Project DisCo: Physics-based discovery of coherent structures in spatiotemporal systems

Adam Rupe\(^1\)\(^2\), Karthik Kashinath\(^2\), Nalini Kumar\(^3\), James P. Crutchfield\(^1\), Ryan G. James\(^1\), and Prabhat\(^2\)

\(^1\)Department of Physics
Complexity Sciences Center
University of California, Davis

\(^2\)NERSC
Lawrence Berkeley National Laboratory

\(^3\)Intel®

Big Data Summit 2018
Project DisCo

- The Science Problem
- The Theory
- The Computation
- The Unsupervised Ladder
- The HPC Challenge

John Travolta in 'Saturday Night Fever' (Paramount)
Project DisCo

- The Science Problem
- The Theory
- The Computation
- The Unsupervised Ladder
- The HPC Challenge

on track for SC’19 Gordon Bell submission
The Science Problem

Unsupervised detection (segmentation) of spatiotemporal structures in climate
The Science Problem

Unsupervised detection (segmentation) of spatiotemporal structures in climate

[Image of a map with highlighted areas, possibly showing climate patterns]
The Theory: Computational Mechanics

Think of this as a *physics-based* machine learning technique

Segmentation achieved through use of *local causal states*
The Theory: Computational Mechanics

Think of this as a \textit{physics-based} machine learning technique

Segmentation achieved through use of \textit{local causal states}

Causal states defined through the \textit{causal equivalence relation}

\[\text{past}_i \sim \epsilon \ \text{past}_j \iff \Pr(\text{Future}|\text{past}_i) = \Pr(\text{Future}|\text{past}_j) \]

\textit{Lightcones} used as local notions of past and future
The Computation

Goal - reconstruction of *causal equivalence relation* from data

\[\ell_i^- \sim_\epsilon \ell_j^- \iff \Pr(L^+|\ell_i^-) = \Pr(L^+|\ell_j^-) \]
The Computation

Goal - reconstruction of causal equivalence relation from data

$$\ell_i^- \sim_\epsilon \ell_j^- \iff \Pr (L^+ | \ell_i^-) = \Pr (L^+ | \ell_j^-)$$

- Training
 1. Reconstruct morph(ℓ_i^-) = Pr ($L^+ | \ell_i^-$)

 ▶ extract (ℓ^-, L^+) pairs from sample fields
 ▶ for real-valued fields, need to cluster space of lightcones
The Computation

Goal - reconstruction of causal equivalence relation from data

\[
\ell_i^- \sim_\epsilon \ell_j^- \iff \Pr(L^+|\ell_i^-) = \Pr(L^+|\ell_j^-)
\]

▷ Training

1. Reconstruct \(\text{morph}(\ell_i^-) = \Pr(L^+|\ell_i^-)\)
 - extract \((\ell^-, \ell^+)\) pairs from sample fields
 - for real-valued fields, need to cluster space of lightcones

2. Cluster together pasts with same morph - resulting clusters are local causal states
 - gives \(\epsilon\)-map; \(\epsilon(\ell_i^-) = \xi_{\ell_i^-} = \{\ell_j^- : \ell_j^- \sim_\epsilon \ell_i^-\}\)
The Computation

Goal - reconstruction of causal equivalence relation from data

\[\ell_i^- \sim_\epsilon \ell_j^- \iff \Pr(L^+|\ell_i^-) = \Pr(L^+|\ell_j^-) \]

- Training
 1. Reconstruct \(\text{morph}(\ell_i^-) = \Pr(L^+|\ell_i^-) \)
 - extract \((\ell^-, \ell^+)\) pairs from sample fields
 - for real-valued fields, need to cluster space of lightcones
 2. Cluster together pasts with same morph - resulting clusters are local causal states
 - gives \(\epsilon \)-map; \(\epsilon(\ell_i^-) = \xi_{\ell_i^-} = \{\ell_j^- : \ell_j^- \sim_\epsilon \ell_i^-\} \)

- Inference
 1. Use \(\epsilon \)-map to perform causal filtering; \(\mathbf{x} \rightarrow S = \epsilon(\mathbf{x}) \)
 - Segmentation semantics from structural properties of \(S \)
The Unsupervised Ladder

No labeled data – no error metric to optimize
The Unsupervised Ladder

No labeled data – no error metric to optimize

Built from physical theory

- validation established using physical principles

broken symmetry
Step 1 – Cellular Automata

Step 2 – Coupled Map Lattices
Step 3 – Vortex Shedding

K = 3

K = 11
Step 4 – Bickley Jet

Candidate data set for SC’19 GB submission

Step 5 – Transitional / Turbulent Flow

Candidate data set for SC’19 GB submission
The HPC Challenge

- Clustering very high-dimensional lightcone data
 - kmeans vs dbscan
- Multi-node clustering in Python
- Efficient use of memory
OUTCOMES

Completed Papers:

- Accepted for publication in Chaos: An Interdisciplinary Journal of Nonlinear Science

Planned Manuscripts:

▶ Structural Semantics of Local Causal States, Part 1: Contamination.
▶ Structural Semantics of Local Causal States, Part 2: Coherence Detection.
▶ Local Causal States and Lagrangian Coherent Structures.
Outcomes

Presentations:

- Seminar – Center for Nonlinear Dynamics, UT Austin, 2016
- Talk – APS Far West Section, 2016
- Poster – AGU Fall Meeting, 2016
- Talk – Dynamics Days, 2017
- Talk – 7th Annual UC Davis Math Conference, 2017
- Poster – 7th International Workshop on Climate Informatics, NCAR, 2017
- Poster – Intel HPC Developer Conference, 2017
- Talk – 70th Annual Meeting of the APS Division of Fluid Dynamics, 2018
- Poster – Dynamics Days, 2018
- Poster – Intel AI Dev
- Talk – Information Engines at the Frontiers of Nanoscale Thermodynamics, Telluride Science Research Center
Thank You!