
significantly reduce the need for the expensive and time consuming practice of hyperparameter search
[10], which in practice is being performed with grid search, random search [5], Bayesian optimization
[26], and model-based approaches [6, 11].

2 Hypergradient Descent
We define the hypergradient descent (HD) method by applying gradient descent on the learning rate
of an underlying gradient descent algorithm, independently discovering a technique that has been
previously considered in the optimization literature, most notably by Almeida et al. [1]. This differs
from the reversible learning approach of Maclaurin et al. [16] in that we apply gradient-based updates
to a hyperparameter (in particular, the learning rate) at each iteration in an online fashion, instead of
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Figure 3: Inference on representative faces using Picture: We
tested our approach on a held-out dataset of 2D image projections
of laser-scanned faces from [36]. Our short probabilistic program
is applicable to non-frontal faces and provides reasonable parses as
illustrated above using only general-purpose inference machinery.
For quantitative metrics, refer to section 4.1.

and informed samplers [19]. GPGP aimed to address the
main challenges of generative vision by representing visual
scenes as short probabilistic programs with random vari-
ables, and using a generic MCMC (single-site Metropolis-
Hastings) method for inference. However, due to modeling
limitations of earlier probabilistic programming languages,
and the inefficiency of the Metropolis-Hastings sampler,
GPGP was limited to working with low-dimensional scenes,
restricted shapes, and low levels of appearance variability.
Moreover, it did not support the integration of bottom-up
discriminative models such as deep neural networks [23, 25]
for data-driven proposal learning. Our current work extends
the GPGP framework in all of these directions, letting us
tackle a richer set of real-world 3D vision problems.

Picture is an imperative programming language, where
expressions can take on either deterministic or stochastic val-
ues. We use the transformational compilation technique [46]
to implement Picture, which is a general method of trans-
forming arbitrary programming languages into probabilistic
programming languages. Compared to earlier formulations
of GPGP, Picture is dynamically compiled at run-time (JIT-
compilation) instead of interpreting, making program execu-
tion much faster.

A Picture program f defines a stochastic procedure that
generates both a scene description and all other information
needed to render an approximation image IR for compari-
son with an observed image ID. The program f induces a
joint probability distribution on the program trace ⇢ = {⇢i},
the set of all random choices i needed to specify the scene
hypothesis S and render IR. Each random choice ⇢i can
belong to a familiar parametric or non-parametric family of
distributions, such as Multinomial, MvNormal, DiscreteU-
niform, Poisson, or Gaussian Process, but in being used to
specify the trace of a probabilistic graphics program, their

effects can be combined much more richly than is typical for
random variables in traditional statistical models.

Consider running the program in Figure 2 unconditionally
(without observed data): as different ⇢i’s are encountered
(for e.g. coeff ), random values are sampled w.r.t their under-
lying probability distribution and cached in the current state
of the inference engine. Program execution outputs an image
of a face with random shape, texture, camera and lighting
parameters. Given image data ID, inference in Picture pro-
grams amounts to iteratively sampling or evolving program
trace ⇢ to a high probability state while respecting constraints
imposed by the data (Figure 3). This constrained simulation
can be achieved by using the observe language construct
(see code in Figure 2), first proposed in Venture [32] and
also used in [35, 47].

2.1. Architecture
In this section, we will explain the essential architectural

components highlighted in Figure 1 (see Figure 4 for a sum-
mary of notation used).
Scene Language: The scene language is used to describe
2D/3D visual scenes as probabilistic code. Visual scenes
can be built out of several graphics primitives such as: de-
scription of 3D objects in the scene (e.g. mesh, z-map,
volumetric), one or more lights, textures, and the camera
information. It is important to note that scenes expressed
as probabilistic code are more general than parametric prior
density functions as is typical in generative vision models.
The probabilistic programs we demonstrate in this paper
embed ideas from computer-aided design (CAD) and non-
parametric Bayesian statistics[37] to express variability in
3D shapes.
Approximate Renderer (AR): Picture’s AR layer takes in
a scene representation trace S

⇢ and tolerance variables X
⇢,

and uses general-purpose graphics simulators (Blender[5]
and OpenGL) to render 3D scenes. The rendering tolerance
X

⇢ defines a structured noise process over the rendering and
is useful for the following purposes: (a) to make automatic
inference more tractable or robust, analogous to simulated
annealing (e.g. global or local blur variables in GPGP [31]),
and (b) to soak up model mismatch between the true scene
rendering ID and the hypothesized rendering IR. Inspired by
the differentiable renderer[29], Picture also supports express-
ing AR’s entire graphics pipeline as Picture code, enabling
the language to express end-to-end differentiable generative
models.
Representation Layer (RL): To avoid the need for photo-
realistic rendering of complex scenes, which can be slow
and modeling-intensive, or for pixel-wise comparison of
hypothesized scenes and observed images, which can some-
times yield posteriors that are intractable for sampling-based
inference, the RL supports comparison of generated and ob-
served images in terms of a hierarchy of abstract features.

Figure 2: Four input images from our CAPTCHA corpus, along with the final results and conver-
gence trajectory of typical inference runs. The first row is a highly cluttered synthetic CAPTCHA
exhibiting extreme letter overlap. The second row is a CAPTCHA from TurboTax, the third row
is a CAPTCHA from AOL, and the fourth row shows an example where our system makes errors
on some runs. Our probabilistic graphics program did not originally support rotation, which was
needed for the AOL CAPTCHAs; adding it required only 1 additional line of probabilistic code. See
the main text for quantitative details, and supplemental material for the full corpus.

3 Generative Probabilistic Graphics in 2D for Reading Degraded Text.
We developed a probabilistic graphics program for reading short snippets of degraded text consisting
of arbitrary digits and letters. See Figure 2 for representative inputs and outputs. In this program,
the latent scene S = {Si} contains a bank of variables for each glyph, including whether a potential
letter is present or absent from the scene, what its spatial coordinates and size are, what its identity
is, and how it is rotated:
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0 otherwise
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0 otherwise
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Our renderer rasterizes each letter independently, applies a spatial blur to each image, composites
the letters, and then blurs the result. We also applied global blur to the original training image
before applying the stochastic likelihood model on the blurred original and rendered images. The
stochastic likelihood model is a multivariate Gaussian whose mean is the blurry rendering; formally,
ID ⇠ N(IR;�). The control variables X = {Xj} for the renderer and likelihood consist of per-
letter Gaussian spatial blur bandwidths Xi

j
⇠ � · Beta(1, 2), a global image blur on the rendered

image Xblur rendered ⇠ � · Beta(1, 2), a global image blur on the original test image Xblur test ⇠
� · Beta(1, 2), and the standard deviation of the Gaussian likelihood � ⇠ Gamma(1, 1) (with �,
� and � set to favor small bandwidths). To make hard classification decisions, we use the sample
with lowest pixel reconstruction error from a set of 5 approximate posterior samples. We also
experimented with enabling enumerative (griddy) Gibbs sampling for uniform discrete variables
with 10% probability. The probabilistic code for this model is shown in Figure 4.

To assess the accuracy of our approach on adversarially obscured text, we developed a corpus con-
sisting of over 40 images from widely used websites such as TurboTax, E-Trade, and AOL, plus
additional challenging synthetic CAPTCHAs with high degrees of letter overlap and superimposed
distractors. Each source of text violates the underlying assumptions of our probabilistic graphics
program in different ways. TurboTax CAPTCHAs incorporate occlusions that break strokes within
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(peek states)))]

(observe (get obs-dists state) obs)

(conj states state)))

[(sample init-dist)]

observations)))

(declare noah andreas)

(with-primitive-procedures [pub-or-starbucks?]

(defm noah [depth]

(let [noah-location (pub-or-starbucks? 0.6)

andreas-location (andreas (dec depth))]

(observe noah-location andreas-location)

andreas-location))

(defm andreas [depth]

(let [andreas-location (pub-or-starbucks? 0.6)]

(if (> depth 0)

(let [noah-location (noah depth)]

(observe andreas-location noah-location)

noah-location)

(sample andreas-location)))))

9. Simulation Based Modeling

An alternative characterization of a probabilistic program can be considered, which focuses
purely on the generative simulation process. A deterministic (or “traditional”) program
performs some computation and then returns an output. A probabilistic programming
language augments the deterministic programming language with two constructs:

• sampling a random value according to some distribution; and

• conditioning on the value of an observed random variable.

The probabilistic program then defines a distribution over outputs, and returns some rep-
resentation of this distribution.

Informally, one can imagine “running” a probabilistic program as an operation similar
to running a deterministic program. Suppose we have some set of random primitives —
distributions such as the Gaussian, uniform, binomial, etc. — from which we can sample
new random values, or condition on observed values. In Anglican, we could draw a value
according to a standard normal distribution by calling (sample (normal 0 1)) and we
could condition on it taking the value 1.1 with (observe (normal 0 1) 1.1). In a single
execution of a probabilistic program, if we encounter a sample statement, we draw a new
random variable; if we encounter an observe statement, we can record the probability of
the value under the supplied distribution.

We can describe this process somewhat more precisely as follows. We suggest a separa-
tion between the deterministic program code P and the randomness introduced by sample
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Figure 1: Physical realizations of stable structures generated by our system. To create these structures, we write programs that
generate random structures (e.g. a random tower or a randomly-perturbed arch), constrain the output of the program to be near
static equilibrium, and then sample from the constrained output space using Hamiltonian Monte Carlo.

