Optimizing Excited-State Electronic-Structure Codes for Intel Knights Landing

Jack Deslippe

Application Performance Group NERSC

What is GW

The "GW" method is an accurate approach for simulate the "excited state" properties of materials. Examples:

- What happens when you add or remove an electron from a system
- How do electrons behave when you apply a voltage
- How does the system respond to light or x-rays

GW is complementary to the widely used density functionally theory methods (DFT) which predict ground state properties of materials - i.e. the properties of the system associated with all particles in the lowest energy configuration.

Materials: InSb. InAs Ge GaSb Si InP GaAs CdS AISb, AIAs CdSe, CdTe BP SiC C₆₀ GaP AIP ZnTe, ZnSe c-GaN, w-GaN InS w-BN, c-BN diamond w-AIN LiCI Fluorite LiF

Original code was MPI only. But, unlike DFT there are many layers over which you can exploit parallelism:

$$\chi_{\mathbf{GG}'}(E) = \sum_{n}^{\text{occ}} \sum_{n'}^{\text{emp}} M_{nn'}^*(\mathbf{G}) M_{nn'}(\mathbf{G}') \frac{1}{E_n - E_{n'} - E}$$

Band-pairs: (n,n') Millions Energies: *E* Tens-Hundreds Plane-Wave Basis Elements: (G,G') - Millions

Much better suited exploiting levels of parallelism on HPC system like Cori. ~10,000 Nodes, 250 Threads per Node, 8 Wide Vectors.

BerkeleyGW Running Well on KNL.

Data From Sigma Benzene Runs on Single Node - Excluding IO.

3 Main Computational Bottlenecks. Use roughly equal time for 500 atom systems.

- A. Compute transition probabilities (matrix-elements) for electrons from occupied to empty orbitals
- B. Sum matrix-elements to form the overall material response function (polarizability)
- C. Calculate the interacting electron energy from the polarizability

Kernel A

Compute the transition probability between two electron states (orbitals):

$$M_{nn'}(\mathbf{G}) = \langle n | e^{i\mathbf{G}\cdot\mathbf{r}} | n' \rangle$$

Typically computed by FFT:

$$M_{nn'}(\{\mathbf{G}\}) = \mathrm{FFT}^{-1}\left(\phi_n(\mathbf{r})\phi_{n'}^*(\mathbf{r})\right)$$

Must be done for all pairs of orbitals n, n'. Since the number of orbitals considered is proportional to number of atoms in calculation. The complexity of this step is O(N³logN).

We distribute (n, n') via MPI and call threaded 3D FFT libraries (MKL) in the app. (Note, significantly more parallelism than local DFT)

Many FFT (135x135x135) Thread Scaling --- SandyBridge --- SandyBridge 100 --- IvyBridge --- IvyBridge 2 - Haswell -Haswell 5 10 --- KNC --- KNC -KNL (HBM) -KNL (HBM) Walltime (s) Walltime (s) 2 - KNL (DDR) - KNL (DDR) 5 10 5 2 2 1 1 5 2 5 10 2 5 100 2 2 5 10 2 5 100 2 Threads Threads

Single FFT (960x960x480) Thread Scaling

Related Improvements in Quantum ESPRESSO

When performing Hybrid Functional calculations within DFT, like within GW, you need to perform an FFT for each pair of orbitals.

By default, code parallelizes each individual FFT.

We improve code to:

- 1. Parallelize over pairs of orbitals, before parallelizing individual FFTs
- 2. Allow simultaneous parallelism over orbitals for Hybrid calculation and other parameters for local calculation.

This leads to less communication, more work (complete 3D-FFT) on-node to parallelize.

Optimized QE on NERSC Edison

We want to compute the electronic polarizability of the system:

$$\chi_{\mathbf{GG'}}(E) = \sum_{n=1}^{\text{occ emp}} M_{nn'}^*(\mathbf{G}) M_{nn'}(\mathbf{G'}) \frac{1}{E_n - E_{n'} - E}$$

We can write this as a number of ZGEMM operations (one for each *E*):

$$\chi_{\mathbf{GG}'}(E) = \mathbf{M}^*(\mathbf{G}, (n, n'), E) \cdot \mathbf{M}^{\mathrm{T}}(\mathbf{G}', (n, n'), E)$$

Where M is:

$$\mathbf{M}(\mathbf{G}, (n, n'), E) = M_{nn'}(\mathbf{G}) \cdot \frac{1}{\sqrt{E_n - E_{n'} - E}}$$

There are two steps. First, constructing **M**, and second, performing the complex double-precision ZGEMM.

The complexity of this step is $O(N^4)$.

Little difference between MCDRAM and HBM performance - Only in the initialization/prep stage.

KNL overall performing 20% faster than Haswell.

