Moving Data Over Networks
Network-Based Data Transfer at NERSC

Eli Dart, Network Engineer
ESnet Science Engagement
Lawrence Berkeley National Laboratory

NERSC Users Group Training
Berkeley, CA
February 24, 2016
Outline

• Context
• Science DMZ overview
• Data Transfer Nodes
• Handoff to Shreyas Cholia
Science Networks for Science

- The global Research & Education (R&E) network ecosystem is comprised of hundreds of international, national, regional and local-scale networks – each independently owned and operated.

- These networks are part of and connected to the Internet, but are engineered specifically for high-performance scientific applications.
Effective High Performance Data Transfer

- Data transfers between resources connected to R&E networks can do much better than data transfers which use the commodity Internet
 - Terabytes are no problem
 - Petabytes are feasible
- Just need to make sure we do a couple of things
 - Long distance portions work well in general
 - Large-scale computing centers work well in general
 - Local configuration is really important
- NERSC has high-performance data resources
 - Fast networks
 - Fast systems and filesystems
- This talk will describe what you can do to interface with NERSC effectively
Motivation

• Networks are an essential part of data-intensive science
 – Connect data sources to data analysis
 – Connect collaborators to each other
 – Enable machine-consumable interfaces to data and analysis resources (e.g. portals), automation, scale

• Performance is critical
 – Exponential data growth
 – Constant human factors
 – Data movement and data analysis must keep up

• Effective use of wide area (long-haul) networks by scientists has historically been difficult

• Some of this is for your system administrator
 – Point your sysadmin to http://fasterdata.es.net/ for more info
 – Feel free to follow up with me later – engage@es.net
The Central Role of the Network

• The very structure of modern science assumes science networks exist: high performance, feature rich, global scope

• What is “The Network” anyway?
 – “The Network” is the set of devices and applications involved in the use of a remote resource
 • This is not about supercomputer interconnects
 • This is about data flow from experiment to analysis, between facilities, etc.
 – User interfaces for “The Network” – portal, data transfer tool, workflow engine
 – Therefore, servers and applications must also be considered

• What is important? Ordered list:
 1. Correctness
 2. Consistency
 3. Performance
TCP – Ubiquitous and Fragile

• Networks provide connectivity between applications running on hosts
 – From an application’s perspective, the interface to “the other end” is a socket
 – Host operating system kernel provides socket interface, kernel implements TCP where the application can’t see
 – Communication is between applications – mostly over TCP

• TCP – the fragile workhorse
 – TCP is (for very good reasons) timid – packet loss is interpreted as congestion
 – Like it or not, TCP is used for the vast majority of data transfer applications (more than 95% of ESnet traffic is TCP)
 – Packet loss in conjunction with latency is a performance killer
A small amount of packet loss makes a huge difference in TCP performance.

Throughput vs. Increasing Latency with .0046% Packet Loss

With loss, high performance beyond metro distances is essentially impossible.
Working With TCP In Practice

- Far easier to support TCP than to fix TCP
 - People have been trying to fix TCP for years – limited success
 - Like it or not we’re stuck with TCP in the general case
- Pragmatically speaking, we must accommodate TCP
 - Sufficient bandwidth to avoid congestion
 - Zero packet loss
 - Verifiable infrastructure
 - Networks are complex
 - Must be able to locate problems quickly
 - Small footprint is a huge win – small number of devices so that problem isolation is tractable
Putting A Solution Together

• Effective support for TCP-based data transfer
 – Design for correct, consistent, high-performance operation
 – Design for ease of troubleshooting

• Easy adoption is critical
 – Large laboratories and universities have extensive IT deployments
 – Drastic change is prohibitively difficult

• Cybersecurity – defensible without compromising performance

• Borrow ideas from traditional network security
 – Traditional DMZ
 • Separate enclave at network perimeter ("Demilitarized Zone")
 • Specific location for external-facing services
 • Clean separation from internal network
 – Do the same thing for science – Science DMZ
The Science DMZ Design Pattern

- **Data Transfer Node**
 - High performance
 - Configured specifically for data transfer
 - Proper tools

- **Network Architecture**
 - Dedicated network location for high-speed data resources
 - Appropriate security
 - Easy to deploy - no need to redesign the whole network

- **Performance Testing & Measurement**
 - Enables fault isolation
 - Verify correct operation
 - Widely deployed in ESnet and other networks, as well as sites and facilities

© 2015, Energy Sciences Network
Abstract or Prototype Deployment

- (This section is for your system administrator – send them to me, use engage@es.net)
- Add-on to existing network infrastructure
 - All that is required is a port on the border router
 - Small footprint, pre-production commitment
- Easy to experiment with components and technologies
 - DTN prototyping
 - perfSONAR testing
- Limited scope makes security policy exceptions easy
 - Only allow traffic from partners
 - Add-on to production infrastructure – lower risk than rebuilding existing infrastructure
Science DMZ Design Pattern (Abstract)

- **WAN**
 - perfSONAR

- **Border Router**
 - 10GE
 - Clean, High-bandwidth WAN path
 - Site / Campus access to Science DMZ resources
 - 10GE

- **Science DMZ Switch/Router**
 - Per-service security policy control points
 - 10GE

- **Enterprise Border Router/Firewall**
 - 10GE

- **Site / Campus LAN**

- **High performance Data Transfer Node**
 - with high-speed storage
 - perfSONAR