Abstract

We present a system for generating suggestions from highly-constrained, continuous design spaces. We formulate
suggestion as sampling from a probability distribution; constraints are represented as factors that concentrate
probability mass around sub-manifolds of the design space. These sampling problems are intractable using typical
random walk MCMC techniques, so we adopt Hamiltonian Monte Carlo (HMC), a gradient-based MCMC method.
We implement HMC in a high-performance probabilistic programming language, and we evaluate its ability to
efficiently generate suggestions for two different, highly-constrained example applications: vector art coloring
and designing stable stacking structures.

1. Introduction

Considering multiple possibilities is critical in design. Ex-
posure to different examples facilitates creativity—for in-
stance, prototyping multiple alternatives can lead to better-
quality final designs [KDK14, DGK⇤10]. Exploring the
whole space of creative options seems to help people avoid
fixation and overcome their unconscious biases [JS91].
Computation can assist with this exploration by generating

suggestions: given a model of the design space, computers
can synthesize examples that their users might never have
thought of independently.

In computer graphics, probabilistic inference has become
popular for computer-aided suggestion in domains as diverse
as color selection and furniture layout [LRFH13,YYW⇤12].
In this framework, the user provides a model of the de-
sign space by expressing her preferences as soft constraints,
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Forward Sampling SOSMC-Controlled Sampling

Figure 3: SOSMC sampling from a random building complex
model with volume matching applied.

Figure 4: Using the object avoidance scoring function to make
gnarly trees grow around obstacles.

Figure 1 shows some examples of spaceships and trees sampled
according to this score function using SOSMC. Figure 3 applies
the same score function to encourage a building complex to take on
a crescent-like shape.

6.2 Object Avoidance

Volume matching allows an artist to specify what regions of space
a model should occupy; it can also be valuable to specify the space
a model should not occupy. For this control, the user provides a set
of objects with which the model should avoid contact. We rasterize
these objects onto a binary voxel grid Vavoid. The object avoidance
score function savoid is then

savoid(r) =
Y

x2D

1{Vr(x) " Vavoid(x)}

where " is logical NAND. This function imposes a hard constraint:
it returns 0 if Vr and Vavoid have any mutually filled cells and 1
otherwise.

Figure 4 shows two examples of using object avoidance to generate
trees that avoid obstacles. On the left, the tree avoids a wall with
three protruding ledges; on the right, it grows through and around
the SIGGRAPH logo. These examples also use a weaker version of
the volume matching score function (� = 0.05) to encourage the
trees to grow to a tall, full shape.

6.3 Image Matching

It is also useful to specify projective properties of a model, such as
how it looks from a particular viewpoint or when lit from a particu-

Front View Top View

Figure 5: The image matching scoring function is used to control
the appearance of a building complex from a particular viewpoint.
(Left): The model as viewed from the target viewpoint. (Right): The
model viewed from above.

Target

Front View

Top View

Figure 6: Using image matching to control the appearance of
a spaceship’s front profile. The SOSMC-sampled results closely
match the target when viewed head on but exhibit a variety of struc-
tures when viewed from other angles.

lar angle. We implement this type of control through image-based
comparisons. If Itarget is a target binary image defined over domain
D, and Ir is a rendering of the model described by trace r onto D,
then the image matching score function simatch is

simatch(r) = N (sim(Ir, Itarget), 1,�)

sim(I1, I2) =

P
x2D W (x) · 1{I1(x) = I2(x)}P

x2D W (x)

where W is a ‘weight image’ defined over D. The weight image
allows users to draw strokes over parts of the image domain where
strict matching is more or less important. For the results shown in
this paper, W is uniform unless explicitly shown. As with volume
matching, � is 0.02 unless otherwise specified.

Figure 5 shows a use of the image matching scoring function to en-
force a target silhouette for a building complex when viewed from
a particular angle. Note that the generated model is still free to
exhibit random structure when viewed from other angles.

In Figure 6, we use image matching to control the profile of a space-
ship. The generated models bear strong similarity to the target im-
age when viewed from the front but are otherwise unconstrained,
revealing diverse structure when viewed from other angles.

Figure 7 shows another use of image matching: controlling the
shadows cast by toy blocks strewn about a floor. Here, we decrease
the score error tolerance by an order of magnitude (� = 0.002), use
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Figure 2: Results on the memory maze. Top left: with a shap-
ing reward throughout the entire maze, using options slightly
degrades performance. Top right: when the shaping reward is
turned off halfway through the maze, using options improves
performance. The explanation is shown on the bottom row.
Bottom left: path learned without using options (starting in
the lower-right corner; the goal is in the upper-left corner). It
consistently stops at the edge of the shaping reward without
finding the goal. Bottom-right: options learned in the first
half of the maze enable the agent to reliably find the goal.

In this domain, the agent has external, physical actions
(denoted by ae ∈ AE) which move north, south, east and
west (here “AE” denotes “external action.”). Observations
are severely aliased, reflecting only the presence or absence of
walls in the four cardinal directions (resulting in 16 possible
observations, denoted oe ∈ OE , for “external observation”).
To simultaneously capture state and a policy, we use a finite

state controller (FSC). To allow for a potentially unbounded
number of internal states, but to favor a small number a priori,
we use a hierarchical Dirichlet Process prior. For every com-
bination of internal state si ∈ SI and external observation
si, oe we choose a successor internal state from a Dirichlet
process. For ease of exposition, we will consider these to be
internal, mental actions (denoted ai ∈ AI ). The state of the
agent is therefore the joint state of the external observation
and mental internal state.
The policy is a mapping from this joint state to both an

internal action and an external action: π : SI ×OE → AE ×
AI . The prior for the internal mental states and actions is

θsi,oe ∼ GEM(α)

ae(si, oe) ∼ distribution over external actions

ai(si, oe) ∼ Multinomial(θsi,oe)

π(si, oe) = (ai(si, oe), ae(si, oe))

where GEM is the standard stick breaking construction of a
DP over the integers [Pitman, 2002]. Note that we have ef-
fectively created an HDP-HMM [Teh et al., 2006] with deter-
ministic state transitions to model the FSC.
We now turn to the external actions. For each combination

of internal state and external observation si, oe, we must se-

Figure 3: The snake robot (left), a learned policy for wiggling
forward (middle), and the maze (right).

lect an action ae(si, oe). We take this opportunity to encode
more prior knowledge into our policy search. Because the
maze is largely open, it is likely that there are repeated se-
quences of external actions which could be useful—go north
four steps and west two steps, for example. We term these
motor primitives, which are a simplified version of options
[Precup et al., 1998]. However, we do not know how long the
motor primitives should be, or how many there are, or which
sequence of actions each should be composed of.
Our distribution over motor primitives is given by the fol-

lowing generative process: to sample a motor primitive k, we
sample its length nk ∼ Poisson(λ), then sample nk external
actions from a compound Dirichlet-Multinomial.
Given the size of the search space, for our first experiment,

we add a shaping reward which guides the algorithm from
lower-right to upper-left. Figure 2 (upper left) compares the
results of using motor primitives vs. not using motor primi-
tives. The version with primitives does slightly worse.
The story changes significantly if we turn off the shaping

reward halfway through the maze. The results are shown in
the upper-right pane, where the option-based policy reliably
achieves a higher return. The explanation is shown in the
bottom two panes. Policies without options successfully learn
a one-step north-west bias, but MCMC simply cannot search
deeply enough to find the goal hidden in the upper-left.
In contrast, policies equipped with motor primitives consis-

tently reach the goal. This is by virtue of the options learned
as MCMC discovered good policies for the first half of the
maze, which involved options moving north and west in large
steps. These primitives changed the search landscape for the
second half of the problem, making it easier to consistently
find the goal. This can be viewed as a form of intra-task trans-
fer; a similar story could be told about two similar domains,
one with a shaping reward and one without.

4.3 Snakes in a (Planar) Maze: Adding
Continuous Actions

We now turn to our final experiment: controlling a simu-
lated snake robot in a maze. This domain combines elements
from our previous experiments: we will use a nonparamet-
ric finite state controller to overcome partial observability,
and attempt to discover motor primitives which are useful for
navigation—except that low-level actions are now continu-
ous and nine-dimensional. We will demonstrate the utility of
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Thinking Generatively about Discriminative Tasks

(defquery lin-reg [x-vals y-vals]
 (let [m (sample (normal 0 1)) 
        c  (sample (normal 0 1))
        f (fn [x] (+ (* m x) c))]
  (map (fn [x y]

     (observe 
               (normal (f x) 0.1) y))

    x-vals y-vals))
  [m c])

([0.58 -0.05] [0.49 0.1] [0.55 0.05] [0.53 0.04] ….

(doquery :ipmcmc lin-reg data options)



MD5 Inversion
(defquery md5-inverse [L md5str] 
    "conditional distribution of strings
     that map to the same MD5 hashed string"
    (let [mesg (sample (string-generative-model L))]
      (observe (dirac md5str) (md5 mesg))
      mesg)))
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First: Graphical Model Inference

Goal: efficient posterior inference in generative models 
with latent variables x and observed variables y
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Figure 1: a non-conjugate regression model, as (left) a Bayes net representing a generative
model for the data {tn}; (middle) with dependency structure inverted, a generative model
for the latent variables w0, w1, w2; (right) showing the explicit neural network structure of
the inverse conditional distribution p̃(w0:2|z1:N , t1:N ). Here we place a Laplace prior on each
regression weight wd, and have Student-t likelihoods p(tn|zn, w0:2). New datasets {zn, tn}Nn=1
can be input directly into the joint density estimator 'w to estimate the posterior.