No advantage of Hyper-Threading on Xeon or KNL seen.

Kernel B Thread Scaling

Compute the electronic energy as:

$$\Sigma_n = \sum_{n'} \sum_{\mathbf{GG'}} M_{n'n}^* (-\mathbf{G}) M_{n'n} (-\mathbf{G'}) \frac{\Omega_{\mathbf{GG'}}^2}{\tilde{\omega}_{\mathbf{GG'}} (E - E_{n'} - \tilde{\omega}_{\mathbf{GG'}})} v(\mathbf{G'})$$

Here $\tilde{\omega}$ and Ω are complex double precision arrays derived from the polarizability. This is a tensorcontraction, matrix reduction type operation - performed by hand tuned code.

The complexity of this step for all n is $O(N^4)$.

Optimization process for Kernel-C (Sigma code):

- 1. Refactor (3 Loops for MPI, OpenMP, Vectors)
- 2. Add OpenMP
- 3. Initial Vectorization (loop reordering, conditional removal)
- 4. Cache-Blocking
- 5. Improved Vectorization
- 6. Hyper-threading

Kernel C Optimization Process

Kernel C Optimization

KNL Roofline Optimization Path

Steps 2-3

Optimization process for Kernel-C (Sigma code):

- 1. Refactor (3 Loops for MPI, OpenMP, Vectors)
- 2. Add OpenMP
- 3. Initial Vectorization (loop reordering, conditional removal)
- 4. Cache-Blocking
- 5. Improved Vectorization
- 6. Hyper-threading

KNL Roofline Optimization Path

The loss of L3 on MIC makes locality more important.

!\$OMP DO			
do my_igp = 1, ngpown do iw = 1 , 3	Required Cache size to reuse 3 times:		
do ig = 1, igmax	1536 KB		
load wtilde_array(ig,my_igp) 819 MB, 512KB per row			
load aqsntemp(ig,n1) 256 MB, 512KB per row	L2 on KNL is 512 KB per core		
load I_eps_array(ig,my_igp) 819 MB, 512KB per row	LZ OIT HAS. IS 230 KB PET COTE		
do work (including divide)	L3 on Has. is 3800 KB per core		

Without blocking we spill out of L2 on KNC and Haswell. But, Haswell has L3 to catch us.

Required Cache size to reuse 3 times:		
1536 КВ		
L2 on KNL is 512 KB per core		
L2 011 1183. 15 250 KB per core		
L3 on Has. is 3800 KB per core		

Without blocking we spill out of L2 on KNC and Haswell. But, Haswell has L3 to catch us.

