Computing Environment

David Turner
NERSC User Services Group

New User Training
October 30, 2014
Node Types

• **Login nodes**
 – Shared
 – Job preparation and submission

• **MOM nodes**
 – Shared
 – Where batch script executes
 • Parallel job launcher
 – Hopper/Edison: aprun
 – Carver: mpirun

• **Compute nodes**
 – Not shared
 • Except serial queue
Login Nodes

• **Edison**
 – Twelve nodes
 • 16 cores, 2.0 GHz Intel Sandy Bridge, 512 GB

• **Hopper**
 – Eight nodes
 • 16 cores, 2.4 GHz AMD Opteron, 128 GB
 – Four nodes
 • 32 cores, 2.0 GHz AMD Opteron, 128 GB

• **Carver**
 – Four nodes
 • 8 cores, 2.66 GHz Intel Nehalem, 48 GB

• **Genepool**
 – Four nodes
 • 8 cores, 2.3 GHz Intel Sandy Bridge, 32 GB

• **PDSF**
 – Three nodes
 • 16 cores, 2.6 GHz Intel Sandy Bridge, 125 GB
• **Connect (via ssh) to load balancer**
 % ssh edison.nersc.gov
 % ssh hopper.nersc.gov
 % ssh carver.nersc.gov
 % ssh genepool.nersc.gov
 % ssh pdsf.nersc.gov

• **Load balancer selects login node based on:**
 – Number of connections
 – Memory of previous connections from same IP
 • If you login everyday, you’ll probably end up on the same login node every time.
Login Node Usage

• Login nodes are shared by many users, all the time
• Edit files, compile programs, submit batch jobs
• Some post-processing/data analysis
 – IDL
 – MATLAB
 – NCL
 – python
• Some file transfers
 – Use data transfer nodes for large/long-running transfers
• Please use discretion
 – All users get frustrated by sluggish interactive response
Login Node Monitoring

• Determine number of available cores
 \% grep processor /proc/cpuinfo | wc -l

• Determine amount of physical memory
 \% grep MemTotal /proc/meminfo

• Use “top” command to view process activity
Login Node Guidelines

• Use *no more* than 50% of available cores
• Use *no more* than 25% of available memory
• Limit use of parallel “make”
 % make -j 4 all
• NERSC will kill user processes if response becomes unacceptable
• Terminate idle sessions of licensed software
 – IDL
 – MATLAB
 – Mathematica
Shell Initialization Files

- **Standard dot files**
 - `.bashrc`, `.profile`, `.cshrc`, `.login`, etc.
 - Symbolic links to read-only files
 - Allows NERSC to provide common environment

- **Personal dot files**
 - Aliases, environment variables, modules, etc.
 - Use `.ext` suffix (".ext files")
 - `.bashrc.ext`, `.profile.ext`, `.cshrc.ext`, `.login.ext`, etc.

- **Use “fixdots” to start over**
 - Creates `$HOME/KeepDots.<timestamp>`
 - Restores all dot files to current default state
 - If PATH corrupted: `/usr/common/usg/bin/fixdots`

- **Use NIM to change default login shell**
NERSC Supported Software

- **NERSC provides a wide range of software**
 - Scientific Applications
 - VASP, Amber, NAMD, ABySS, ...
 - Compilers
 - PGI, Intel, GCC, Cray
 - Scripting Languages
 - perl, python, R
 - and packages for each!
 - Software Libraries
 - blas/lapack (MKL), boost, hdf5, netcdf, ...
 - Utilities
 - gnuplot, git, mercurial, cmake, ...
 - Debuggers and Profilers
 - CrayPat, DDT, TotalView, gdb, MAP, darshan
 - Visualization
 - Visit, ParaView, VMD, ...

- **See complete list**
 http://www.nersc.gov/users/software/
Software is Managed by Modules

• NERSC provides many versions of many software packages
 - To support diverse workload on systems

• Maintaining all these separate software installations on heterogeneous systems is a major challenge!
 - Software can’t just be installed in the base operating system
 • How many copies of /usr/bin/vasp could be supported?
 - Each software package installed in its own directory
 /usr/common/usg/vasp/5.3.5

Modules is the user interface to software at NERSC
How to Access NERSC Software

• Identify the software you need
 – Use the NERSC website
 http://www.nersc.gov/users/software/
 – Use “module avail”
 • Lots of output
 – All module output goes to stderr, not stdout
 • Each system has different modules!

