
Jack Deslippe
Application Performance Group
NERSC

Optimizing Excited-State
Electronic-Structure
Codes for Intel Knights
Landing

What is GW

Materials:
InSb, InAs
Ge
GaSb
Si
InP
GaAs
CdS
AlSb, AlAs
CdSe, CdTe
BP
SiC
C60
GaP
AlP
ZnTe, ZnSe
c-GaN, w-GaN
InS
w-BN, c-BN
diamond
w-AlN
LiCl
Fluorite
LiF

DFT

 GW

The “GW” method is an accurate approach
for simulate the “excited state” properties
of materials. Examples:

- What happens when you add or
remove an electron from a system

- How do electrons behave when you
apply a voltage

- How does the system respond to light
or x-rays

GW is complementary to the widely used
density functionally theory methods (DFT)
which predict ground state properties of
materials - i.e. the properties of the system
associated with all particles in the lowest
energy configuration.

What is GW

Many-body effects extremely important in Excited-State
properties of Complex Materials.

Accurately describes properties important for:

- Photovoltaics
- LEDs
- Junctions / Interfaces
- Defect Energy Levels
- ….

*C.D. Spataru, S. Ismail-Beigi, L.X. Benedict, S.G. Louie. PRL 077402 (2004)
*J. Deslippe, C.D. Spataru, D. Prendergast, S.G Louie. Nano Letters. 7 1626 (2007)

Original BerkeleyGW Code - Massively Parallel. But MPI Only

Original code was MPI only. But, unlike DFT there
are many layers over which you can exploit
parallelism:

Band-pairs: (n,n’) Millions
Energies: E Tens-Hundreds
Plane-Wave Basis Elements: (G,G’) - Millions

Much better suited exploiting levels of parallelism on
HPC system like Cori. ~10,000 Nodes, 250 Threads
per Node, 8 Wide Vectors.

Don’t Bury the Lead

BerkeleyGW Running Well on KNL.

Data From Sigma Benzene Runs on Single Node - Excluding IO.

Computational Bottlenecks

3 Main Computational Bottlenecks. Use roughly equal time for 500 atom systems.

A. Compute transition probabilities (matrix-elements) for electrons from occupied to empty orbitals

B. Sum matrix-elements to form the overall material response function (polarizability)

C. Calculate the interacting electron energy from the polarizability

Kernel A

Compute the transition probability between two electron states (orbitals):

Typically computed by FFT:

Must be done for all pairs of orbitals n, n’. Since the number of orbitals considered is proportional to number
of atoms in calculation. The complexity of this step is O(N3logN).

We distribute (n, n’) via MPI and call threaded 3D FFT libraries (MKL) in the app. (Note, significantly more
parallelism than local DFT)

Kernel A Performance (MKL)

Related Improvements in Quantum ESPRESSO

When performing Hybrid Functional calculations within
DFT, like within GW, you need to perform an FFT for
each pair of orbitals.

By default, code parallelizes each individual FFT.

We improve code to:

1. Parallelize over pairs of orbitals, before
parallelizing individual FFTs

2. Allow simultaneous parallelism over orbitals for
Hybrid calculation and other parameters for local
calculation.

This leads to less communication, more work (complete
3D-FFT) on-node to parallelize.

Optimized QE on NERSC Edison

Kernel B

We want to compute the electronic polarizability of the system:

We can write this as a number of ZGEMM operations (one for each E):

Where M is:

There are two steps. First, constructing M, and second, performing the complex double-precision ZGEMM.

The complexity of this step is O(N4).

Kernel B Performance

Little difference between MCDRAM and HBM
performance - Only in the initialization/prep stage.

KNL overall performing 20% faster than Haswell.

No advantage of Hyper-Threading on Xeon or KNL
seen.

Kernel C

Compute the electronic energy as:

Here ῶ and ᶑ are complex double precision arrays derived from the polarizability. This is a tensor-
contraction, matrix reduction type operation - performed by hand tuned code.

The complexity of this step for all n is O(N4).

Kernel C Optimization

Kernel COptimization process for Kernel-C (Sigma
code):

1. Refactor (3 Loops for MPI, OpenMP,
Vectors)

2. Add OpenMP
3. Initial Vectorization (loop reordering,

conditional removal)
4. Cache-Blocking
5. Improved Vectorization
6. Hyper-threading

Kernel C Optimization

Steps 2-3

ngpown typically in
100’s to 1000s. Good
for many threads.

ncouls typically in
1000s - 10,000s.
Good for
vectorization.

Original inner loop.
Too small to
vectorize!

Attempt to save work
breaks vectorization
and makes code
slower.

