Building and running NPB-BT-MZ-MPI on Cori

Christian Feld
Jülich Supercomputing Centre
What is the NPB-BT-MZ-MPI?

- A benchmark from the NAS parallel benchmarks suite
 http://www.nas.nasa.gov/Software/NPB
- MPI version
- Implementation in Fortran
- Solves multiple, independent systems of block tridiagonal (BT) equations
- Represents workloads similar to many flow solver codes (3D Navier-Stokes equations)
- Probably not much unused optimization potential

- We will use this application in all exercises during this workshop.
Properties of NPB-BT-MZ-MPI

- The solution is done for multiple zones (MZ), in a repeated time-step loop
 - After each time-step, the zones have to exchange boundary values
 - Fine-grained parallelism within a zone
 - Coarse-grained parallelism between zones
 - Zones are not all equally sized and need to be distributed in a balanced way

- A larger problem size adds more zones

- Exploits multi-level parallelism
 - Hybrid (OpenMP + MPI) implementation

- Suitable testing application for a wide range of tools and analysis types!
First step: Switch to latest Intel environment

- Use the default Intel environment

```
% module list
Currently Loaded Modulefiles:
  1) modules/3.2.6.7
  2) nsg/1.2.0
  3) modules/3.2.10.4
  4) intel/16.0.3.210.nersc
  5) craype-network-aries
  6) craype/2.5.5
  7) cray-libsci/16.06.1
  8) udreg/2.3.2-4.6
  9) ugni/6.0.12-2.1
 10) pmi/5.0.10-1.0000.11050.0.0.ari
 11) dmapp/7.1.0-12.37
 12) gni-headers/5.0.7-3.1
 13) xpmem/0.1-4.5
 14) job/1.5.5-3.58
 15) dvs/2.5_0.9.0-2.155
 16) alps/6.1.3-17.12
 17) rca/1.0.0-6.21
 18) atp/2.0.2
 19) PrgEnv-intel/6.0.3
 20) craype-haswell
 21) cray-shmem/7.4.0
 22) cray-mpich/7.4.0
 23) darshan/3.0.1
```
Second step: Building the benchmark

- Copy tutorial sources to your work directory:

```bash
% cd $SCRATCH
% module load training
% tar xzvf $EXAMPLES/NPB3.3-MZ-MPI.tar.gz
% cd NPB-3.3-MZ-MPI
% ls -F
BT-MZ/  Makefile  README.install  SP-MZ/  common/  jobscript/
LU-MZ/  README  README.tutorial  bin/  config/  sys/
```
Building an NPB-MZ-MPI benchmark

```bash
% make
===============================================================================
= NAS PARALLEL BENCHMARKS 3.3 =
= MPI+OpenMP Multi-Zone Versions =
= F77 =
===============================================================================

To make a NAS multi-zone benchmark type

    make <benchmark-name> CLASS=<class> NPROCS=<nprocs>

where `<benchmark-name>` is "bt-mz", "lu-mz", or "sp-mz"
`<class>`       is "S", "W", "A" through "F"
`<nprocs>`       is number of processes

[...]

***********************************************************************
* Custom build configuration is specified in config/make.def *
* Suggested tutorial exercise configuration for Bridges: *
* make bt-mz CLASS=B NPROCS=8 *
***********************************************************************
```

- Type “make” for instructions
Building an NPB-MZ-MPI benchmark

% make bt-mz CLASS=B NPROCS=8
make[1]: Entering directory `BT-MZ'
mke[2]: Entering directory `sys'
c -o setparams setparams.c -lm
make[2]: Leaving directory `sys'
../../sys/setparams bt-mz 8 B
make[2]: Entering directory `..'/BT-MZ'
ftn -c -O3 -openmp bt.f

ftn -c -O3 -openmp mpi_setup.f

cd/common; ftn -mmic -c -O3 -openmp print_results.f

cd ../common;
ftn -mmic -c -O3 -openmp timers.f

ftn -O3 -openmp -o ../bin/bt-mz_B.30 bt.o
initialize.o exact_solution.o exact_rhs.o set_constants.o adi.o
rhs.o zone_setup.o x_solve.o y_solve.o exch_qbc.o solve_subs.o
z_solve.o add.o error.o verify.o mpi_setup.o ../common/print_results.o
../common/timers.o
make[2]: Leaving directory `BT-MZ'
Built executable ../bin/bt-mz_B.8
make[1]: Leaving directory `BT-MZ'

- Specify the benchmark configuration
 - benchmark name: `bt-mz, lu-mz, sp-mz`
 - the number of MPI processes: NPROCS=8
 - the benchmark class (S, W, A, B, C, D, E): CLASS=B

Shortcut: % make suite
Third step: Run the application

- Change to bin/ directory and copy job script from ../jobscript/cori-p1
  ```
  % cd bin
  % less reference.sbatch.B.8
  ```

- Submit the job
  ```
  % sbatch reference.sbatch.B.8
  ```
Useful commands

- Check your personal job queue:

  ```bash
  % squeue -u $USER
  ```

- Cancel a job:

  ```bash
  % scancel <job id>
  ```
NPB-MZ-MPI / BT reference execution

% less ref-B.8-<job_id>.out
NAS Parallel Benchmarks (NPB3.3-MZ-MPI) - BT-MZ MPI+OpenMP Benchmark
Number of zones: 8 x 8
Iterations: 200 dt: 0.000300
Number of active processes: 8

Use the default load factors with threads
Total number of threads: 32 (4.0 threads/process)

Calculated speedup = 31.52

Time step 1
Time step 20
[...]
Time step 180
Time step 200
Verification Successful

BT-MZ Benchmark Completed.
Time in seconds = 5.36

- Copy jobscript and launch as a hybrid MPI+OpenMP application
- Reproducible? CPU frequency constant? Turboboost? Pinning?

Hint: save the benchmark output (or note the run time) to be able to refer to it later
Done!

You have successfully built and run the benchmark.