High performance
optimizations for
nuclear physics
code MFDn on

Brandon Cook, Pieter Maris, Meiyue Shao,
Nathan Wichmann, Marcus Wagner, John
O’Neill, Thang Phung and Gaurav Bansal

June 22, 2016

>
P ; A
% U.S. DEPARTMENT OF Officeof ""‘

4@ ENERGY science




Overview

What is MFDn?

e Systems and setup
* Matrix construction
SPMM kernel
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MFDn - Introduction

 Many-Fermion Dynamics — nuclear (MFDn)

* Configuration Interaction (Cl) for nuclear structure
— Realistic nucleon-nucleon and three-nucleon forces

Fortran90 code (+ very small amount of C)
— Platform independent

— Hybrid MP1/OpenMP

Currently in use at multiple DOE centers

— Edison at NERSC

— Mira at ALCF

— Titan at ORNL
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MFDn - Typical Calculation

* Generate many-body basis space

* Calculate set of observables from eigenpairs
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MFDn - Key Challenges

* Effective use of aggregate memory

— Typical basis dimension = several 10°
e 10%3 to 10! nonzero elements (80-800 TB)

— More memory
* More nuclei
* More accuracy

 Efficient matrix construction
* Efficient sparse matrix-vector products
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MFDn - Proxy Code

* Runs on a single node
* Representative data for production
All work minus communication

* Test case

— Production run designed for ~5000 nodes
e Over 80 GB memory per node

— 2 protons, 6 neutrons, 2-body forces
* Full matrix: 101°x 101°
* Local matrix: 108x 108
* Local nonzeros: 8 x 10°
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Target Architecture

* Knights Landing white boxes
— KNL preproduction, BO stepping
— 64 cores @ 1.3 GHz, 4 hyper-threads/core
— 16 GB MCDRAM
— 96 GB DDR4 @ 2133 MHz

* Intel Haswell
— Cori Phase 1
— 2x 16-cores @ 2.3 GHz
— 128 GB DDR4 @ 2133 MHz
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Measurements

* Intel VTune for memory counters
* Intel SDE for FLOP counts

* Intel 16.0.2 compiler

* Intel MPI

* OpenMP thread placement
— KMP AFFINITY=compact,granularity=fine
— KMP PLACE THREADS=64c, 4t

* Memkind library and FASTMEM directives to
allocate to MCDRAM
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Measurements

e KNL in Quadrant+flat mode unless otherwise noted
* 1 MPI rank per socket

— All parts of code have good thread scaling
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Matrix Construction

~
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State representations

 Many-body basis states are composed of
antisymmetrized products of single particle states

 Many-body states can be represented in two ways
— BIN(®,) = ...01000100...000001000...

* each bit corresponds to a single particle state which is either
occupied or not

* for n nucleons, there are n bits setto 1
- ¢| - {Sl’ Sz, cee Sn}

* aset of n 16-bit integers indicating for each nucleon which single
particle state it occupies

* non-zero and ordered (0<s.<s,,,)
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Matrix construction

Matrix elements in Hamiltonian can only be nonzero if
for a pair of (row, column) many-body state at most

2 nucleons are in different single particle states

Count nonzero tiles in Hamiltonian
Construct nonzero tile structure

Count nonzero matrix elements in each tile
Construct Hamiltonian in CSB_Coo format

=l

e Steps 1-3 contain O flops
— Bit manipulations and integer comparisons

* Step 4 has few flops, lookup tables
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Typical loop structure

for ®;, 1in column states:
for ®. 1in row states:
if ( quick check H(i,j) != 0 ):
careful check H(i,j) != 0
(optional) compute H(i,j)
end if
end loop
end loop
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Quick test

e Counting number of 1’s in 15t 32 bits of
— XOR(BIN(®)) , BIN(®D;) )

e 1st optimization: use 64 bit popcnt instruction
— 13% reduction across all matrix construction phases
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Hand coded popcnt

* Have only achieved parity with native popcnt
instruction so far

 AVX-512BW instructions greatly simplify the
implementation but are unfortunately not available
on KNL

* WORK IN PROGRESS
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SSE4.2 string comparison instructions

* ®.={s,,s,,..S,}

— a set of 16-bit integers indicating which single particle
state each nucleon occupies

— non-zero and ordered (0<s;<s,,)

* SSE4.2 PCMPISTRM instruction can compare two
Xxmm registers

[(1]12[3]19[11]12]16]17] vectorA

1 110l]0j]0(0]J0J0]0
6/l0]0j0(0J0]J]0O0JO]0O
74{0(0J0J]0J0]J0O0JO0]0

vectorB L8 /| 01010 [010]10/|0]O0 lintermediate
16)/01010101010 41110 |result matrix
17]10]1]0]0]0j0JO0JO|1
18/({0]0]10(0[0]0}|0{O0
19)10]1]0]0]0j0J0JO}O

