
Brandon Cook, Pieter Maris, Meiyue Shao,
Nathan Wichmann, Marcus Wagner, John
O’Neill, Thang Phung and Gaurav Bansal

High performance
optimizations for
nuclear physics
code MFDn on
KNL

-	1	-	

June	22,	2016	

Overview

•  What	is	MFDn?	
•  Systems	and	setup	
•  Matrix	construc>on	
•  SPMM	kernel	

-	2	-	

MFDn - Introduction

•  Many-Fermion	Dynamics	–	nuclear	(MFDn)	
•  Configura>on	Interac>on	(CI)	for	nuclear	structure	
–  Realis+c	nucleon-nucleon	and	three-nucleon	forces	

•  Fortran90	code	(+	very	small	amount	of	C)	
–  Pla6orm	independent	
–  Hybrid	MPI/OpenMP	

•  Currently	in	use	at	mul>ple	DOE	centers	
–  Edison	at	NERSC	
– Mira	at	ALCF	
–  Titan	at	ORNL	

-	3	-	

MFDn – Typical Calculation

•  Generate	many-body	basis	space	
•  Construct	Hamiltonian	matrix	in	basis	
•  Obtain	lowest	eigenpairs	
•  Calculate	set	of	observables	from	eigenpairs	

-	4	-	

x (fm)

z
(fm

)

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3 0

0.02

0.04

0.06

0.08

0.1

x (fm)

z
(fm

)

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3 0

0.02

0.04

0.06

0.08

0.1

x (fm)

z
(fm

)

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3 −0.02

−0.01

0

0.01

0.02

MFDn – Key Challenges

•  Effec>ve	use	of	aggregate	memory	
–  Typical	basis	dimension	=	several	109	

•  1013	to	1014	nonzero	elements	(80-800	TB)	

– More	memory	
•  More	nuclei	
•  More	accuracy	

•  Efficient	matrix	construc>on	
•  Efficient	sparse	matrix-vector	products	
•  Nontrivial	communica>on	paWerns	
–  Two-dimensional	distribu+on	of	matrix	over	MPI	ranks	

-	5	-	

MFDn – Proxy Code

•  Runs	on	a	single	node	
•  Representa>ve	data	for	produc>on	
•  All	work	minus	communica>on	

•  Test	case	
–  Produc+on	run	designed	for	~5000	nodes	

•  Over	80	GB	memory	per	node	
–  2	protons,	6	neutrons,	2-body	forces	

•  Full	matrix:		1010	x	1010	

•  Local	matrix:	108	x	108		

•  Local	nonzeros:	8	x	109	

-	6	-	

Target Architecture

•  Knights	Landing	white	boxes	
–  KNL	preproduc+on,	B0	stepping	
–  64	cores	@	1.3	GHz,	4	hyper-threads/core	
–  16	GB	MCDRAM	
–  96	GB	DDR4	@	2133	MHz	

•  Intel	Haswell	
–  Cori	Phase	1	
–  2x	16-cores	@	2.3	GHz		
–  128	GB	DDR4	@	2133	MHz	

-	7	-	

Measurements

•  Intel	VTune	for	memory	counters	
•  Intel	SDE	for	FLOP	counts	
•  Intel	16.0.2	compiler	
•  Intel	MPI	
•  OpenMP	thread	placement	
–  KMP_AFFINITY=compact,granularity=fine
–  KMP_PLACE_THREADS=64c,4t

•  Memkind	library	and	FASTMEM	direc>ves	to	
allocate	to	MCDRAM	

-	8	-	

Measurements

•  KNL	in	Quadrant+flat	mode	unless	otherwise	noted	
•  1	MPI	rank	per	socket	
–  All	parts	of	code	have	good	thread	scaling	

•  Hyper-threads	
–  4	on	KNL	
–  1	on	Haswell	

-	9	-	

Matrix Construction

-	10	-	

State representations

•  Many-body	basis	states	are	composed	of	
an>symmetrized	products	of	single	par>cle	states	

•  Many-body	states	can	be	represented	in	two	ways	
–  BIN(Φi)	=	…01000100…000001000...	

•  each	bit	corresponds	to	a	single	par+cle	state	which	is	either	
occupied	or	not	

•  for	n	nucleons,	there	are	n	bits	set	to	1	
– Φi	=	{s1,	s2,	…	sn}	

•  a	set	of	n	16-bit	integers	indica+ng	for	each	nucleon	which	single	
par+cle	state	it	occupies	

•  non-zero	and	ordered	(0	<	si	<	si+1)	

-	11	-	

Matrix construction

Matrix	elements	in	Hamiltonian	can	only	be	nonzero	if		
for	a	pair	of	(row,	column)	many-body	state	at	most		
2	nucleons	are	in	different	single	par>cle	states		
	
1.   Count	nonzero	>les	in	Hamiltonian	
2.   Construct	nonzero	>le	structure	
3.   Count	nonzero	matrix	elements	in	each	>le	
4.   Construct	Hamiltonian	in	CSB_Coo	format	

•  Steps	1-3	contain	0	flops	
–  Bit	manipula+ons	and	integer	comparisons	

•  Step	4	has	few	flops,	lookup	tables	

-	12	-	

Typical loop structure

for Φj in column states:

 for Φi in row states:

 if (quick check H(i,j) != 0):

 careful check H(i,j) != 0

 (optional) compute H(i,j)

 end if

 end loop

end loop

-	13	-	

Quick test

•  Coun>ng	number	of	1’s	in	1st	32	bits	of	
–  XOR(BIN(Φi)	,	BIN(Φj))	