- **ESnet Science Engagement**
 - engage@es.net
 - 2/24/17

© 2015, Energy Sciences Network
Local And Wide Area Data Flows

Border Router

WAN

10GE

Clean, High-bandwidth WAN path

High performance Data Transfer Node with high-speed storage

Site / Campus access to Science DMZ resources

Science DMZ Switch/Router

10GE

Site / Campus LAN

Enterprise Border Router/Firewall

10GE

Per-service security policy control points

High Latency WAN Path

Low Latency LAN Path
Modular Architecture – Multiple Science DMZs

Border Router

Enterprise Border Router/Firewall

WAN

10G

10GE

10GE

Science DMZ Switch/Routers

Per-project security policy

Project A DTN (building A)

Facility B DTN (building B)

Cluster DTN (building C)

Cluster (building C)

Site / Campus LAN

Dark Fiber

Dark Fiber

Dark Fiber

perfSONAR

perfSONAR

perfSONAR

perfSONAR

15 – ESnet Science Engagement (engage@es.net) - 2/24/17

© 2015, Energy Sciences Network
Supercomputer Center Deployment

• High-performance networking is assumed in this environment
 – Data flows between systems, between systems and storage, wide area, etc.
 – Global filesystem often ties resources together
 • Portions of this may not run over Ethernet (e.g. IB)
 • Implications for Data Transfer Nodes

• “Science DMZ” may not look like a discrete entity here
 – By the time you get through interconnecting all the resources, you end up with most of the network in the Science DMZ
 – This is as it should be – the point is appropriate deployment of tools, configuration, policy control, etc.

• Office networks can look like an afterthought, but they aren’t
 – Deployed with appropriate security controls
 – Office infrastructure need not be sized for science traffic
HPC Center Data Path

Diagram showing the architecture of a high-performance computing (HPC) center data path. The diagram includes:
- WAN
- Border Router
- Firewall
- Offices
- PerfSONAR
- Front end switch
- Data Transfer Nodes
- Supercomputer
- Parallel Filesystem

The diagram illustrates the flow of data through different components, highlighting the High Latency WAN Path and Low Latency LAN Path.
Common Threads

• Two common threads exist in all these examples
• Accommodation of TCP
 – Wide area portion of data transfers traverses purpose-built path
 – High performance devices that don’t drop packets
• Ability to test and verify
 – When problems arise (and they always will), they can be solved if the infrastructure is built correctly
 – Small device count makes it easier to find issues
 – Multiple test and measurement hosts provide multiple views of the data path
 • perfSONAR nodes at the site and in the WAN
 • perfSONAR nodes at the remote site
Dedicated Systems – Data Transfer Node

• The DTN is dedicated to data transfer
• Set up specifically for high-performance data movement
 – System internals (BIOS, firmware, interrupts, etc.)
 – Network stack
 – Storage (global filesystem, Fibrechannel, local RAID, etc.)
 – High performance tools
 – No extraneous software
• Limitation of scope and function is powerful
 – No conflicts with configuration for other tasks
 – Small application set makes cybersecurity easier – key point
Data Transfer Tools For DTNs

• Parallelism is important
 – It is often easier to achieve a given performance level with four parallel connections than one connection
 – Several tools offer parallel transfers, including Globus/GridFTP

• Latency interaction is critical
 – Wide area data transfers have much higher latency than LAN transfers
 – Many tools and protocols assume a LAN

• Workflow integration is important

• Key tools: Globus Online, HPN-SSH

• ESnet test DTNs: http://fasterdata.es.net/performance-testing/DTNs/
Data Transfer Tool Comparison

• In addition to the network, using the right data transfer tool is critical
• Data transfer test from Berkeley, CA to Argonne, IL (near Chicago). RTT = 53 ms, network capacity = 10Gbps.

<table>
<thead>
<tr>
<th>Tool</th>
<th>Throughput</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCP:</td>
<td>140 Mbps</td>
</tr>
<tr>
<td>HPN patched SCP:</td>
<td>1.2 Gbps</td>
</tr>
<tr>
<td>FTP</td>
<td>1.4 Gbps</td>
</tr>
<tr>
<td>GridFTP, 4 streams</td>
<td>5.4 Gbps</td>
</tr>
<tr>
<td>GridFTP, 8 streams</td>
<td>6.6 Gbps</td>
</tr>
</tbody>
</table>

• NERSC DTNs have both HPN-SSH and Globus
• Key point – your local DTN and network connection significantly affect your ability to move data in and out of NERSC
Performance Between Computing Facilities

October 2016
L380 Data Set

Data set: L380
Files: 19260
Directories: 211
Other files: 0
Total bytes: 4442781786482 (4.4T bytes)
Smallest file: 0 bytes (0 bytes)
Largest file: 11313896248 bytes (11G bytes)
Size distribution:
1 - 10 bytes: 7 files
10 - 100 bytes: 1 files
100 - 1K bytes: 59 files
1K - 10K bytes: 3170 files
10K - 100K bytes: 1560 files
100K - 1M bytes: 2817 files
1M - 10M bytes: 3901 files
10M - 100M bytes: 3800 files
100M - 1G bytes: 2295 files
1G - 10G bytes: 1647 files
10G - 100G bytes: 3 files

23 – ESnet Science Engagement (engage@es.net) - 2/24/17
Handoff to Shreyas Cholia

- Thanks!