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Probabilistic Programming




Existing Languages
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Model-based reasoning
and Inference



Radiographic Inspection for Oil Spill Prevention
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Radiographic Inspection for Oil Spill Prevention
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CAPTCHA breaking

SMKBDF

Can you write a
program to do this?

Mansinghka, Kulkarni, Perov, and Tenenbaum
“Approximate Bayesian image interpretation using generative probabilistic graphics programs." NIPS (2013).



Captcha Generative Model

° 6

(defm sample-char []

{:symbol (sample (uniform ascii))
:X-pos (sample (uniform-cont 0.0 1.0))
:y-pos (sample (uniform-cont 0.0 1.0))
:size (sample (beta 1 2))

:style (sample (uniform-dis styles))

2D

(defm sample-captcha []
(let [n-chars (sample (poisson 4))
chars (repeatedly n-chars
sample-char)
noise (sample salt-pepper)

]

gen-image))



Conditioning

(defquery captcha [true-image]
(let [gen-image (sample-captcha)]
(observe (similarity-kernel gen-image)

true-image)
gen-image))

™~ Generative
Model

‘(doquery :ipmcmc captcha true-image) ‘

\

Inference




2015 : Probabilistic Programming

e Restricted (i.e. STAN, BUGS, infer.NET)
 Easier inference problems -> fast

« Impossible for users to denote some models
» Fixed computation graph
« Unrestricted (i.e. Anglican, WebPPL)
« Possible for users to denote all models
- Harder inference problems -> slow
« Dynamic computation graph

e Fixed, trusted model; one-shot inference



The Al/Repeated-Inference Challenge

‘Bayesian inference is computationally expensive. Even
approximate, sampling-based algorithms tend to take many
iterations before they produce reasonable answers. In contrast,
human recognition of words, objects, and scenes is extremely
rapid, often taking only a few hundred milliseconds—only enough
time for a single pass from perceptual evidence to deeper
interpretation. Yet human perception and cognition are often
well-described by probabilistic inference in complex models.
How can we reconcile the speed of recognition with the expense
of coherent probabilistic inference? How can we build systems,
for applications like robotics and medical diagnosis, that exhibit
similarly rapid performance at challenging inference tasks?”

Stuhimuller A, Taylor J, Goodman N. Learning stochastic inverses. In Advances in Neural Information Processing Systems 2013 (pp. 3048-3056).



Resulting Trend In Probabilistic Programming

One-shot Probabilistic ”

Programming

Inference?
Unsupervised
Repeated lnfer?nc.e Deep
Compilation !
Learning
Yes No

Have fully-specified model?



Inference Compilation



Inference Compilation Desiderata

« Denote a model and inference problem as a probabilistic
programming language program

* “Compile” for hours or days, depending on the problem,
CPU/GPUs at disposal, etc.

« Get a “compilation artifact” controller that enables fast,
repeated inference in the original model that is compatible

with asymptotically exact inference



Inference Compilation

Compilation Inference

Now C++, Python, or Clojure!

Training data Test data
fx(m) (1 < | y
~_Probabilistic program
p(x,y)
NN architecture ~~
v SIS

\
Q O D <« Compilation artlfact /

( O.? /% || y:0) l

Training —— Posterior
Dy (p(x | y) ] p(x|y)
(x| y;0))
Expensive / slow Cheap / fast

Input: an inference problem denoted in a probabilistic programming language

Output: a trained inference network (deep neural network “compilation artifact”)

Le TA, Baydin AG, Wood F. Inference Compilation and Universal Probabilistic Programming. AISTATS. 2017.



Compiling Away Runtime Costs of Inference

Learn to invert the generative model, before seeing data

Obijective function:
/ D (m)|gx)p(y)dy

/ ) [ pixty) log[ ny('n”y))] xdy

p(x y) |—log q(x|p(n,y))] + const.

approximate with samples

Fully differentiable: from the joint distribution
can train entirely offline: V,J(n) = Eyx,y) =V, logq(x|p(n,y))]

Paige B, Wood F. Inference Networks for Sequential Monte Carlo in Graphical Models. ICML. JMLR W&CP 48: 3040-3049. 2016.