!$OMP DO reduction(+:achtemp)
 do my_igp = 1, ngpown
 ...
 do iw=1,3

 scht=0D0
 wxt = wx_array(iw)

 do ig = 1, ncouls

 !if (abs(wtilde_array(ig,my_igp) * eps(ig,my_igp)) .lt. TOL) cycle

 wdiff = wxt - wtilde_array(ig,my_igp)
 delw = wtilde_array(ig,my_igp) / wdiff
 ...
 scha(ig) = mygpvar1 * aqsntemp(ig) * delw * eps(ig,my_igp)
 scht = scht + scha(ig)

 enddo ! loop over g
 sch_array(iw) = sch_array(iw) + 0.5D0*scht

 enddo

 achtemp(:) = achtemp(:) + sch_array(:) * vcoul(my_igp)

 enddo

Data Locality Worse Between Step 2 - 3 on KNL/KNC

The loss of L3 on MIC makes locality more important.

Optimization process for Kernel-C (Sigma
code):

1. Refactor (3 Loops for MPI, OpenMP,
Vectors)

2. Add OpenMP
3. Initial Vectorization (loop reordering,

conditional removal)
4. Cache-Blocking
5. Improved Vectorization
6. Hyper-threading

Why AI Lower on KNL?

 !$OMP DO

 do my_igp = 1, ngpown

 do iw = 1 , 3

 do ig = 1, igmax

 load wtilde_array(ig,my_igp) 819 MB, 512KB per row

 load aqsntemp(ig,n1) 256 MB, 512KB per row

 load I_eps_array(ig,my_igp) 819 MB, 512KB per row

 do work (including divide)

Required Cache size to reuse 3 times:

1536 KB

L2 on KNL is 512 KB per core
L2 on Has. is 256 KB per core

L3 on Has. is 3800 KB per core

Without blocking we spill out of L2 on
KNC and Haswell. But, Haswell has L3 to
catch us.

Why AI Lower on KNL?

 !$OMP DO

 do my_igp = 1, ngpown

 do igbeg = 1, igmax, igblk

 do iw = 1 , 3

 do ig = igbeg, min(igbeg + igblk,igmax)

 load wtilde_array(ig,my_igp) 819 MB, 512KB per row

 load aqsntemp(ig,n1) 256 MB, 512KB per row

 load I_eps_array(ig,my_igp) 819 MB, 512KB per row

 do work (including divide)

Required Cache size to reuse 3 times:

1536 KB

L2 on KNL is 512 KB per core
L2 on Has. is 256 KB per core

L3 on Has. is 3800 KB per core

Without blocking we spill out of L2 on
KNC and Haswell. But, Haswell has L3 to
catch us.

Kernel C Optimization

SDE + Vtune, Why Complex Divides so Slow?

Found ~ 2x Instruction reduction from AVX to AVX512

However, found significant x87 instructions from 1/complex_number

Can significantly speed up by

a) Doing complex divide manually

Or

b) Using -fp-model fast=2

Additional Speedups from Hyperthreading

Kernel C Thread Scaling

KNL DDR performance saturates
at around 50 threads, becomes
memory bandwidth limited.

KNL MCDRAM performance beats
dual socket Haswell by 63%.

Conclusions

Kernel A - FFTs show moderate speedups over dual-socket Haswell. Kernel B - ZGEMM and
stream like operations show big speedups over Haswell

Kernel C - Hand tuned matrix reduction operations show 60% speedup over haswell.

For algorithms with AI near roofline APEX (1-10), there is a rich optimization space that needs to
be explored. Need all of:

• Thread scaling
• Vectorization
• Cache-Reuse
• Effective use of MCDRAM

Targeting Many-Core greatly helps performance back on Xeon.

The End (Extra Slides)

GW Reputation (Motivation Behind BerkeleyGW)

The Bad:

The Good:

Quantitatively accurate for quasiparticle properties in a wide variety of systems.

Accurately describes dielectric screening important in excited state properties.

Prohibitively slow for large systems. Usually thought to cost orders of magnitude more
time that DFT.

Memory intensive and scales badly. Exhausted by storage of the dielectric matrix and
wavefunctions. Limited ~50 atoms.

GW Reputation (Motivation Behind BerkeleyGW)

The Bad:

The Good:

Quantitatively accurate for quasiparticle properties in a wide variety of systems.

Accurately describes dielectric screening important in excited state properties.

Prohibitively slow for large systems. Usually thought to cost orders of magnitude more
time that DFT.

Memory intensive and scales badly. Exhausted by storage of the dielectric matrix and
wavefunctions. Limited ~50 atoms.

X

BerkeleyGW Towards Many-Core

★ In an MPI GW implementation, in practice, to avoid communication, data is duplicated and
each MPI task has a memory overhead.

★ Users sometimes forced to use 1 of 24 available cores, in order to provide MPI tasks with
enough memory. 90% of the computing capability is lost.

Distributed Data

Overhead Data

MPI Task 1

Distributed Data

Overhead Data

MPI Task 2

Distributed Data

Overhead Data

MPI Task 3

…