“equal any” aggregation <~~~
resultbitmask [1]0]JO0[0JoJOo|1]1]
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SSE4.2 string comparison instructions

* For 8 or less occupied single particle states
* |In practice we unroll by 4 to reduce L1/L2 traffic

#include "nmmintrin.h"
int countnnz(short *A, short *B, int ncolstates, int nrowstates, int maxdiffs) {
const int mode = _SIDD_SWORD_OPS | _SIDD_ CMP_EQUAL ANY |
_SIDD BIT MASK | _SIDD MASKED NEGATIVE POLARITY;
int i,j,ndiffs,count=0;
for (i=0; i<8*ncolstates; i+=8) {
_ ml28i v a = mm load sil28((__ml28i*) &A[i]);
for (j=0; j<B*nrowstates; j+=8) {
_ ml28i v b = mm load sil28((__ml28i*) &B[j]);
_ ml28i res v = mm cmpistrm(v_b, v_a, mode);
ndiffs = mm popcnt_u32(_mm_extract_epi32(res_v, 0));
if (ndiffs <= maxdiffs) {
count++;
}
}
}

return count;

}

~
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SSE4.2 string comparison instructions

vs 64-bit popent

Haswell 1.88x 1.2x
KNL 1.65x 1.3x
80 T
Il Haswell

70 || N KNL

wall time (s)

original 64-bit ssed.2 detailed
popcnt instrinsic only
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MFDn Matrix construction - Summary

* Lack of 16-bit intrinsics for AVX-512 complicates
optimization

* At best a hand-coded popcnt achieves parity with
instruction despite having to copy to int register

e SSE4.2 string comparison intrinsics are used to
speedup integer comparison operations

* WORK IN PROGRESS

— Main challenges:
* Vectorization of pairwise comparisons
* Vectorization of computing nonzero matrix elements
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Matrix format

e CSB_Coo format
— Partition matrix in k x k blocks with k<f3
— Coo within each block on space filling curve
— Efficient for SPMV and SPMV_T

* Can thread across rows or columns easily

— 2x 16-bit for index
. . CSB_Coo details:
— 1X 32-b|t for matrix element Optimizing Sparse Matrix-Multiple Vectors

Multiplication for Nuclear Configuration Interaction

* Local matrix: 108 x 108 Calculations
IPDPS 2014
° Local nonzeros: 8 X 109 http://gauss.cs.ucsb.edu/~aydin/ipdpsl4aktulga.pdf
* Quasi-random sparsity
* B=16,000
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Matrix format

* CSB _Coo
°* non-zeros in blue
 blocks inred

* blocks are built
up out of tiles

e store only half of
the symmetric
matrix

100 200 300 400 500 600 700 800

nz = 33264
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Replace SPMV with SPMM

y += A*Xx > Y(1l:m) += A*X(1:m)

2 MPI ranks and 16 OpenMP threads on Haswell

__ GFLOP/s

0.23 23.2
4 0.62 56.8 125
0.80 67.5 125

Al = Arithmetic Intensity = FLOPs / byte
Theoretical peak bandwidth: 137 GB/s
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Replace SPMV with SPMM

y += A*x > Y(1l:m) += A*X(1:m)

X and Y Explicitly in MCDRAM

ﬂ S ET P

0.20 0.33 0.13 17.1
4 0.80 0.36 0.25 62.4 80 180
3 1.57 0.37 0.30 109.1 71 300

MCDRAM peak bandwidth: >460 GB/s  MCDRAM Sustained (1R/1W): 372 GB/s
DDR4 peak bandwidth: 102 GB/s DDR4 Sustained (1R/1W): 77 GB/s
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Performance model

min[B,*AI,(m), B,*AI,(m)]
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2 = MCDRAM
B.= maximum bandwidth

Al for MCDRAM ~const
B,/B, = 4.5

AIl,;, ~ 0.2*m

AI ~ 0.37

mcdram
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MFDn SPMM Summary

* Running out of DDR only is very slow
* Cache mode is OK, but reduces total memory
* Explicit management 1.2x faster than cache

T
Il Haswell

 Multiple vectors speedup
I KNL (ddr)

— 2.9x on Haswell so =
. . Il KNL (memkind)
— 6.4x on KNL with memkind wl

w
o
T

* 1.6x speedup over Haswell

wall time (s)

— Only with spmm 0
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