Example : Non-Conjugate Regression Graphical Model

Finite Graphical

Model

()
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—_ -/

wy ~ Laplace(0, 101 79)

trn ~ t,(wo + w2z, + waz, €

v=4,e=1,and z, € (—10, 10)

automatic
but
suboptimal

ford =0,1,2;

Inverted Graphical

Model
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Neural net proposal
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q(wo.2|21:N,t1:N)

Two layer MLP
200 units
3-component MOG for each output

Paige B, Wood F. Inference Networks for Sequential Monte Carlo in Graphical Models. ICML. JMLR W&CP 48: 3040-3049. 2016.



Non-Conjugate Regression

Example
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Paige B, Wood F. Inference Networks for Sequential Monte Carlo in Graphical Models. ICML. JMLR W&CP 48: 3040-3049. 2016.



CSIS : Inf. Comp. for Higher-Order PPL

 Same IS proposal learning objective
VoI (M) = Epxy) [= Vi log q(x[e(n,y))]

* |nf. dim. graph so only evaluation/“forward” inference methods
possible, i.e. SIS with unnormalized weights

[T:2: 9i(yilos) TIL, f5(5105) )

M
szl q(z;|lo(n,y,%X1:5-1))

« “Forward”-structured proposal / controller

CI(X‘SO(”'%Y)) é H Q(xj’@(n7Y7 Xllj—l))



Generic Structured Proposal Architecture
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Sampling ... T
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CNN

'
'

(n) mn mn
2™y~ op(z,y)

synthetic data

Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997 Nov 15;9(8):1735-80.
Reed S, de Freitas N. Neural programmer-interpreters. arXiv preprint arXiv:1511.06279. 2015 Nov 19.

Regression



Captcha Breaking

Type Baidu (2011)  Baidu (2013) eBay Yahoo reCaptcha Wikipedia Facebocllf
AR ~Sey 848899  20Pspel 1R vigrkemper  OUBEBRK S
Our method RR 99.8% 99.9% 99.2% 98.4% 96.4% 93.6% 91.0%
BT 72 ms 67 ms 122 ms 106 ms 78 ms 90 ms 90 ms
Facebook Captcha
Observed WHGMQ  WWZFWB  Mgbwo-
images
Q vicarious
Inference
107  W4kgvQ  uV7EeWB MghnpT $40M raise
Training 106 WA4rjvQ uV7FeWB MypppT
traces 105  Woxewd9 mTTEMMm RIrpES

104 BKvu2Q C9QDsoN rS5FP2B

Le TA, Baydin AG, Zinkov R, Wood F. Using Synthetic Data to Train Neural Networks is Model-Based Reasoning, I[JCNN. 2017.



The Quest for New Physics



Inference Compilation : https://github.com/probprog/pyprob

e.g.
Sherpa

e.g.
Geant

event & detector simulators  ATLAS detector output

/\\l A W UBC| THE UNIVERSITY /7
L s NER e 1 w OF BRITISH COLUMBIA (lntel ATLAS

BERKELEY LAB NYU EXPERIMENT

Efficient Pr ilistic Inference in th t for Physics B nd the Standard M L. mitted to NIPS.



High Peaks -- Our Battle to Control a SHERPA

» Controlled by PyProb
* C++ prior model

+ SHERPA; 1M+ lines
+ Describes standard model
+ Only interface via intercepted U(0,1) RV’s

« Python likelihood

- ATLAS detector component simulator

* Inf. comp. artifact first ever inference using LHC
generative model software stack

Neural network SHERPA controller 1000x’s more

efficient than MH or IS inference; potential for real-

time

WWHWIWW i

v vy v
T T
w- w- 5
Teju -~

Figure 1: Top: branching ratios of the tau lepton, effectively the prior distribution of the decay
channels in the SHERPA simulation. Note that the scale is logarithmic. Bottom: Feynman diagrams
for tau decays illustrating these can produce multiple detected particles.

(¢) Ground truth posterior from random-walk Metropolis Hastings (20,000 traces).

Figure 2: The corner plot on the left, shows the particle energies of the two most energetic final
state particles and their joint probability. To the right, the distribution of the originating momentum
components of the 7 lepton and its decay mode is shown. In the middle we show the event composition
as characterized by the number of mainly electromagnetically interacting and hadronically interacting
final state particles as well as the number of decay products. To the right we show the original
observation as well as the mean observation generated during inference.