2 Approach

A directed graphical model, or Bayesian network [10, 12], defines a joint probability distri-
bution and conditional independence structure via a directed acyclic graph. For each xi in
a set of random variables x1, . . . , xN , the network structure specifies a conditional density
pi(xi|pa(xi)), where pa(xi) denotes the parent nodes of xi. The joint distribution over N
latent random variables x and M observed random variables y is defined as

p(x,y) ,
NY

i=1

p (xi|pa(xi))
MY

j=1

p (yj |pa(yj)) ; (1)

the inference goal is to characterize the posterior distribution ⇡(x) ⌘ p(x|y).
Our approach is two-fold. First, given a Bayesian network that acts as a generative model for
our observed data y given latent variables x, we construct a new Bayesian network which acts
as a generative model for our latent x, given observed data y. This network is constructed
such that the joint distribution defined by the original model p(x,y) = p(x)p(y|x) is identical
to that of the new “inverse model”, which we will refer to as p̃(x,y) = p̃(y)p̃(x|y), but with
a di↵erent factorization [13].

Unfortunately, unlike the original forward model, the inverse model has conditional densities
which we do not in general know how to normalize or sample from. However, were we to know
the conditional densities comprising the inverse model p̃(x|y), then given a particular dataset
y we could directly draw posterior samples simply by ancestral sampling from the inverse
graphical model. Thus the second aspect is learning approximations for the conditionals
p̃(xi|fpa(xi)), where fpa(xi) are parents of xi in the inverse model. To do so we employ
neural density estimators [1, 2, 7, 14], and design a procedure to train these “o✏ine”, in the
sense that no real data is required.

As an example, consider the non-conjugate polynomial regression model shown in Figure 1,
along with its inverse graphical model, and the resulting neural network structure. Note
particularly that although the original graphical model which expressed p(y|x)p(x) factorizes
into products over yn which are conditionally independent given x, in the inverse model
p̃(x|y)p̃(y) due to the explaining-away phenomenon all latent variables depend on all others.

2.1 Learning a family of importance sampling densities

Simple importance sampling in a Bayesian network performs inference by sampling x from
some proposal density q(x|·), and computing importance weights w(x) = p(x,y)/q(x|·)
which, for K samples of x, yields a posterior approximation

p̂(x|y) =
KX

k=1

Wk�xk(x); Wk =
w(xk)PK
j=1 w(xj)

. (2)

The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both
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Figure 1: a non-conjugate regression model, as (left) a Bayes net representing a generative
model for the data {tn}; (middle) with dependency structure inverted, a generative model
for the latent variables w0, w1, w2; (right) showing the explicit neural network structure of
the inverse conditional distribution p̃(w0:2|z1:N , t1:N ). Here we place a Laplace prior on each
regression weight wd, and have Student-t likelihoods p(tn|zn, w0:2). New datasets {zn, tn}Nn=1
can be input directly into the joint density estimator 'w to estimate the posterior.
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A directed graphical model, or Bayesian network [10, 12], defines a joint probability distri-
bution and conditional independence structure via a directed acyclic graph. For each xi in
a set of random variables x1, . . . , xN , the network structure specifies a conditional density
pi(xi|pa(xi)), where pa(xi) denotes the parent nodes of xi. The joint distribution over N
latent random variables x and M observed random variables y is defined as
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the inference goal is to characterize the posterior distribution ⇡(x) ⌘ p(x|y).
Our approach is two-fold. First, given a Bayesian network that acts as a generative model for
our observed data y given latent variables x, we construct a new Bayesian network which acts
as a generative model for our latent x, given observed data y. This network is constructed
such that the joint distribution defined by the original model p(x,y) = p(x)p(y|x) is identical
to that of the new “inverse model”, which we will refer to as p̃(x,y) = p̃(y)p̃(x|y), but with
a di↵erent factorization [13].

Unfortunately, unlike the original forward model, the inverse model has conditional densities
which we do not in general know how to normalize or sample from. However, were we to know
the conditional densities comprising the inverse model p̃(x|y), then given a particular dataset
y we could directly draw posterior samples simply by ancestral sampling from the inverse
graphical model. Thus the second aspect is learning approximations for the conditionals
p̃(xi|fpa(xi)), where fpa(xi) are parents of xi in the inverse model. To do so we employ
neural density estimators [1, 2, 7, 14], and design a procedure to train these “o✏ine”, in the
sense that no real data is required.

As an example, consider the non-conjugate polynomial regression model shown in Figure 1,
along with its inverse graphical model, and the resulting neural network structure. Note
particularly that although the original graphical model which expressed p(y|x)p(x) factorizes
into products over yn which are conditionally independent given x, in the inverse model
p̃(x|y)p̃(y) due to the explaining-away phenomenon all latent variables depend on all others.

2.1 Learning a family of importance sampling densities

Simple importance sampling in a Bayesian network performs inference by sampling x from
some proposal density q(x|·), and computing importance weights w(x) = p(x,y)/q(x|·)
which, for K samples of x, yields a posterior approximation

p̂(x|y) =
KX

k=1

Wk�xk(x) Wk =
w(xk)PK
j=1 w(xj)

w(x) =
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The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both
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Figure 1: a non-conjugate regression model, as (left) a Bayes net representing a generative
model for the data {tn}; (middle) with dependency structure inverted, a generative model
for the latent variables w0, w1, w2; (right) showing the explicit neural network structure of
the inverse conditional distribution p̃(w0:2|z1:N , t1:N ). Here we place a Laplace prior on each
regression weight wd, and have Student-t likelihoods p(tn|zn, w0:2). New datasets {zn, tn}Nn=1
can be input directly into the joint density estimator 'w to estimate the posterior.
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A directed graphical model, or Bayesian network [10, 12], defines a joint probability distri-
bution and conditional independence structure via a directed acyclic graph. For each xi in
a set of random variables x1, . . . , xN , the network structure specifies a conditional density
pi(xi|pa(xi)), where pa(xi) denotes the parent nodes of xi. The joint distribution over N
latent random variables x and M observed random variables y is defined as
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the inference goal is to characterize the posterior distribution ⇡(x) ⌘ p(x|y).
Our approach is two-fold. First, given a Bayesian network that acts as a generative model for
our observed data y given latent variables x, we construct a new Bayesian network which acts
as a generative model for our latent x, given observed data y. This network is constructed
such that the joint distribution defined by the original model p(x,y) = p(x)p(y|x) is identical
to that of the new “inverse model”, which we will refer to as p̃(x,y) = p̃(y)p̃(x|y), but with
a di↵erent factorization [13].

Unfortunately, unlike the original forward model, the inverse model has conditional densities
which we do not in general know how to normalize or sample from. However, were we to know
the conditional densities comprising the inverse model p̃(x|y), then given a particular dataset
y we could directly draw posterior samples simply by ancestral sampling from the inverse
graphical model. Thus the second aspect is learning approximations for the conditionals
p̃(xi|fpa(xi)), where fpa(xi) are parents of xi in the inverse model. To do so we employ
neural density estimators [1, 2, 7, 14], and design a procedure to train these “o✏ine”, in the
sense that no real data is required.

As an example, consider the non-conjugate polynomial regression model shown in Figure 1,
along with its inverse graphical model, and the resulting neural network structure. Note
particularly that although the original graphical model which expressed p(y|x)p(x) factorizes
into products over yn which are conditionally independent given x, in the inverse model
p̃(x|y)p̃(y) due to the explaining-away phenomenon all latent variables depend on all others.

2.1 Learning a family of importance sampling densities

Simple importance sampling in a Bayesian network performs inference by sampling x from
some proposal density q(x|·), and computing importance weights w(x) = p(x,y)/q(x|·)
which, for K samples of x, yields a posterior approximation
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Figure 2: a hierarchical Bayesian model. (left) A generative model for the data {xn};
(middle) with dependency structure inverted; (right) showing neural conditional density
estimators. Each yn ⇠ Poisson(�ntn), with �n ⇠ Gamma(↵,�) and gamma priors on ↵,�.
The learned factor '�n is replicated N times in the inverse model, allowing us to re-use the
weights.

p̃(x|y) =
NY

i=1

p̃(xi|fpa(xi))

The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both
in the context of population Monte Carlo (PMC) [3] and sequential Monte Carlo [4, 5, 9],
proposes a parametric family q(x|�), where � is a free parameter, and uses the reverse
Kullback-Leibler (KL) divergence DKL(⇡||q�) as an objective function, choosing � to mini-
mize

DKL(⇡||q�) =
Z

⇡(x) log


⇡(x)

q(x|�)

�
dx. (3)

This KL divergence between the true posterior distribution p(x|y) and proposal distribution
q(x|�) is also known as the relative entropy criterion, and is a preferred objective function
in situations in which the estimation goal construct a high-quality weighted sample repre-
sentation, rather than to minimize the variance of a particular expectation [4].

In an amortized inference setting, instead of learning � explicitly for a fixed value of y,
we learn a mapping from y to �. More explicitly, if y 2 Y and � 2 #, then learning an
explicit mapping ' : Y ! # allows performing approximate inference for p(x|y) with only
the computational complexity of evaluating the deterministic function '. The tradeo↵ is
that the training of ' itself may be quite involved.