• Load the module
 % which idl
 idl: Command not found.
 % module load idl
 % which idl
 /usr/common/usg/idl/idl82/bin/idl
Loading Modules

- Different module for each version of software
 - Syntax: `<name>/<version>`
 - Default provided if no `<version>` supplied

  ```
  % module avail idl
  idl/7.1   idl/8.0   idl/8.2 (default)
  % module load idl/7.1
  ```

- Load modules in every batch script
 - Ensure correct run-time environment
 - Self-documenting for troubleshooting and reproducibility
Other Useful Module Commands

module unload <modulename>
 – Remove the module from your environment

module swap <module1> <module2>
 – Unload one module and replace it with another
 module swap pgi gcc

module list
 – See what modules you have loaded right now

module show <modulename>
 – See what the module actually does

module help <modulename>
 – Get more information about the software
Default Modules

• When you login, many *default* modules are loaded automatically
 – Usually foundational modules which are required to get proper function from the system
 • Build environment, required libraries and applications, batch environment
 – Use caution in unloading these

• Swapping to functionally equivalent module may be OK
 carver% module swap pgi gcc
 hopper% module swap PrgEnv-pgi PrgEnv-gnu

• Each NERSC system has different default modules
Types of Modules

• Applications
 – VASP, amber, blast, ...
 – Usually only set PATH, LD_LIBRARY_PATH

• Libraries
 – Set LD_LIBRARY_PATH
 • but probably not on Crays
 – Set “helper” environment variable for building software
 • Header/include file search paths
 • Library search paths
 • Library names

% module load hdf5
% mpicc mycode.f $HDF5
Cray Programming Environment

- Compiler specific
 PrgEnv-pgi, PrgEnv-intel, PrgEnv-cray, PrgEnv-gnu
 - Intel is default on Edison, PGI is default on Hopper

- **Meta-modules**
 - Organize a set of modules
 - Compiler (intel, pgi, cray, gnu)
 - Libraries (including MPI) tuned for compiler

- **Swapping Programming Environments**
 module swap PrgEnv-pgi PrgEnv-intel
 - swaps compiler
 - *no need to swap libraries!*
Carver “Programming Environment”

- Not as sophisticated as Cray PrgEnv
- Separate compiler and OpenMPI modules

<table>
<thead>
<tr>
<th>Compiler module</th>
<th>OpenMPI module</th>
</tr>
</thead>
<tbody>
<tr>
<td>pgi</td>
<td>openmpi</td>
</tr>
<tr>
<td>intel</td>
<td>openmpi-intel</td>
</tr>
<tr>
<td>gcc</td>
<td>openmpi-gcc</td>
</tr>
</tbody>
</table>

- Must keep libraries consistent with compiler!
Compiler Wrappers

• Edison/Hopper
 – Defined by PrgEnv modules
 – ftn, cc, CC
 – Provides include and library search paths for MPI and some common math libraries (e.g., Cray’s libsci)
 – Provides consistent level of optimization across compilers

• Carver
 – Defined by openmpi modules
 – mpif90, mpicc, mpiCC
 – Provides include and library search paths for OpenMPI

• Seldom need native compilers!
CHOS Environment

• Provides different OS environments
 – Often different third-party software
 • Some software packages have specific OS requirements
 – Possibly due to validation requirements

• Used on Carver, Genepool, and PDSF

• Transparent
 – Default configuration for most users
 – Alternate configurations for some users

• Details on website
 http://www.nersc.gov/users/computational-systems/carver/user-environment/
 http://www.nersc.gov/users/computational-systems/pdsf/software-and-tools/chos/
Resources

http://www.nersc.gov/users/software/nersc-user-environment/
http://www.nersc.gov/users/software/nersc-user-environment/modules/
http://www.nersc.gov/users/computational-systems/edison/programming/
http://www.nersc.gov/users/computational-systems/hopper/programming/
http://www.nersc.gov/users/computational-systems/carver/programming/
Thank you.