Bottom-up model




Key Benefit

Instant interpretability

pyprob + PyTorch ()
(Python)

Inference Engine

Probabilistic
Programming
Execution Protocol

-~ PPX

SHERPA (C++)

Simulator




Code to Try

PyProb_CPP

https://github.com/probprog/pyprob_cpp
762 lines of C++

Lightweight C++ PyProb PPL client

PyProb

github.com:probprog/pyprob.git
4958 lines of Python

Pure Python PPL + Inference Compilation




Challenges

e Sharply peaked likelihoods
« Adversarial training”?

o Efficient forward model execution at test time
« Surrogates?

 Deep neural network training at scale



Massively Distributeo
Deep Network Training



Key ldeas

Asynchronous distributed SGD (aka Hogwild) does not work “at scale”
Chen et al (Bengio/Google) [2016] suggest “obvious” idea
« Drop straggling workers in synchronous SGD

« Provided mini-batch data selection is uncorrelated with worker identity
this is completely kosher in expectation

Our idea

« Learn a deep nonlinear dynamical system model of cluster
performance and use order statistics from said model to drop
straggling workers

TL&DR

« Higher throughput leads to faster training times despite dropping
gradient mini-batch computations

« Learned model does better than simple heuristics



Predicted Throughputs on 160 Node Xeon Cluster
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Figure 1: Results of throughputs given by amortized inference. Each runtime plot (5 surrounding the
top figure) shows the individual runtimes of the worker (x-axis index) during an iteration of SGD
on a 158 node cluster. We highlight SGD iterations 1, 50, 100, 150, and 200 which highlight two
significantly different regimes of persistent time-and-machine-identity correlated worker runtimes.
The top large figure displays a comparison of throughputs achieved by waiting for all workers to finish
(green) and using the inferred cutoff method (red) relative to the ground truth maximum achievable
(oracle). The bottom figure displays the reduction in time per iteration when Cutoff SGD is used.



Uniform-Load Cluster-Model Rank Predictions

125 _, _ predicted

—— true 0.6
1.00 j 08
0.75 0.4 0.6
0.50
0.4
0.25 / " |

0 50 100 150 0 50 100 150 0 500 1000 1500 2000 0 500 1000 1500 2000
(A) (B) (©) (D)

worker index

minibatch runtime

Figure 2: Runtime profiles of various iterations of SGD of the validation set in our training step.
The maximum throughput cutoff under the model predictions is shown in red, indicating a large
chunk of idle time is reduced as a result of stopping early. (A/B): selected observed runtimes vs
predicted runtime order statistics for a 158 node cluster. Notably, when there are exceptionally slow
workers present, the cutoff is set to proceed without any of them as seen in figure (A). (C/D): example
predicted vs. actual runtimes for 2175 node cluster. All predicted order statistics are shown with +2
standard deviations



Improved Training Time on MNIST
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Figure 3: MNIST validation loss convergence for
our model based methods, Elfving and Bayesian,
and popular approaches. Batch size - 10112, learn-

ing rate scaled to 0.64 for sync and 0.004 (0.64 /
num workers) for async.



Improved Training Times for Large Neural Networks

Resnet-64
60 T —— gradient computation
45 1000 il E l O i —— all_reduce
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Figure 4: We trained ResNet-64 and the WideResNet with 28 Layers and a width factor of 10.
Both networks are trained on CIFAR-100, with a batch-size of 47850 on ResNet-64 and 8700 on
WideResNet. All training curves train to 1100 iterations. Initial learning rates for both are set to 0.16,
with a 20% decay on WideResNet at t=500 and t=1000. The plots show in order: total throughput
over training, wall-clock validation accuracy over training time, and the ratio of training time vs.
inter-rank communication cost. On the validation loss curve in the center, dashed vertical lines
indicate when the final iteration completed.