We thus generalize the adaptive importance sampling algorithms by learning a family of
distributions q(x|y), parameterized by the observed data y. Suppose that � = '(⌘,y),
where the function ' is parameterized by a set of higher-level parameters ⌘. We would like
a choice of ⌘ which performs well across all datasets y. We can frame this as minimizing
the expected value of Eq. 3 under p(y), suggesting an objective function J (⌘) defined as

J (⌘) =

Z
DKL(⇡||q�)p(y)dy (4)

=

Z
p(y)

Z
p(x|y) log


p(x|y)

q(x|'(⌘,y))

�
dxdy (5)

= Ep(x,y) [� log q(x|'(⌘,y))] + const. (6)

which has a gradient r⌘J (⌘) = Ep(x,y) [�r⌘ log q(x|'(⌘,y))] .

Notice that these expectations are with respect to the tractable joint distribution p(x,y).
We can thus fit ⌘ by stochastic gradient descent, estimating the expectation of the gradient
r⌘J (⌘) by sampling synthetic full-data training examples {x,y} from the original model.
This procedure can be performed entirely o✏ine — we require only to be able to sample from
the joint distribution p(x,y) to generate candidate data points (e↵ectively providing infinite
training data). In any directed graphical model this can be achieved by ancestral sampling,
where the variables y are treated as as-yet unobserved. Furthermore, we do not need need
to be able to compute gradients of our model p(x,y) itself — we only need the gradients of
our recognition model q(x|'(⌘,y)), allowing use of any di↵erentiable representation for q.
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Figure 1: a non-conjugate regression model, as (left) a Bayes net representing a generative
model for the data {tn}; (middle) with dependency structure inverted, a generative model
for the latent variables w0, w1, w2; (right) showing the explicit neural network structure of
the inverse conditional distribution p̃(w0:2|z1:N , t1:N ). Here we place a Laplace prior on each
regression weight wd, and have Student-t likelihoods p(tn|zn, w0:2). New datasets {zn, tn}Nn=1
can be input directly into the joint density estimator 'w to estimate the posterior.

2 Approach

A directed graphical model, or Bayesian network [10, 12], defines a joint probability distri-
bution and conditional independence structure via a directed acyclic graph. For each xi in
a set of random variables x1, . . . , xN , the network structure specifies a conditional density
pi(xi|pa(xi)), where pa(xi) denotes the parent nodes of xi. The joint distribution over N
latent random variables x and M observed random variables y is defined as
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the inference goal is to characterize the posterior distribution ⇡(x) ⌘ p(x|y).
Our approach is two-fold. First, given a Bayesian network that acts as a generative model for
our observed data y given latent variables x, we construct a new Bayesian network which acts
as a generative model for our latent x, given observed data y. This network is constructed
such that the joint distribution defined by the original model p(x,y) = p(x)p(y|x) is identical
to that of the new “inverse model”, which we will refer to as p̃(x,y) = p̃(y)p̃(x|y), but with
a di↵erent factorization [13].

Unfortunately, unlike the original forward model, the inverse model has conditional densities
which we do not in general know how to normalize or sample from. However, were we to know
the conditional densities comprising the inverse model p̃(x|y), then given a particular dataset
y we could directly draw posterior samples simply by ancestral sampling from the inverse
graphical model. Thus the second aspect is learning approximations for the conditionals
p̃(xi|fpa(xi)), where fpa(xi) are parents of xi in the inverse model. To do so we employ
neural density estimators [1, 2, 7, 14], and design a procedure to train these “o✏ine”, in the
sense that no real data is required.

As an example, consider the non-conjugate polynomial regression model shown in Figure 1,
along with its inverse graphical model, and the resulting neural network structure. Note
particularly that although the original graphical model which expressed p(y|x)p(x) factorizes
into products over yn which are conditionally independent given x, in the inverse model
p̃(x|y)p̃(y) due to the explaining-away phenomenon all latent variables depend on all others.

2.1 Learning a family of importance sampling densities

Simple importance sampling in a Bayesian network performs inference by sampling x from
some proposal density q(x|·), and computing importance weights w(x) = p(x,y)/q(x|·)
which, for K samples of x, yields a posterior approximation
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The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both

2

tn

zn
w0

w1

w2 N

tn

zn
w0

w1

w2
N

tn

zn
w0

w1

w2

'w

N

Figure 1: a non-conjugate regression model, as (left) a Bayes net representing a generative
model for the data {tn}; (middle) with dependency structure inverted, a generative model
for the latent variables w0, w1, w2; (right) showing the explicit neural network structure of
the inverse conditional distribution p̃(w0:2|z1:N , t1:N ). Here we place a Laplace prior on each
regression weight wd, and have Student-t likelihoods p(tn|zn, w0:2). New datasets {zn, tn}Nn=1
can be input directly into the joint density estimator 'w to estimate the posterior.

2 Approach

A directed graphical model, or Bayesian network [10, 12], defines a joint probability distri-
bution and conditional independence structure via a directed acyclic graph. For each xi in
a set of random variables x1, . . . , xN , the network structure specifies a conditional density
pi(xi|pa(xi)), where pa(xi) denotes the parent nodes of xi. The joint distribution over N
latent random variables x and M observed random variables y is defined as
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the inference goal is to characterize the posterior distribution ⇡(x) ⌘ p(x|y).
Our approach is two-fold. First, given a Bayesian network that acts as a generative model for
our observed data y given latent variables x, we construct a new Bayesian network which acts
as a generative model for our latent x, given observed data y. This network is constructed
such that the joint distribution defined by the original model p(x,y) = p(x)p(y|x) is identical
to that of the new “inverse model”, which we will refer to as p̃(x,y) = p̃(y)p̃(x|y), but with
a di↵erent factorization [13].

Unfortunately, unlike the original forward model, the inverse model has conditional densities
which we do not in general know how to normalize or sample from. However, were we to know
the conditional densities comprising the inverse model p̃(x|y), then given a particular dataset
y we could directly draw posterior samples simply by ancestral sampling from the inverse
graphical model. Thus the second aspect is learning approximations for the conditionals
p̃(xi|fpa(xi)), where fpa(xi) are parents of xi in the inverse model. To do so we employ
neural density estimators [1, 2, 7, 14], and design a procedure to train these “o✏ine”, in the
sense that no real data is required.

As an example, consider the non-conjugate polynomial regression model shown in Figure 1,
along with its inverse graphical model, and the resulting neural network structure. Note
particularly that although the original graphical model which expressed p(y|x)p(x) factorizes
into products over yn which are conditionally independent given x, in the inverse model
p̃(x|y)p̃(y) due to the explaining-away phenomenon all latent variables depend on all others.

2.1 Learning a family of importance sampling densities

Simple importance sampling in a Bayesian network performs inference by sampling x from
some proposal density q(x|·), and computing importance weights w(x) = p(x,y)/q(x|·)
which, for K samples of x, yields a posterior approximation

p̂(x|y) =
KX

k=1

Wk�xk(x); Wk =
w(xk)PK
j=1 w(xj)

. (2)

The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both
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Figure 1: a non-conjugate regression model, as (left) a Bayes net representing a generative
model for the data {tn}; (middle) with dependency structure inverted, a generative model
for the latent variables w0, w1, w2; (right) showing the explicit neural network structure of
the inverse conditional distribution p̃(w0:2|z1:N , t1:N ). Here we place a Laplace prior on each
regression weight wd, and have Student-t likelihoods p(tn|zn, w0:2). New datasets {zn, tn}Nn=1
can be input directly into the joint density estimator 'w to estimate the posterior.

2 Approach

A directed graphical model, or Bayesian network [10, 12], defines a joint probability distri-
bution and conditional independence structure via a directed acyclic graph. For each xi in
a set of random variables x1, . . . , xN , the network structure specifies a conditional density
pi(xi|pa(xi)), where pa(xi) denotes the parent nodes of xi. The joint distribution over N
latent random variables x and M observed random variables y is defined as

p(x,y) ,
NY

i=1

p (xi|pa(xi))
MY

j=1

p (yj |pa(yj)) ; (1)

the inference goal is to characterize the posterior distribution ⇡(x) ⌘ p(x|y).
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our observed data y given latent variables x, we construct a new Bayesian network which acts
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a di↵erent factorization [13].
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p̃(xi|fpa(xi)), where fpa(xi) are parents of xi in the inverse model. To do so we employ
neural density estimators [1, 2, 7, 14], and design a procedure to train these “o✏ine”, in the
sense that no real data is required.

As an example, consider the non-conjugate polynomial regression model shown in Figure 1,
along with its inverse graphical model, and the resulting neural network structure. Note
particularly that although the original graphical model which expressed p(y|x)p(x) factorizes
into products over yn which are conditionally independent given x, in the inverse model
p̃(x|y)p̃(y) due to the explaining-away phenomenon all latent variables depend on all others.

2.1 Learning a family of importance sampling densities

Simple importance sampling in a Bayesian network performs inference by sampling x from
some proposal density q(x|·), and computing importance weights w(x) = p(x,y)/q(x|·)
which, for K samples of x, yields a posterior approximation
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The e�ciency of the method depends crucially on the choice of proposal density. Previous
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p̃(x|y) =
NY

i=1

p̃(xi|fpa(xi))

The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both
in the context of population Monte Carlo (PMC) [3] and sequential Monte Carlo [4, 5, 9],
proposes a parametric family q(x|�), where � is a free parameter, and uses the reverse
Kullback-Leibler (KL) divergence DKL(⇡||q�) as an objective function, choosing � to mini-
mize

argmin
�

DKL(q�||⇡) 6= ⇡(x) q(x|�) (3)

DKL(⇡||q�) =
Z

⇡(x) log


⇡(x)

q(x|�)

�
dx. (4)

This KL divergence between the true posterior distribution p(x|y) and proposal distribution
q(x|�) is also known as the relative entropy criterion, and is a preferred objective function
in situations in which the estimation goal construct a high-quality weighted sample repre-
sentation, rather than to minimize the variance of a particular expectation [4].

