Computing Environment

David Turner
NERSC User Services Group

NUG 2014 Training for New Users
February 3, 2014
Node Types

• Login nodes
 – Shared
 – Job preparation and submission

• MOM nodes
 – Shared
 – Where batch script executes
 • Parallel job launcher
 – Hopper/Edison: aprun
 – Carver: mpirun

• Compute nodes
 – Not shared
 • Except serial queue
Login Nodes

• **Edison**
 - Six nodes
 • 16 cores, 2.0GHz Intel Sandy Bridge
 • 512GB

• **Hopper**
 - Eight nodes
 • 16 cores, 2.4GHz AMD Opteron
 - Four nodes
 • 32 cores, 2.0GHz AMD Opteron
 • 128GB

• **Carver**
 - Four nodes
 • 8 cores, 2.66GHz Intel Nehalem
 • 48GB
Login Node Access

• Connect (via ssh) to *load balancer*
 - edison.nersc.gov
 - hopper.nersc.gov
 - carver.nersc.gov

• **Load balancer selects login node based on:**
 - Number of connections
 - Memory of previous connections from same IP
 • If you login everyday, you’ll probably end up on the same login node every time.
Login Node Usage

• Login nodes are shared by many users, all the time
• Edit files, compile programs, submit batch jobs
• *Some* post-processing/data analysis
 – IDL
 – MATLAB
 – NCL
 – python
• *Some* file transfers
 – Use data transfer nodes for large/long-running transfers
• Please use discretion
 – *All* users get frustrated by sluggish interactive response
Login Node Monitoring

- Determine number of available cores
 \% grep processor /proc/cpuinfo | wc -l

- Determine amount of physical memory
 \% grep MemTotal /proc/meminfo

- Use “top” command to view process activity
Login Node Guidelines

• Limit use of parallel “make”
 % make -j 4 all

• Use *no more* than 50% of available cores

• Use *no more* than 25% of available memory

• NERSC will kill user processes if response becomes unacceptable

• Terminate idle sessions of licensed software
 – IDL
 – MATLAB
 – Mathematica
Shell Initialization Files

• **Standard dot files**
 – `.bashrc`, `.profile`, `.cshrc`, `.login`, etc.
 – Symbolic links to read-only files
 • Allows NERSC to provide common environment

• **Personal dot files**
 – Aliases, environment variables, modules, etc.
 – Use “.ext” files
 – `.bashrc.ext`, `.profile.ext`, `.cshrc.ext`, `.login.ext`, etc.

• **Use “fixdots” to start over**
 – Creates `$HOME/KeepDots.<timestamp>`
 – Restores all dot files to current default state

• **Use NIM to change default login shell**
NERSC Supported Software

• **NERSC provides a wide range of software**
 - Scientific Applications
 • VASP, Amber, NAMD, ABySS, ...
 - Compilers
 • PGI, Intel, GCC, Cray
 - Scripting Languages
 • perl, python, R
 – and packages for each!
 - Software Libraries
 • blas/lapack (MKL), boost, hdf5, netcdf, ...
 - Utilities
 • gnuplot, git, mercurial, cmake, ...
 - Debuggers and Profilers
 • CrayPat, DDT, TotalView, gdb, MAP, darshan
 - Visualization
 • Visit, ParaView, VMD, ...

• **See complete list**
 http://www.nersc.gov/users/software/
Software is Managed by Modules

• NERSC provides many versions of many software packages
 – To support diverse workload on systems

• Maintaining all these separate software installations on heterogeneous systems is a major challenge!
 – Software can’t just be installed in the base operating system
 • How many copies of /usr/bin/vasp could be supported?
 – Each software package installed in its own directory
 /usr/common/usg/blast+/2.2.26

Modules is the user interface to software at NERSC
How to Access NERSC Software

• Identify the software you need
 – Use the NERSC website
 http://www.nersc.gov/users/software/
 – Use “module avail”
 • \emph{Lots} of output
 • Each system has different modules!

• Load the module
 % idl
 idl: Command not found.
 % module load idl
 % which idl
 /usr/common/usg/idl/idl82/bin/idl
Loading Modules

• Separate modules exist for each version of software
 – Syntax: <name>/<version>
 – Default provided if no <version> supplied

% module avail idl
idl/7.1 idl/8.0 idl/8.2 (default)
% module load idl/7.1

• Load modules in every batch script
 – Ensure correct run-time environment
 – Self-documenting for troubleshooting and reproducibility
Other Useful Module Commands

module unload <modulename>
 – Remove the module from your environment

module swap <module1> <module2>
 – Unload one module and replace it with another
 module swap pgi gcc

module list
 – See what modules you have loaded right now

module show <modulename>
 – See what the module actually does

module help <modulename>
 – Get more information about the software
Default Modules

• When you login, many *default* modules are loaded automatically
 – Usually foundational modules which are required to get proper function from the system
 • Build environment, required libraries and applications, batch environment
 – Use caution in unloading these

• Swapping to functionally equivalent module may be OK
 carver% module swap pgi gcc
 hopper% module swap PrgEnv-pgi PrgEnv-gnu

• Each NERSC system has different default modules
Types of Modules

• Applications
 – VASP, amber, blast, ...
 – Usually only set PATH, LD_LIBRARY_PATH

• Libraries
 – Set LD_LIBRARY_PATH
 • but probably not on Crays
 – Set “helper” environment variable for building software
 • Header/include file search paths
 • Library search paths
 • Library names

% module load hdf5
% mpicc mycode.f $HDF5
Cray Programming Environment

• Compiler specific
 PrgEnv-pgi, PrgEnv-intel, PrgEnv-cray, PrgEnv-gnu
 – Intel is default on Edison, PGI is default on Hopper

• Meta-modules
 – Organize a set of modules
 • Compiler (intel, pgi, cray, gnu)
 • Libraries tuned for compiler

• Swapping Programming Environments
 module swap PrgEnv-pgi PrgEnv-intel
 – swaps compiler
 – no need to swap libraries!
Carver “Programming Environment”

- Not as sophisticated as Cray PrgEnv
- Separate compiler and OpenMPI modules

<table>
<thead>
<tr>
<th>Compiler module</th>
<th>OpenMPI module</th>
</tr>
</thead>
<tbody>
<tr>
<td>pgi</td>
<td>openmpi</td>
</tr>
<tr>
<td>intel</td>
<td>openmpi-intel</td>
</tr>
<tr>
<td>gcc</td>
<td>openmpi-gcc</td>
</tr>
</tbody>
</table>

- Must keep libraries consistent with compiler!
Compiler Wrappers

- **Edison/Hopper**
 - Defined by PrgEnv modules
 - `ftn`, `cc`, `CC`
 - Provides include and library search paths for MPI and some common math libraries
 - Provides consistent level of optimization across compilers

- **Carver**
 - Defined by openmpi modules
 - `mpif90`, `mpicc`, `mpiCC`
 - Provides include and library search paths for OpenMPI

- **Seldom need native compilers!**
Resources

http://www.nersc.gov/users/software/nersc-user-environment/

http://www.nersc.gov/users/software/nersc-user-environment/modules/

http://www.nersc.gov/users/computational-systems/edison/programming/

http://www.nersc.gov/users/computational-systems/hopper/programming/

http://www.nersc.gov/users/computational-systems/carver/programming/
Thank you.