Vision
* A learned computational artifact for rapid, even real-time,
interpretable LHC event processing
* Trigger
* A framework for model criticism and new physics using high-

quality importance sampling-based evidence estimates

* A framework for efficiently training simulator controllers for
various industry applications

* Leverage existing simulator code
+ Use general purpose compute

« Useful for realtime anomaly detection, advanced analytics,
etc.



Thank You

* People : Gunes Baydin, Wahid Bhimji, Lukas Heinrich, Kyle Cranmer, Tuan Anh Le, Jan Willem van de Meent,
Hongseok Yang, Brooks Paige, David Tolpin, amongst many others

* Funding : Intel, DARPA, NSERC



Online Learning Rate Adaptation with
Hypergradient Descent

Atihm Giines Baydin®’ Robert Cornish!  David Martinez Rubio?

Mark Schmidt?> Frank Wood"

I Department of Engineering Science, University of Oxford, Oxford, United Kingdom
2Wadham College, University of Oxford, Oxford, United Kingdom
3Depalrtment of Computer Science, University of British Columbia, Vancouver, BC, Canada
{gunes,rcornish,fwood}@robots.ox.ac.uk
david.martinez2@wadh.ox.ac.uk schmidtm@cs.ubc.ca



Simple ldea

 Dynamically adjust the learning rate in gradient descent by using automatic
differentiation to differentiate wrt the learning rate through the gradient update

rocedure itself
& 0 =0;—1 — avf(et—l)

0r—1=0i—2—aVf(fi_2)

90, — 'V fildE gj)am rule yields

Notin t
DL ) o VE 00 ) - (=Y f(r2))

oo

=Vf(0-1)-

of (6
suggesting &sitnplé Ieaminé ra&upaatd Nifdoi—1) - Vf(0i—2)

. Almeida, Langlois, Amaral, and Plakhov. Parameter adaptation in stochastic optimization. On-Line Learning in Neural Netwc
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Model-Based Reasoning



Perception / Inverse Graphics

Captcha Solving

Yy X

Input Image Intermediate Iterations Final Inferred Image

B3
Lo
drerrer, I (N R
d"mlw

dnmlw

scene description

Mansinghka, Kulkarni, Perov, and Tenenbaum.
'Approximate Bayesian image interpretation using

generative probabilistic graphics programs." NIPS (2013).

Scene Description

Yy X

Observed Inferred
Image | (reconstruction)

&u?;;& ’,"
t '7
L

Inferred model Inferred model
re-rendered with re-rendered with
novel poses novel lighting

Kulkarni, Kohli, Tenenbaum, Mansinghka

"Picture: a probabilistic programming language for

scene perception." CVPR (2015).



Reasoning about reasoning

Want to meet up but phones are dead...

| prefer the pub.
Where will Noah go?
Simulate Noah:

Noah prefers pub
but will go wherever Andreas is
Simulate Noah simulating Andreas:

-> poth go to pub

cognitive process behavior

Stuhimuller, and Goodman.
"Reasoning about reasoning by nested conditioning: Modeling theory of mind with probabilistic programs.”
Cognitive Systems Research 28 (2014): 80-99.



Directed Procedural Graphics

Stable Static Structures

Procedural Graphics

simulation

oooooooooooooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooooooooooooo

constraint

Ritchie, Lin, Goodman, & Hanrahan.
Generating Design Suggestions under Tight Constraints
with Gradient-based Probabilistic Programming.

In Computer Graphics Forum, (2015)

Ritchie, Mildenhall, Goodman, & Hanrahan.
“Controlling Procedural Modeling Programs with
Stochastically-Ordered Sequential Monte Carlo.”

SIGGRAPH (2015)




Program Induction

0.8 T

. ~J .
y ~ p(-[x) ol Y ~ p(-]x) _
0.6 | 4
0.5} 4
0.4} L .
il |"
0.3} : 1 |
0.2 ~ :I ),
21 ' 4
-
] '
0.1} = i _
'l .
- ()()l | ----I ! |I.I -
=10 o 0 = 10 Ta —4 —9 0 5 1
(lambda (stack-id) (safe-uc (* (if (< 0.0 (* (* (* -1.0 (begin (define
G 1147 (safe-uc 1.0 1.0)) 0.8)) (* 0.0 (+ 0.0 (safe-uc (* (* (dec -2 X ~ p(X‘Y)

.07_(safe—sqrt (begin (define G_ 1148 3.14159) (safe-log -1.0)))) 2.0)
0.0)))) 1.0)) (+ (safe-div (begin (define G_ 1149 (* (+ 3.14159 -1.0)
1.0)) 1.0) 0.0) (safe-log 1.0)) (safe-log -1.0)) (begin (define G_ 11

X ~ p(x)

program source code program output

Perov and Wood.
"Automatic Sampler Discovery via Probabilistic Programming and Approximate Bayesian Computation"
AGI (2016).