In an amortized inference setting, instead of learning � explicitly for a fixed value of y,
we learn a mapping from y to �. More explicitly, if y 2 Y and � 2 #, then learning an
explicit mapping ' : Y ! # allows performing approximate inference for p(x|y) with only
the computational complexity of evaluating the deterministic function '. The tradeo↵ is
that the training of ' itself may be quite involved.

We thus generalize the adaptive importance sampling algorithms by learning a family of
distributions q(x|y), parameterized by the observed data y. Suppose that � = '(⌘,y),
where the function ' is parameterized by a set of higher-level parameters ⌘. We would like
a choice of ⌘ which performs well across all datasets y. We can frame this as minimizing
the expected value of Eq. 4 under p(y), suggesting an objective function J (⌘) defined as

J (⌘) =

Z
DKL(⇡||q�)p(y)dy (5)

=

Z
p(y)

Z
p(x|y) log


p(x|y)

q(x|'(⌘,y))

�
dxdy (6)

= Ep(x,y) [� log q(x|'(⌘,y))] + const. (7)

which has a gradient r⌘J (⌘) = Ep(x,y) [�r⌘ log q(x|'(⌘,y))] .

Notice that these expectations are with respect to the tractable joint distribution p(x,y).
We can thus fit ⌘ by stochastic gradient descent, estimating the expectation of the gradient
r⌘J (⌘) by sampling synthetic full-data training examples {x,y} from the original model.
This procedure can be performed entirely o✏ine — we require only to be able to sample from
the joint distribution p(x,y) to generate candidate data points (e↵ectively providing infinite
training data). In any directed graphical model this can be achieved by ancestral sampling,
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The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both
in the context of population Monte Carlo (PMC) [3] and sequential Monte Carlo [4, 5, 9],
proposes a parametric family q(x|�), where � is a free parameter, and uses the reverse
Kullback-Leibler (KL) divergence DKL(⇡||q�) as an objective function, choosing � to mini-
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This KL divergence between the true posterior distribution p(x|y) and proposal distribution
q(x|�) is also known as the relative entropy criterion, and is a preferred objective function
in situations in which the estimation goal construct a high-quality weighted sample repre-
sentation, rather than to minimize the variance of a particular expectation [4].

In an amortized inference setting, instead of learning � explicitly for a fixed value of y,
we learn a mapping from y to �. More explicitly, if y 2 Y and � 2 #, then learning an
explicit mapping ' : Y ! # allows performing approximate inference for p(x|y) with only
the computational complexity of evaluating the deterministic function '. The tradeo↵ is
that the training of ' itself may be quite involved.

We thus generalize the adaptive importance sampling algorithms by learning a family of
distributions q(x|y), parameterized by the observed data y. Suppose that � = '(⌘,y),
where the function ' is parameterized by a set of higher-level parameters ⌘. We would like
a choice of ⌘ which performs well across all datasets y. We can frame this as minimizing
the expected value of Eq. 5 under p(y), suggesting an objective function J (⌘) defined as

J (⌘) =

Z
DKL(⇡||q�)p(y)dy (6)

=

Z
p(y)

Z
p(x|y) log


p(x|y)

q(x|'(⌘,y))
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dxdy (7)

= Ep(x,y) [� log q(x|'(⌘,y))] + const. (8)

which has a gradient r⌘J (⌘) = Ep(x,y) [�r⌘ log q(x|'(⌘,y))] .

Notice that these expectations are with respect to the tractable joint distribution p(x,y).
We can thus fit ⌘ by stochastic gradient descent, estimating the expectation of the gradient
r⌘J (⌘) by sampling synthetic full-data training examples {x,y} from the original model.
This procedure can be performed entirely o✏ine — we require only to be able to sample from
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The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both
in the context of population Monte Carlo (PMC) [3] and sequential Monte Carlo [4, 5, 9],
proposes a parametric family q(x|�), where � is a free parameter, and uses the reverse
Kullback-Leibler (KL) divergence DKL(⇡||q�) as an objective function, choosing � to mini-
mize
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⇡(x) log
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dx. (4)

This KL divergence between the true posterior distribution p(x|y) and proposal distribution
q(x|�) is also known as the relative entropy criterion, and is a preferred objective function
in situations in which the estimation goal construct a high-quality weighted sample repre-
sentation, rather than to minimize the variance of a particular expectation [4].

In an amortized inference setting, instead of learning � explicitly for a fixed value of y,
we learn a mapping from y to �. More explicitly, if y 2 Y and � 2 #, then learning an
explicit mapping ' : Y ! # allows performing approximate inference for p(x|y) with only
the computational complexity of evaluating the deterministic function '. The tradeo↵ is
that the training of ' itself may be quite involved.

We thus generalize the adaptive importance sampling algorithms by learning a family of
distributions q(x|y), parameterized by the observed data y. Suppose that � = '(⌘,y),
where the function ' is parameterized by a set of higher-level parameters ⌘. We would like
a choice of ⌘ which performs well across all datasets y. We can frame this as minimizing
the expected value of Eq. 4 under p(y), suggesting an objective function J (⌘) defined as

J (⌘) =

Z
DKL(⇡||q�)p(y)dy (5)

=
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p(y)
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p(x|y) log


p(x|y)

q(x|'(⌘,y))
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dxdy (6)

= Ep(x,y) [� log q(x|'(⌘,y))] + const. (7)

which has a gradient r⌘J (⌘) = Ep(x,y) [�r⌘ log q(x|'(⌘,y))] .

Notice that these expectations are with respect to the tractable joint distribution p(x,y).
We can thus fit ⌘ by stochastic gradient descent, estimating the expectation of the gradient
r⌘J (⌘) by sampling synthetic full-data training examples {x,y} from the original model.
This procedure can be performed entirely o✏ine — we require only to be able to sample from
the joint distribution p(x,y) to generate candidate data points (e↵ectively providing infinite
training data). In any directed graphical model this can be achieved by ancestral sampling,
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The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both
in the context of population Monte Carlo (PMC) [3] and sequential Monte Carlo [4, 5, 9],
proposes a parametric family q(x|�), where � is a free parameter, and uses the reverse
Kullback-Leibler (KL) divergence DKL(⇡||q�) as an objective function, choosing � to mini-
mize
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⇡(x) log
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q(x|�)
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dx. (4)

argmin
⌘

Ep(y)

⇥
DKL(⇡||q'(⌘,y))

⇤
(5)

This KL divergence between the true posterior distribution p(x|y) and proposal distribution
q(x|�) is also known as the relative entropy criterion, and is a preferred objective function
in situations in which the estimation goal construct a high-quality weighted sample repre-
sentation, rather than to minimize the variance of a particular expectation [4].

In an amortized inference setting, instead of learning � explicitly for a fixed value of y,
we learn a mapping from y to �. More explicitly, if y 2 Y and � 2 #, then learning an
explicit mapping ' : Y ! # allows performing approximate inference for p(x|y) with only
the computational complexity of evaluating the deterministic function '. The tradeo↵ is
that the training of ' itself may be quite involved.

We thus generalize the adaptive importance sampling algorithms by learning a family of
distributions q(x|y), parameterized by the observed data y. Suppose that � = '(⌘,y),
where the function ' is parameterized by a set of higher-level parameters ⌘. We would like
a choice of ⌘ which performs well across all datasets y. We can frame this as minimizing
the expected value of Eq. 5 under p(y), suggesting an objective function J (⌘) defined as

J (⌘) =

Z
DKL(⇡||q�)p(y)dy (6)

=
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p(y)
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p(x|y) log


p(x|y)

q(x|'(⌘,y))
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dxdy (7)

= Ep(x,y) [� log q(x|'(⌘,y))] + const. (8)

which has a gradient r⌘J (⌘) = Ep(x,y) [�r⌘ log q(x|'(⌘,y))] .

Notice that these expectations are with respect to the tractable joint distribution p(x,y).
We can thus fit ⌘ by stochastic gradient descent, estimating the expectation of the gradient
r⌘J (⌘) by sampling synthetic full-data training examples {x,y} from the original model.
This procedure can be performed entirely o✏ine — we require only to be able to sample from
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Figure 1: The Gaussian q which minimizes ↵-divergence to p (a mixture of two Gaussians), for varying ↵. ↵ ! �1
prefers matching one mode, while ↵!1 prefers covering the entire distribution.
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Figure 2: The mass, mean, and standard deviation of the Gaussian q which minimizes ↵-divergence to p, for varying ↵. In
each case, the true value is matched at ↵ = 1.

the convention of Zhu & Rohwer (1995), with ↵ instead of
�:

D↵(p || q) =
R

x ↵p(x) + (1� ↵)q(x)� p(x)↵q(x)1�↵dx

↵(1� ↵)
(2)

As in (1), p and q do not need to be normalized. Both
KL-divergence and ↵-divergence are zero if p = q and
positive otherwise, so they satisfy the basic property of
an error measure. This property follows from the fact
that ↵-divergences are convex with respect to p and q (ap-
pendix A). Some special cases:

D�1(p || q) =
1
2

Z

x

(q(x)� p(x))2

p(x)
dx (3)

lim
↵!0

D↵(p || q) = KL(q || p) (4)

D 1
2
(p || q) = 2

Z

x

⇣p
p(x)�

p
q(x)

⌘2
dx (5)

lim
↵!1

D↵(p || q) = KL(p || q) (6)

D2(p || q) =
1
2

Z

x

(p(x)� q(x))2

q(x)
dx (7)

The case ↵ = 0.5 is known as Hellinger distance (whose
square root is a valid distance metric), and ↵ = 2 is the �2

distance. Changing ↵ to 1� ↵ swaps the position of p and
q.

