Overview

• Login Nodes, File Systems, and Dot Files
 – David Turner

• Software Modules
 – Doug Jacobsen

• Compilers
 – Mike Stewart
Login Nodes

• **Edison**
 – Six nodes
 • 16 cores, 2.0GHz Intel Sandy Bridge
 • 512GB

• **Hopper**
 – Eight nodes
 • 16 cores, 2.4GHz AMD Opteron
 – Four nodes
 • 32 cores, 2.0GHz AMD Opteron
 • 128GB

• **Carver**
 – Four nodes
 • 8 cores, 2.66GHz Intel Nehalem
 • 48GB
Login Node Access

• **Connect (via ssh) to load balancer**
 – edison.nersc.gov
 – hopper.nersc.gov
 – carver.nersc.gov

• **Load balancer selects login node based on:**
 – Number of connections
 – Memory of previous connections from same IP
 • If you login everyday, you’ll probably end up on the same login node every time.
Login Node Usage

• Login nodes are shared by many users, all the time
• Edit files, compile programs, submit batch jobs
• Some post-processing/data analysis
 – IDL
 – MATLAB
 – NCL
 – python
• Some file transfers
 – Use data transfer nodes for large/long-running transfers
• Please use discretion
 – All users get frustrated by sluggish interactive response
Login Node Guidelines

• Determine number of available cores
 % grep processor /proc/cpuinfo | wc -l
• Determine amount of physical memory
 % grep MemTotal /proc/meminfo
• Use “top” command to view process activity
• Limit use of parallel “make”
 % make -j 4 all
• Use *no more* than 50% of available cores
• Use *no more* than 25% of available memory
• NERSC will kill user processes if response becomes unacceptable
Long-Term File Systems

• Global home directories
 – Source/object/executable files, batch scripts, input files, configuration files, batch job summaries (*not* for running jobs)
 – Backed up
 – 40GB permanent quota
 – $HOME

• Global project directories
 – Sharing data between people and/or systems
 – By PI request
 – Backed up if quota less than 5TB
 – 4TB default quota
Short-Term File Systems

• **Local scratch directories**
 – Cray (Edison, Hopper) only
 – Large, high-performance parallel Lustre file system
 – Not backed up; files purged after 12 weeks
 – Hopper: 5TB default quota; Edison: 10TB default quota
 – $SCRATCH, $SCRATCH1, $SCRATCH2, $SCRATCH3

• **Global scratch directories**
 – All systems
 – Large, high-performance parallel GPFS file system
 – Not backed up; files purged after 12 weeks
 – 20TB default quota
 – $GSCRATCH
File System Suggestions

• Use $SCRATCH for running Hopper/Edison batch
• Use $GSCRATCH for running Carver batch
• Performance can be limited by metadata
 – Do not store 1000s of files in single directory
• Use “tar” to conserve inodes
• Use HPSS to archive important data
 – Protection against hardware failure
 – Quota management
Shell Initialization Files

• **Standard dot files**
 – .bashrc, .profile, .cshrc, .login, etc.
 – Symbolic links to read-only files
 • Allows NERSC to provide common environment

• **Personal dot files**
 – Aliases, environment variables, modules, etc.
 – Use “.ext” files
 – .bashrc.ext, .profile.ext, .cshrc.ext, .login.ext, etc.

• **Use “fixdots” to start over**
 – Creates $HOME/KeepDots.<timestamp>
 – Restores all dot files to current default state