Reinforcement Learning

X Yy
policy and world reward
Wingate, Goodman, Roy, Kaelbling, and Tenenbaum. van de Meent, Tolpin, Paige, and Wood.
"Bayesian policy search with policy priors." "Black-Box Policy Search with Probabilistic Programs."

(IJCAI), 2011. (AISTATS), 2016.



PPAML Week-Long Summer School : 1.5 Days of
Student Coding

9-12p
Hands-On: Project Free
Coding
1:30p - 3p
Hands-On: Project Free
Coding

2:30p - 5p

Hands-On: Project Free

Coding




Scene (Generation

Generative Model for Images

Sample
sprites +
positions

Sample
Facts

Render

constrained Image Cond|t|0n|ng
by facts
e Condition image on sentence
Lfaces -bear boy] B0 700 “The ball kicks Bob while the bear is faced by Alice."
[:kicks :boy :soccer-ball] ‘faces :left}

{:sprite :bear z - 22
x 10 :y 100 G
:faces :right}

Generative Model for Captions

Select words
and
pronouns

Generate
Sentence

[:faces :bear :girl],
[:close :boy :bear]

“The girl is faced by the bear,
which is close to the boy.”

X Yy

© © © 0. 06 0 0 0 0 0 0060000000000 000000000 000000000000000000000000000000000000000000000000000o0o00

facts

images and sentences

Alex Collins (acollins@nvidia.com)
Alex Ledger (a.led1027@gmail.com)
Timon Gehr (timon.gehr@gmail.com)



Task&Gaze-Directed Object Localization

Problem: Find the location of objects/regions
with an unknown appearance.

v/
),
(Y
/—\ &On‘

“Anglican = awesome”

“Spent two weeks trying to get the model working with Figaro / Scala” i

“It took me 1 evening (at the bar with cocktails)

to make it work with Anglican / Clojure” o
'O@w\/ @ NGA ‘:
X Yy
unknown locations fixations

Svetlin Penkov ( sv.penkov@ed.ac.uk )




Rock Composition Via X-ray Fluorescence

200 —
Pt 5. .78e-17
Mg 3. .33e-17
Cm 3. .0129
Environment & Sensor Materials Minerals (in targ 02 .0215
Hf 2. .16e-17
150 Xe 2. .78e-17
Nb 2. .94e-18
Ta 2. .0
| 1 Au 2. .06e-08
Te 1. .08e-17
Elements Dy 1. .08e-17
100 Ba 1. 3e-07
@ In 1. .65e-08
> Zn 1. .0
lcf 1. .08e-17
50

X-Ray Transit
<D -

Spectral bands

Attenuation & eféciency
(seme counts lois due to e

e : AM
15

kev

Background continwum

o 5 10 15 20 25 30
Residual (difference between prediction and observed spectrum)

® © 0 6 0 0 0 00 0060000000000 000000000000 00000000000000000000000000000000000000000000000000o00

rock composition x-ray fluorescence

Matthew Dirks ninesense
mcdirks@cs.ubc.ca




Thinking Generatively about Discriminative Tasks

(defquery lin-reg [x-vals y-vals]

(let [m (sample (normal 0 1)) 10
c (sample (normal 0 1)) 0.8l
f (fn [x] (+ (* m x) c))] 0.6 1 ®e ® .'.'.
(map (fn [x y] 04] o % ea e
(observe 02 o® 0 e
(normal (f x) 0.1) y)) 0.0L °*
x-vals y-vals)) 00 02 04 06 08
[mc])

(doquery :ipmcmc lin-reg data options)

([0.58 -0.05] [0.49 0.1] [0.55 0.05] [0.53 0.04] ....