To illustrate the effect of changing the divergence measure,
consider a simple example, illustrated in figures 1 and 2.
The original distribution p(x) is a mixture of two Gaus-
sians, one tall and narrow, the other short and wide. The
approximation q(x) is required to be a single (scaled) Gaus-
sian, with arbitrary mean, variance, and scale factor. For

different values of ↵, figure 1 plots the global minimum of
D↵(p || q) over q. The solutions vary smoothly with ↵, the
most dramatic changes happening around ↵ = 0.5. When
↵ is a large negative number, the best approximation rep-
resents only one mode, the one with largest mass (not the
mode which is highest). When ↵ is a large positive num-
ber, the approximation tries to cover the entire distribution,
eventually forming an upper bound when ↵ ! 1. Fig-
ure 2 shows that the mass of the approximation continually
increases as we increase ↵.

The properties observed in this example are general, and
can be derived from the formula for ↵-divergence. Start
with the mode-seeking property for ↵ ⌧ 0. It happens be-
cause the valleys of p force the approximation downward.
Looking at (3,4) for example, we see that ↵  0 empha-
sizes q to be small whenever p is small. These divergences
are zero-forcing because p(x) = 0 forces q(x) = 0. In
other words, they avoid “false positives,” to an increasing
degree as ↵ gets more negative. This causes some parts of
p to be excluded. The cost of excluding an x, i.e. setting
q(x) = 0, is p(x)/(1 � ↵). Therefore q will keep the ar-
eas of largest total mass, and exclude areas with small total
mass.

Zero-forcing emphasizes modeling the tails, rather than the
bulk of the distribution, which tends to underestimate the
variance of p. For example, when p is a mixture of Gaus-
sians, the tails reflect the component which is widest. The
optimal Gaussian q will have variance on similar to the
variance of the widest component, even if there are many
overlapping components. For example, if p has 100 identi-
cal Gaussians in a row, forming a plateau, the optimal q is
only as wide as one of them.
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the convention of Zhu & Rohwer (1995), with ↵ instead of
�:

D↵(p || q) =
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x ↵p(x) + (1� ↵)q(x)� p(x)↵q(x)1�↵dx

↵(1� ↵)
(2)

As in (1), p and q do not need to be normalized. Both
KL-divergence and ↵-divergence are zero if p = q and
positive otherwise, so they satisfy the basic property of
an error measure. This property follows from the fact
that ↵-divergences are convex with respect to p and q (ap-
pendix A). Some special cases:
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The case ↵ = 0.5 is known as Hellinger distance (whose
square root is a valid distance metric), and ↵ = 2 is the �2

distance. Changing ↵ to 1� ↵ swaps the position of p and
q.

To illustrate the effect of changing the divergence measure,
consider a simple example, illustrated in figures 1 and 2.
The original distribution p(x) is a mixture of two Gaus-
sians, one tall and narrow, the other short and wide. The
approximation q(x) is required to be a single (scaled) Gaus-
sian, with arbitrary mean, variance, and scale factor. For

different values of ↵, figure 1 plots the global minimum of
D↵(p || q) over q. The solutions vary smoothly with ↵, the
most dramatic changes happening around ↵ = 0.5. When
↵ is a large negative number, the best approximation rep-
resents only one mode, the one with largest mass (not the
mode which is highest). When ↵ is a large positive num-
ber, the approximation tries to cover the entire distribution,
eventually forming an upper bound when ↵ ! 1. Fig-
ure 2 shows that the mass of the approximation continually
increases as we increase ↵.

The properties observed in this example are general, and
can be derived from the formula for ↵-divergence. Start
with the mode-seeking property for ↵ ⌧ 0. It happens be-
cause the valleys of p force the approximation downward.
Looking at (3,4) for example, we see that ↵  0 empha-
sizes q to be small whenever p is small. These divergences
are zero-forcing because p(x) = 0 forces q(x) = 0. In
other words, they avoid “false positives,” to an increasing
degree as ↵ gets more negative. This causes some parts of
p to be excluded. The cost of excluding an x, i.e. setting
q(x) = 0, is p(x)/(1 � ↵). Therefore q will keep the ar-
eas of largest total mass, and exclude areas with small total
mass.

Zero-forcing emphasizes modeling the tails, rather than the
bulk of the distribution, which tends to underestimate the
variance of p. For example, when p is a mixture of Gaus-
sians, the tails reflect the component which is widest. The
optimal Gaussian q will have variance on similar to the
variance of the widest component, even if there are many
overlapping components. For example, if p has 100 identi-
cal Gaussians in a row, forming a plateau, the optimal q is
only as wide as one of them.
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Figure 1: The Gaussian q which minimizes ↵-divergence to p (a mixture of two Gaussians), for varying ↵. ↵ ! �1
prefers matching one mode, while ↵!1 prefers covering the entire distribution.
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Figure 2: The mass, mean, and standard deviation of the Gaussian q which minimizes ↵-divergence to p, for varying ↵. In
each case, the true value is matched at ↵ = 1.

the convention of Zhu & Rohwer (1995), with ↵ instead of
�:

D↵(p || q) =
R

x ↵p(x) + (1� ↵)q(x)� p(x)↵q(x)1�↵dx

↵(1� ↵)
(2)

As in (1), p and q do not need to be normalized. Both
KL-divergence and ↵-divergence are zero if p = q and
positive otherwise, so they satisfy the basic property of
an error measure. This property follows from the fact
that ↵-divergences are convex with respect to p and q (ap-
pendix A). Some special cases:

D�1(p || q) =
1
2

Z

x

(q(x)� p(x))2

p(x)
dx (3)

lim
↵!0

D↵(p || q) = KL(q || p) (4)

D 1
2
(p || q) = 2

Z

x

⇣p
p(x)�

p
q(x)

⌘2
dx (5)

lim
↵!1

D↵(p || q) = KL(p || q) (6)

D2(p || q) =
1
2

Z

x

(p(x)� q(x))2

q(x)
dx (7)

The case ↵ = 0.5 is known as Hellinger distance (whose
square root is a valid distance metric), and ↵ = 2 is the �2

distance. Changing ↵ to 1� ↵ swaps the position of p and
q.

To illustrate the effect of changing the divergence measure,
consider a simple example, illustrated in figures 1 and 2.
The original distribution p(x) is a mixture of two Gaus-
sians, one tall and narrow, the other short and wide. The
approximation q(x) is required to be a single (scaled) Gaus-
sian, with arbitrary mean, variance, and scale factor. For

different values of ↵, figure 1 plots the global minimum of
D↵(p || q) over q. The solutions vary smoothly with ↵, the
most dramatic changes happening around ↵ = 0.5. When
↵ is a large negative number, the best approximation rep-
resents only one mode, the one with largest mass (not the
mode which is highest). When ↵ is a large positive num-
ber, the approximation tries to cover the entire distribution,
eventually forming an upper bound when ↵ ! 1. Fig-
ure 2 shows that the mass of the approximation continually
increases as we increase ↵.

The properties observed in this example are general, and
can be derived from the formula for ↵-divergence. Start
with the mode-seeking property for ↵ ⌧ 0. It happens be-
cause the valleys of p force the approximation downward.
Looking at (3,4) for example, we see that ↵  0 empha-
sizes q to be small whenever p is small. These divergences
are zero-forcing because p(x) = 0 forces q(x) = 0. In
other words, they avoid “false positives,” to an increasing
degree as ↵ gets more negative. This causes some parts of
p to be excluded. The cost of excluding an x, i.e. setting
q(x) = 0, is p(x)/(1 � ↵). Therefore q will keep the ar-
eas of largest total mass, and exclude areas with small total
mass.

Zero-forcing emphasizes modeling the tails, rather than the
bulk of the distribution, which tends to underestimate the
variance of p. For example, when p is a mixture of Gaus-
sians, the tails reflect the component which is widest. The
optimal Gaussian q will have variance on similar to the
variance of the widest component, even if there are many
overlapping components. For example, if p has 100 identi-
cal Gaussians in a row, forming a plateau, the optimal q is
only as wide as one of them.
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Synthetic Data for Training Deep Networks

Figure 2. Sample images from our synthetically generated scene-
text dataset. Ground-truth word-level axis-aligned bounding boxes
are shown.

# Images # Words
Dataset Train Test Train Test

ICDAR {11,13,15} 229 255 849 1095
SVT 100 249 257 647

Table 1. Size of publicly available text localisation datasets —
ICDAR [23, 24, 39], the Street View Text (SVT) dataset [43].
Word numbers for the entry “ICDAR{11,13,15}” are from the IC-
DAR15 Robust Reading Competition’s Focused Scene Text Lo-
calisation dataset.

word-level image regions and are unsuitable for training de-
tectors.