•  1st	op>miza>on:	use	64	bit	popcnt	instruc>on	
–  13%	reduc+on	across	all	matrix	construc+on	phases	

-	14	-	

•  32bit	and	64bit	have	nearly	the	
same	cost,	but	64	filters	out	
more	zero	elements	

•  unfortunately	there	are	no	
popcnt	instruc+ons	for	vector	
registers	

Hand coded popcnt

•  Have	only	achieved	parity	with	na>ve	popcnt	
instruc>on	so	far	

•  AVX-512BW	instruc>ons	greatly	simplify	the	
implementa>on	but	are	unfortunately	not	available	
on	KNL	

•  WORK	IN	PROGRESS	

-	15	-	

SSE4.2 string comparison instructions

•  Φi	=	{s1,	s2,	…	sn}	
–  a	set	of	16-bit	integers	indica+ng	which	single	par+cle	
state	each	nucleon	occupies	

–  non-zero	and	ordered	(0	<	si	<	si+1)	
•  SSE4.2	PCMPISTRM	instruc>on	can	compare	two	
xmm	registers	

-	16	-	 Schlegel	et	al.	ADMS	2011	

SSE4.2 string comparison instructions

-	17	-	

•  For	8	or	less	occupied	single	par+cle	states	
•  In	prac+ce	we	unroll	by	4	to	reduce	L1/L2	traffic	

SSE4.2 string comparison instructions

-	18	-	

speedup	 vs	original	 vs	64-bit	popcnt	

Haswell	 1.88x	 1.2x	

KNL	 1.65x	 1.3x	

MFDn Matrix construction - Summary

-	19	-	

•  Lack	of	16-bit	intrinsics	for	AVX-512	complicates	
op>miza>on	

•  At	best	a	hand-coded	popcnt	achieves	parity	with	
instruc>on	despite	having	to	copy	to	int	register	

•  SSE4.2	string	comparison	intrinsics	are	used	to	
speedup	integer	comparison	opera>ons	

•  WORK	IN	PROGRESS	
– Main	challenges:		

•  Vectoriza+on	of	pairwise	comparisons	
•  Vectoriza+on	of	compu+ng	nonzero	matrix	elements		

Sparse matrix-vector products

-	20	-	

Matrix format

•  CSB_Coo	format	
–  Par++on	matrix	in	k	x	k	blocks	with	k≤β	
–  Coo	within	each	block	on	space	filling	curve	
–  Efficient	for	SPMV	and	SPMV_T	

•  Can	thread	across	rows	or	columns	easily	
–  2x	16-bit	for	index	
–  1x	32-bit	for	matrix	element	

•  Local	matrix:	108	x	108		

•  Local	nonzeros:	8	x	109	
•  Quasi-random	sparsity	
•  β	=16,000	

-	21	-	

CSB_Coo	details:	
Op>mizing	Sparse	Matrix-Mul>ple	Vectors	
Mul>plica>on	for	Nuclear	Configura>on	Interac>on	
Calcula>ons	
IPDPS	2014	
hpp://gauss.cs.ucsb.edu/~aydin/ipdps14aktulga.pdf	

Matrix format

-	22	-	

•  CSB_Coo	
•  non-zeros	in	blue	
•  blocks	in	red	
•  blocks	are	built	
up	out	of	>les	

•  store	only	half	of	
the	symmetric	
matrix	

100 200 300 400 500 600 700 800

nz = 33264

100

200

300

400

500

600

700

800

Figure:	C.	Yang	2016	

Replace SPMV with SPMM

-	23	-	

Y(1:m) += A*X(1:m)y += A*x

m	 AI	 GFLOP/s	 GB/s	

1	 0.23	 23.2	 125	

4	 0.62	 56.8	 125	

8	 0.80	 67.5	 125	

2	MPI	ranks	and	16	OpenMP	threads	on	Haswell	

AI	=	Arithme+c	Intensity	=	FLOPs	/	byte	
Theore+cal	peak	bandwidth:	137	GB/s		

Replace SPMV with SPMM

-	24	-	

Y(1:m) += A*X(1:m)y += A*x

m	 AIDDR	 AIMCDRAM	 AITOTAL	 GFLOP/s	 DDR	GB/s	 MCDRAM	GB/s	

1	 0.20	 0.33	 0.13	 17.1	 83	 55	

4	 0.80	 0.36	 0.25	 62.4	 80	 180	

8	 1.57	 0.37	 0.30	 109.1	 71	 300	

MCDRAM	peak	bandwidth:	>460	GB/s	
DDR4	peak	bandwidth:	102	GB/s	

MCDRAM	Sustained	(1R/1W):	372	GB/s	
DDR4	Sustained	(1R/1W):	77	GB/s	

X	and	Y	Explicitly	in	MCDRAM	

Performance model

-	25	-	

min[B1*AI1(m), B2*AI2(m)] 1	=	DDR	
2	=	MCDRAM	
Bi=	maximum	bandwidth	

AI	for	MCDRAM	~const	
B1/B2 ≈ 4.5
AIddr ~ 0.2*m
AImcdram ~ 0.37	Measured	

Model	

MFDn SPMM Summary

-	26	-	

•  Running	out	of	DDR	only	is	very	slow	
•  Cache	mode	is	OK,	but	reduces	total	memory	
•  Explicit	management	1.2x	faster	than	cache	
•  Mul>ple	vectors	speedup	
–  2.9x	on	Haswell	
–  6.4x	on	KNL	with	memkind	

•  1.6x	speedup	over	Haswell	
–  Only	with	spmm	

National Energy Research Scientific Computing Center

-	27	-	