MD5 Inversion

(defquery md5-inverse [L md5str]
"conditional distribution of strings
that map to the same MD5 hashed string"
(let [mesg (sample (string-generative-model 1L))]
(observe (dirac md5str) (md5 mesg))

mesqg)))




Decision-Making Under Uncertainty
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Why Model-Based Reasoning?

Interpretability

Source of labeled data
Regularization

« Computation structure

Domain knowledge



Inference Compilation



First: Graphical Model Inference

Goal: efficient posterior inference in generative models
with latent variables x and observed variables y

p(xy) 2 [[ o @ileate) [T p ileay))



Inference

e.g. importance sampling and SMC approximate the
posterior m(x) = p(x|y) as weighted samples

Performance depends on quality of proposal ¢(x|\)



One Notion of Optimal Proposal

Learning an importance sampling proposal for a single dataset

Target density 7(x) = p(x|y), approximating family g(x|\)

: : - fit A to learn an importance
ingle dataset v: .
S 9 Sety arg)r\nm DKL (W‘ ’CD‘) sampling proposal

Dxr]q,(X]y)||pe(x|y)] Note: opposite KL to VB/VAE

Da(pllq) =KL(¢ || p) lim Do (p [ ) = KL(p || 9)

N MJ&JV\M

Figure 1: The Gaussian ¢ which minimizes a-divergence to p (a mixture of two Gaussians), for varying o. @« — —o0
prefers matching one mode, while & — oo prefers covering the entire distribution.

Minka T. Divergence measures and message passing. Technical report, Microsoft Research; 2005 Dec 7.

Cornebise J, Moulines E, Olsson J. Adaptive methods for sequential importance sampling with application to state space models. Statistics and Computing, 18:461-480 (2008)



Open-Universe Gaussian Mixture Model

. procedure GMM

K ~ p(K|-) > sample number of clusters
for k=1,..., K do
M, 2 ~ p(py, Xkl) > sample cluster parameters
7 <uniform(1, K)
forn=1,..., N do
Zp ~ p(zn|m) > sample class label
Yn ~ D(Yn|zn =k, i, k) > sample or observe data

return {p,, S}, K



GMM Inference

g ‘1‘0) (@) g <Q> (&) q (‘o‘) (=) Q) ) /Q) .
Q, @ 0 @. Q@
Particles: 1 10 100 1000 10000

Kernel density estimation of the distribution over maximum a-posteriori
values of the means {max,, p(uxly)};_; over 50 independent runs

Top: SMC
Bottom: CSIS



Observed points

Training traces




Synthetic Data for Training Deep Networks

Goodfellow, Bulatov, Ibarz, Arnoud, Shet; Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks. 2014.
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Jaderberg, Simonyan, Vedaldi, Zisserman; Synthetic Data and Artificial Neural Networks for Natural Scene Text Recognition. 2014.

Gupta, Vedaldi, Zisserman; Synthetic Data for Text Localisation in Natural Images. 2016.

Le, Baydin, Zinkov & Wood. Using Synthetic Data to Train Neural Networks is Model-Based Reasoning |JCNN 2017.



Advanced Topics Take-Homes

* |f you have an existing simulator it is, in principle, possible to
perform inference in it now (without re-coding it), using it as a
prior in a Bayesian sense

 Amortized inference is powerful and works for the same reason
that deep neural networks trained on synthetic data work



Challenges

e Probabilistic Programming
« Nesting/compositionality
« Automatically factoring inference
* Finite approximations
e |nference Compilation
* Inference network structure from generative model or vice
versa
« Forward model surrogates
 Model Learning
« PLs that support

« AESMC-style ELBOs
* Model learning through discrete random primitives
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TL&DR

Programming languages can be used to denote inference
problems

There are at least two families of probabilistic programming
languages; one can be compiled to graphical models or factor
graphs, the other, corresponding in character to normal,
everyday programming languages, cannot

It is possible to develop generic and reasonably efficient
inference algorithms for both families

There is a rapidly emerging connection between probabilistic
programming, variational inference, and differential programming
that could give rise to the next generation of Al tools

There are all kinds of interesting research and engineering
challenges remaining