The second contribution is a text detection deep ar-

chitecture which is both accurate and efficient (figure 1
(bottom) and section 3). We call this a fully-convolutional
regression network. Similar to models such as the Fully-
Convolutional Networks (FCN) for image segmentation, it
performs prediction densely, at every image location. How-
ever, differently from FCN, the prediction is not just a class
label (text/not text), but the parameters of a bounding box
enclosing the word centred at that location. The latter idea
is borrowed from the You Look Only Once (YOLO) tech-
nique of Redmon et al. [36], but with convolutional regres-
sors with a significant boost to performance.

The new data and detector achieve state-of-the-art text
detection performance on standard benchmark datasets
(section 4) while being an order of magnitude faster than
traditional text detectors at test time (up to 15 images per
second on a GPU). We also demonstrate the importance of
verisimilitude in the dataset by showing that if the detec-
tor is trained on images with words inserted synthetically
that do not take account of the scene layout, then the de-
tection performance is substantially inferior. Finally, due to
the more accurate detection step, end-to-end word recogni-
tion is also improved once the new detector is swapped in
for existing ones in state-of-the-art pipelines. Our findings
are summarised in section 5.

1.1. Related Work

Object Detection with CNNs. Our text detection network
draws primarily on Long et al.’s Fully-Convolutional net-
work [31] and Redmon et al.’s YOLO image-grid based
bounding-box regression network [36]. YOLO is part of
a broad line of work on using CNN features for object cate-
gory detection dating back to Girshick et al.’s Region-CNN
(R-CNN) framework [12] combination of region propos-
als and CNN features. The R-CNN framework has three
broad stages — (1) generating object proposals, (2) extract-
ing CNN feature maps for each proposal, and (3) filtering
the proposals through class specific SVMs. Jaderberg et
al.’s text spotting method also uses a similar pipeline for
detection [20]. Extracting feature maps for each region in-
dependently was identified as the bottleneck by Girshick et
al. in Fast R-CNN [11]. They obtain 100⇥ speed-up over
R-CNN by computing the CNN features once and pooling
them locally for each proposal; they also streamline the last
two stages of R-CNN into a single multi-task learning prob-
lem. This work exposed the region-proposal stage as the
new bottleneck. Lenc et al. [29] drop the region proposal
stage altogether and use a constant set of regions learnt
through K-means clustering on the PASCAL VOC data.
Ren et al. [37] also start from a fixed set of proposal, but
refined them prior to detection by using a Region Proposal
Network which shares weights with the later detection net-
work and streamlines the multi-stage R-CNN framework.

Synthetic Data. Synthetic datasets provide detailed
ground-truth annotations, and are cheap and scalable al-
ternatives to annotating images manually. They have been
widely used to learn large CNN models — Wang et al. [44]
and Jaderberg et al. [19] use synthetic text images to train
word-image recognition networks; Dosovitskiy et al. [9]
use floating chair renderings to train dense optical flow re-
gression networks. Detailed synthetic data has also been
used to learn generative models — Dosovitskiy et al. [8]
train inverted CNN models to render images of chairs, while
Yildirim et al. [46] use deep CNN features trained on syn-
thetic face renderings to regress pose parameters from face
images.

Augmenting Single Images. There is a large body of
work on inserting objects photo-realistically, and inferring
3D structure from single images — Karsch et al. [25] de-
velop an impressive semi-automatic method to render ob-
jects with correct lighting and perspective; they infer the
actual size of objects based on the technique of Criminisi
et al. [5]. Hoiem et al. [15] categorise image regions into
ground-plane, vertical plane or sky from a single image and
use it to generate “pop-ups” by decomposing the image into
planes [14]. Similarly, we too decompose a single image
into local planar regions, but use instead the dense depth
prediction of Liu et al. [30].
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100 vs. 676 1110 vs. 2641 23 vs. 37 1 vs. 198

4 vs. 332 2 vs 239 1879 vs. 1879-1883 228 vs. 22B

96 vs. 86 1844 vs. 184 62 vs. 62-37 1180 vs. 1780

Figure 3: Examples of incorrectly transcribed street numbers from the large internal dataset (tran-
scription vs. ground truth). Note that for some of these, the “ground truth” is also incorrect. The
ground truth labels in this dataset are quite noisy, as is common in real world settings. Some reasons
for the ground truth errors in this dataset include: 1. The data was repurposed from an existing in-
dexing pipeline where operators manually entered street numbers they saw. It was impractical to use
the same size of images as the humans saw, so heuristics were used to create smaller crops. Some-
times the resulting crop omits some digits. 2. Some examples are fundamentally ambiguous, for
instance street numbers including non-digit characters, or having multiple street numbers in same
image which humans transcribed as a single number with an arbitrary separator like “,” or “-”.

Figure 4: Examples of images from the hard CAPTCHA puzzles dataset.
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(a)

(b)

Figure 1: (a) The text generation process after font rendering, creating and coloring the image-
layers, applying projective distortions, and after image blending. (b) Some randomly sampled data
created by the synthetic text engine.

trained to recognise a very large number of words using incremental training. While our lexicon is
restricted, it is so large that this hardly constitutes a practical limitation. Secondly, we show that this
state-of-the-art recogniser can be trained purely from synthetic data. This result is highly non-trivial
as, differently from CAPTCHA, the classifier is then applied to real images. While synthetic data
was used previously for OCR, it is remarkable that this can be done for scene text, which is signifi-
cantly less constrained. This allows our framework to be seamlessly extended to larger vocabularies
and other languages without any human-labelling cost. In addition to these two key contributions,
we study two alternative models – a character sequence encoding model with a modified formulation
to that of [8] (Sect. 3.2), and a novel bag-of-N-grams encoding model which predicts the unordered
set of N-grams contained in the word image (Sect. 3.3).

A discussion of related work follows immediately and our data generation system described after
in Sect. 2. Our deep learning word recognition architectures are presented in Sect. 3, evaluated
in Sect. 4, and conclusions are drawn in Sect. 5.

Related work. Traditional text recognition methods are based on sequential character classification
by either sliding windows [11, 26, 27] or connected components [18, 19], after which a word pre-
diction is made by grouping character classifier predictions in a left-to-right manner. The sliding
window classifiers include random ferns [22] in Wang et al. [26], and CNNs in [11, 27]. Both [26]
and [27] use a small fixed lexicon as a language model to constrain word recognition.

More recent works such as [2, 3, 20] make use of over-segmentation methods, guided by a supervised
classifier, to generate candidate proposals which are subsequently classified as characters or false
positives. For example, PhotoOCR [3] uses binarization and a sliding window classifier to generate
candidate character regions, with words recognised through a beam search driven by classifier scores
followed by a re-ranking using a dictionary of 100k words. [11] uses the convolutional nature of
CNNs to generate response maps for characters and bigrams which are integrated to score lexicon
words.

In contrast to these approaches based on character classification, the work by [7, 17, 21, 24] instead
uses the notion of holistic word recognition. [17, 21] still rely on explicit character classifiers, but
construct a graph to infer the word, pooling together the full word evidence. Rodriguez et al. [24]
use aggregated Fisher Vectors [23] and a Structured SVM framework to create a joint word-image
and text embedding. [7] use whole word-image features to recognize words by comparing to simple
black-and-white font-renderings of lexicon words.

Goodfellow et al. [8] had great success using a CNN with multiple position-sensitive character clas-
sifier outputs (closely related to the character sequence model in Sect. 3.2) to perform street number
recognition. This model was extended to CAPTCHA sequences (up to 8 characters long) where they
demonstrated impressive performance using synthetic training data for a synthetic problem (where
the generative model is known), but we show that synthetic training data can be used for a real-world
data problem (where the generative model is unknown).

2 Synthetic Data Engine
This section describes our scene text rendering algorithm. As our CNN models take whole word
images as input instead of individual character images, it is essential to have access to a training
dataset of cropped word images that covers the whole language or at least a target lexicon. While
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(a)

(b) (c)
Figure 2: A schematics of the CNNs used showing the dimensions of the featuremaps at each stage
for (a) dictionary encoding, (b) character sequence encoding, and (c) bag-of-N-gram encoding. The
same five-layer, base CNN architecture is used for all three models.

with one class per word. While the dictionary W of a natural language may seem too large for this
approach to be feasible, in practice an advanced English vocabulary, including different word forms,
contains only around 90k words, which is large but manageable.

In detail, we propose to use a CNN classifier where each word w 2 W in the lexicon corresponds
to an output neuron. We use a CNN with four convolutional layers and two fully connected layers.
Rectified linear units are used throughout after each weight layer except for the last one. In forward
order, the convolutional layers have 64, 128, 256, and 512 square filters with an edge size of 5,
5, 3, and 3. Convolutions are performed with stride 1 and there is input feature map padding to
preserve spatial dimensionality. 2⇥ 2 max-pooling follows the first, second and third convolutional
layers. The fully connected layer has 4096 units, and feeds data to the final fully connected layer
which performs classification, so has the same number of units as the size of the dictionary we
wish to recognize. The predicted word recognition result w⇤ out of the set of all dictionary words
W in a language L for a given input image x is given by w⇤ = argmaxw2W P (w|x,L). Since
P (w|x,L) = P (w|x)P (w|L)P (x)

P (x|L)P (w) and with the assumptions that x is independent of L and that prior
to any knowledge of our language all words are equally probable, our scoring function reduces to
w⇤ = argmaxw2W P (w|x)P (w|L). The per-word output probability P (w|x) is modelled by the
softmax scaling of the final fully connected layer, and the language based word prior P (w|L) can
be modelled by a lexicon or frequency counts. A schematic of the network is shown in Fig. 2 (a).