Kernel C Optimization

KNL Roofline Optimization Path

Found ~ 2x Instruction reduction from AVX to AVX512

However, found significant x87 instructions from 1/complex_number

Image: state of the sta									
🚺 🗁 🖙 🕨 🛱 🕐 Welcome r012ah test divide2 test cplX									
Advanced Hotspots Hotspots viewpoint (change) Intel VTune Amplifier XE 2015									
Contection tog Analysis larged: Analysis type a summary boccommon for caneric-large in typedown meet is take and marines is gip/kemet									
Source Assembly									
s			-	Sou			CPU-		
Li. 🔺	Source		Address 🔺	Line	Assembly	Effective T	ime by Utilization		
		🔲 lc				🔲 Idle 📕 Poor 📒 C	k 📕 Ideal 📕 Over 🔤		
466	<pre>scht = scht + scha(ig)</pre>		0x408745	481	vunpckhpd %ymm3, %ymm3, %ymm3	0.001s			
467	endif		0x408749	480	vmovapd %xmm5, %xmm15				
468			0x40874d	480	vmovsdq %xmm15, -0x28(%rbp)	0.202s			
469	else		0x408752	480	fldq -0x28(%rbp), %st0	0.456s			
470	! !dir\$ no unroll		0x408755	480	vunpckhpd %xmm5, %xmm5, %xmm11	0.001s			
471	do ig = igbeg, min(igend,igmax)	0	0x408759	480	fld %st0, %st0				
472	! do ig = 1, igmax		0x40875b	480	vmovsdq %xmm11, -0x28(%rbp)	0.184s			
473			0x408760	480	fmul %stl, %st0	0.444s			
474	<pre>wdiff = wxt - wtilde_array(ig,my_igp)</pre>	2	0x408762	480	vextractfl28 \$0x1, %ymm5, %xmm9	0.006s			
475			0x408768	480	fldq -0x28(%rbp), %st0				
476	cden = wdiff		0x40876b	480	fld %st0, %st0	0.183s 📒			
477	!rden = cden * CONJG(cden)		0x40876d	480	fmul %stl, %st0	0.418s			
478	!rden = 1D0 / rden		0x40876f	480	vmovsdq %xmm12, -0x28(%rbp)	0.006s			
479	!delw = wtilde_array(ig,my_igp) * CONJG(cden) * rden		=:0x408774	480	faddp %st0, %st2	0.001s			
480	cden = 1 /cden	45	0x408776	480	fxch %stl, %st0	0.196s 📒			
481	delw = wtilde_array(ig,my_igp) * cden	3	0x408778	480	fdivr %st3, %st0	0.462s 📒			
482	delwr = delw*CONJG(delw)	4	0x40877a	480	fldq -0x28(%rbp), %st0	0.113s			
483	<pre>wdiffr = wdiff*CONJG(wdiff)</pre>	3	0x40877d	480	vmovsdq %xmm7, -0x28(%rbp)	0.192s			
484			0x408782	480	fld %st0, %st0	0.418s 📕			
485	! JRD: Complex division is hard to vectorize. So, we help the compiler.		0x408784	480	fmul %st4, %st0	0.001s			
486	<pre>scha(ig) = mygpvar1 * aqsntemp(ig,n1) * delw * I_eps_array(ig,m</pre>	19	0x408786	480	fxch %stl, %st0	0.025s			
487	<pre>! scha_temp = mygpvar1 * aqsntemp(ig,n1) * delw * I_eps_array(i</pre>		= 0x408788	480	fmul %st3, %st0	0.602s			
488			0x40878a	480	fldq -0x28(%rbp), %st0	0.002s			
489	! JRD: This if is OK for vectorization		0x40878d	480	fld %st0, %st0	0.026s			
490	if (wdiffr.gt.limittwo .and. delwr.lt.limitone) then	6	_ 0x40878f	480	fmulp %st0, %st5	0.185s			
491	<pre>scht = scht + scha(ig)</pre>	3	0x408791	480	vunpckhpd %xmm9, %xmm9, %xmm4	0.404s			
492	endif		0x408796	480	fxch %st4, %st0	0s			
	Selected 1 row(s):		-		Highlighted 217 row(s)		451		
		4 1			4 •	4	<u> </u>		

Can significantly speed up by

a) Doing complex divide manually

Or

b) Using -fp-model fast=2

Haswell Roofline Optimization Path

KNL Roofline Optimization Path

KNL DDR performance saturates at around 50 threads, becomes memory bandwidth limited.

KNL MCDRAM performance beats dual socket Haswell by 63%.

Kernel A - FFTs show moderate speedups over dual-socket Haswell. Kernel B - ZGEMM and stream like operations show big speedups over Haswell

Kernel C - Hand tuned matrix reduction operations show 60% speedup over haswell.

For algorithms with AI near roofline APEX (1-10), there is a rich optimization space that needs to be explored. Need all of:

- Thread scaling
- Vectorization
- Cache-Reuse
- Effective use of MCDRAM

Targeting Many-Core greatly helps performance back on Xeon.

KNL Roofline Optimization Path

The End (Extra Slides)

$$[E_{n\mathbf{k}} - H_0(\mathbf{r}) - V_H(\mathbf{r})] \psi_{n\mathbf{k}}(\mathbf{r}) - \int \Sigma(\mathbf{r}, \mathbf{r}', E_{n,\mathbf{k}}) \psi_{n\mathbf{k}}(\mathbf{r}') d\mathbf{r}' = 0$$

The Good:

Quantitatively accurate for quasiparticle properties in a wide variety of systems.

Accurately describes dielectric screening important in excited state properties.

The Bad:

Prohibitively slow for large systems. Usually thought to cost orders of magnitude more time that DFT.

Memory intensive and scales badly. Exhausted by storage of the dielectric matrix and wavefunctions. Limited ~50 atoms.

$$[E_{n\mathbf{k}} - H_0(\mathbf{r}) - V_H(\mathbf{r})] \psi_{n\mathbf{k}}(\mathbf{r}) - \int \Sigma(\mathbf{r}, \mathbf{r}', E_{n,\mathbf{k}}) \psi_{n\mathbf{k}}(\mathbf{r}') d\mathbf{r}' = 0$$

The Good:

Quantitatively accurate for quasiparticle properties in a wide variety of systems.

Accurately describes dielectric screening important in excited state properties.

The Bad:

Prohibitively slow for large systems. Usually thought to cost orders of magnitude more time that DFT.

Memory intensive and scales bade. A hausted by storage of the dielectric matrix and wavefunctions. Limited ~50 atoms.

- ★ In an MPI GW implementation, in practice, to avoid communication, data is duplicated and each MPI task has a memory overhead.
- ★ Users sometimes forced to use 1 of 24 available cores, in order to provide MPI tasks with enough memory. 90% of the computing capability is lost.