Training. We train the network by back-propagating the standard multinomial logistic regression
loss with dropout [10], which improves generalization. Optimization uses stochastic gradient de-
scent (SGD), dynamically lowering the learning rate as training progresses. With uniform sampling
of classes in training data, we found the SGD batch size must be at least a fifth of the total number
of classes in order for the network to train.

For very large numbers of classes (i.e. over 5k classes), the SGD batch size required to train effec-
tively becomes large, slowing down training a lot. Therefore, for large dictionaries, we perform in-
cremental training to avoid requiring a prohibitively large batch size. This involves initially training
the network with 5k classes until partial convergence, after which an extra 5k classes are added. The
original weights are copied for the original 5k classes, with the new classification layer weights be-
ing randomly initialized. The network is then allowed to continue training, with the extra randomly
initialized weights and classes causing a spike in training error, which is quickly trained away. This
process of allowing partial convergence on a subset of the classes, before adding in more classes, is
repeated until the full number of desired classes is reached. In practice for this network, the CNN
trained well with initial increments of 5k classes, and after 20k classes is reached the number of
classes added at each increment is increased to 10k.

3.2 Encoding Sequences of Characters
This section describes a different model for word recognition. Rather than having a single large dic-
tionary classifier as in Sect. 3.1, this model uses a single CNN with multiple independent classifiers,
each one predicting the character at each position in the word. This character sequence encoding
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Goodfellow, Bulatov, Ibarz, Arnoud, Shet; Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks. 2014. 

Figure 2: Difficult but correctly transcribed examples from the internal street numbers dataset. Some
of the challenges in this dataset include diagonal or vertical layouts, incorrectly applied blurring from
license plate detection pipelines, shadows and other occlusions.

This dataset is more difficult because it comes from more countries (more than 12), has street num-
bers with non-digit characters and the quality of the ground truth is lower. See Fig. 2 for some
examples of difficult inputs from this dataset that our system was able to transcribe correctly, and
Fig. 3 for some examples of difficult inputs that were considered errors.

We obtained an overall sequence transcription accuracy of 91% on this more challenging dataset.
Using confidence thresholding, we were able to obtain a coverage of 83% with 99% accuracy, or
89% coverage at 98% accuracy. On this task, due to the larger amount of training data, we did
not see significant overfitting like we saw in SVHN so we did not use dropout. Dropout tends to
increase training time, and our largest models are already very costly to train. We also did not use
maxout units. All hidden units were rectifiers (Jarrett et al., 2009; Glorot et al., 2011). Our best
architecture for this dataset is similar to the best architecture for the public dataset, except we use
only five convolutional layers rather than eight. (We have not tried using eight convolutional layers
on this dataset; eight layers may obtain slightly better results but the version of the network with
five convolutional layers performed accurately enough to meet our business objectives) The locally
connected layers have 128 units per spatial location, while the fully connected layers have 4096
units per layer.

5.3 CAPTCHA puzzles dataset

CAPTCHAs are reverse turing tests designed to use distorted text to distinguish humans and ma-
chines running automated text recognition software. reCAPTCHA is a leading CAPTCHA provider
with an installed base of several hundreds of thousands of websites. To evaluate the generality of
the proposed approach to recognizing arbitrary text, we created a dataset composed of the hardest
CAPTCHA puzzle examples of which are shown in Figure 4.

The model we use is similar to the best one used over the SVHN dataset with the following differ-
ences: we use 9 convolutional layers in this network instead of 11, with the first layer containing
normal rectifier units instead of maxouts, the convolutional layers are also slightly bigger, while
the fully connected ones smaller. The output of this model is case-sensitive and it can handle up
to 8 character long sequences. The input is one of the two CAPTCHA words cropped to a size of
200x40 where random sub-crops of size 195x35 are taken. The performance reported was taken
directly from a test set of 100K samples and a training set in the order of millions of CAPTCHA
images.
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Jaderberg, Simonyan, Vedaldi, Zisserman; Synthetic Data and Artificial Neural Networks for Natural Scene Text Recognition. 2014. 

Gupta, Vedaldi, Zisserman; Synthetic Data for Text Localisation in Natural Images. 2016. 

Le, Baydin, Zinkov & Wood. Using Synthetic Data to Train Neural Networks is Model-Based Reasoning IJCNN 2017.



Advanced Topics Take-Homes
• If you have an existing simulator it is, in principle, possible to 

perform inference in it now (without re-coding it), using it as a 
prior in a Bayesian sense 

• Amortized inference is powerful and works for the same reason 
that deep neural networks trained on synthetic data work
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(a) (a) Address succession graph.

325 do ub le rn = ran�>Get ( ) ;
326 do ub l e sum = 0 ;
327 f o r ( size_t i=0; ;++i ) {
328 i f ( i==channels . size ( ) ) {
329 rn = ran�>Get ( ) ;
330 i = 0 ;
331 sum = 0 . ;
332 }
333 sum += channels [ i]�>Alpha ( ) ;
334 i f ( sum>rn ) {
335 channels [ i]�>GeneratePoint (p , cuts ) ;
336 i f ( nin==2) f o r ( i n t i ( 0 ) ; i<nin+nout ;++i ) cms . BoostBack ( p [ i ] ) ;
337 m_lastdice = i ;
338 b r e a k ;
339 }
340 }

(b) SHERPA-MC-2.2.3/PHASIC++/Channels/Multi-Channel.C

72 f o r ( i=nin ; i<nin+nout ; i++) {
73 C = 2⇤ran�>Get ()�1;
74 S = sqrt(1�C⇤C ) ;
75 F = 2⇤M_PI⇤ran�>Get ( ) ;
76 Q = �log ( std : : min ( 1.0�1.e�10, std : : max ( 1 . e�10,ran�>Get ( )⇤ ran�>Get ( ) ) ) ) ;
77 p [ i ] = Vec4D (Q , Q⇤S⇤ : : sin ( F ) , Q⇤S⇤cos ( F ) , Q⇤C ) ;
78 R += p [ i ] ;
79 }

(c) SHERPA-MC-2.2.3/PHASIC++/Channels/Rambo.C

Figure 2: The source of very long execution traces within the SHERPA code base pinpointed by our
probabilistic model debugging tool. (a) The probabilistic structure of the tau decay simulator. (b) The
A5 node maps to the “ran->Get()” call in this source file. (c) The A1 – A4 nodes map to the four
“ran->Get()” calls in this source file.

This scheme requires annotating the simulator code to demarcate the parts where it should be applied,127

but this was greatly simplified as we were able to see exactly where to make the required annotations128

using the inspection tool. After the development of this new approach to rejection sampling, the129

average trace length dropped to 8.37, with the longest registered trace being of length 42. This130

made it possible to train the inference network and produce initial inference results for this particular131

physics problem.132

Initial physics results: Using the setup described above, we were able to compute posterior distri-133

butions for px, py, pz, channel for various simulated observations with known ground truth. The134

discrete variable channel has a known prior distribution given by the branching ratio of the tau into135

38 possible decay channels [18]. While the SHERPA code has been instrumented and inference136

is technically possible, at the time of this writing, we have not yet prepared an efficient similarity137

kernel used in ABC. The choice of this kernel is critical for balancing the efficiency of the posterior138

sampling and the quality of the approximate inference. With our initial similarity kernel we achieve139

accuracies for the most frequent tau decay channels in the range of ⇡60-90%. Therefore our further140

work aims to improve the similarity kernel used in ABC and improve the accuracy of the inference.141

Future work: A common challenge for inference in particle physics is a large dynamic range of142

frequencies for various outcomes. For instance, some decay channels are much significantly more143

probable than the others, and the prior distribution for the momentum is often steeply falling. For this144

reason, the proposal parameters and the quality of the inference are better for observations with high145

likelihood. On the other hand, events with low likelihood (e.g., decay channels with small branching146

ratios) are less likely to be generated during training and the quality of the inference suffers. We147

are investigating techniques for automatically adjusting the measure during training to favor these148

unlikely outcomes, a feature that we name as “prior inflation”.149

The graph describing the probabilistic structure of the simulation that is generated by our inspection150

tool (Figure 2, a) constitutes an interesting candidate for learning a structured proxy (or surrogate) for151

the generative model itself. We are considering using such learned proxies for speeding up training152

and inference in models where the execution of the simulator code takes a significant amount of time153

and resources, such as the simulation of particle detectors in GEANT.154

In conclusion, this work provides an important first-step towards implementing a probabilistic155

programming approach in the physical sciences, which has considerable promise to leverage existing156

simulation software in order to provide tractable inference with a deeper level of interpretation than157

is possible with current analysis methods.158
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Challenges
• Probabilistic Programming 

• Nesting/compositionality 
• Automatically factoring inference 
• Finite approximations  

• Inference Compilation 
• Inference network structure from generative model or vice 

versa 
• Forward model surrogates 

• Model Learning 
• PLs that support  

• AESMC-style ELBOs 
• Model learning through discrete random primitives
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TL&DR
• Programming languages can be used to denote inference 

problems 
• There are at least two families of probabilistic programming 

languages; one can be compiled to graphical models or factor 
graphs, the other, corresponding in character to normal, 
everyday programming languages, cannot 

• It is possible to develop generic and reasonably efficient 
inference algorithms for both families 

• There is a rapidly emerging connection between probabilistic 
programming, variational inference, and differential programming 
that could give rise to the next generation of AI tools 

• There are all kinds of interesting research and engineering 
challenges remaining


