
USING	
 CRAY’S	
 APPRENTICE	
 TOOL	

Harvey	
 Wasserman	

1	

Using Apprentice

•  Optional visualization tool for Cray
perf data

•  Use it in a X Windows environment
•  Uses a data file as input (XXX.ap2)

that is prepared by pat_report!
1.  module load perftools!
2.  ftn -c mpptest.f!
3.  ftn -o mpptest mpptest.o!
4.  pat_build -u -g mpi mpptest!
5.  aprun -n 16 mpptest+pat!
6.  pat_report mpptest+pat

+PID.xf > my_report!
7.  app2 [--limit_per_pe tags]

[XXX.ap2]!

2	

Opening Files

•  Identify files on the command line or
via the GUI:

3	

4	

Apprentice Basic View
Can	
 select	
 new	

(addi/onal)	
 data	
 file	

and	
 do	
 a	
 screen	
 dump	

Can	
 select	
 other	
 views	

of	
 the	
 data	

Worthless	
 Useful	

Can	
 drag	
 the	
 “calipers”	
 to	

focus	
 the	
 view	
 on	

por/ons	
 of	
 the	
 run	

5	

Apprentice Call Tree Report
Horizontal	
 size	
 =	

cumula/ve	
 /me	
 in	
 node’s	

children	

Ver/cal	
 size	
 =	
 /me	
 in	

computa/on	

Green	
 nodes:	
 no	
 callees	

Stacked	
 bar	
 charts:	
 load	

balancing	
 info.	
 	

Yellow=Max	

purple=Average	

Light	
 Blue=Minimum	

Calipers	
 work	

Right-­‐click	
 to	
 view	
 source	

Useful	

6	

Apprentice Call Tree Report
Red	
 arc	
 iden/fies	
 path	
 to	

the	
 highest	
 detected	
 load	

imbalance.	

Call	
 tree	
 stops	
 there	

because	
 nodes	
 were	

filtered	
 out.	
 To	
 see	
 the	

hidden	
 nodes,	
 right-­‐click	
 on	

the	
 node	
 aTached	
 to	
 the	

marker	
 and	
 select	
 "unhide	

all	
 children”	
 or	
 "unhide	
 one	

level".	

Double-­‐click	
 on	
 	
 	
 	
 	
 	
 	
 	
 	
 for	

more	
 info	
 about	
 load	

imbalance.	

Apprentice Event Trace Views

•  Run code with
setenv PAT_RT_SUMMARY 0  

•  Caution: Can generate enormous data
files and take forever

7	

Apprentice Traffic Report

8	

Shows	
 message	
 traces	
 as	
 a	

func/on	
 of	
 /me	

Look	
 for	
 large	
 blocks	
 of	

barriers	
 held	
 up	
 by	
 a	
 single	

processor	
 	

Zoom	
 is	
 important;	
 also,	

run	
 just	
 a	
 por/on	
 of	
 your	

simula/on	

Scroll,	
 zoom,	
 filter:	
 right-­‐
click	
 on	
 trace	

Click	
 here	
 to	
 select	
 this	

report	

Apprentice Traffic Report: Zoomed

•  Mouse hover pops up window showing source location.
9	

10	

Tracing Analysis Example

Mosaic View

11	

Click	
 here	
 to	
 select	
 this	

report	

Can	
 right-­‐click	
 here	
 for	

more	
 op/ons	

Colors	
 show	
 average	
 /me	

(green=low,	
 red=high)	

Very	
 difficult	
 to	
 interpret	
 by	

itself	
 –	
 use	
 the	
 Craypat	

message	
 sta/s/cs	
 with	
 it.	

Shows	
 	
 Interprocessor	

communica/on	
 topology	

and	
 color-­‐coded	
 intensity	

12	

Mosaic View

	
 SP	
 	
 CG	

	
 LU	

	
 MG	

	
 FT	
 	
 BT	

NERSC6 Application Benchmark
Characteristics

Benchmark Science Area Algorithm Space Base Case
Concurrency

Problem
Description

CAM Climate (BER) Navier Stokes CFD 56, 240
Strong scaling

D Grid, (~.5 deg
resolution); 240
timesteps

GAMESS Quantum Chem
(BES)

Dense linear algebra 384, 1024 (Same
as Ti-09)

DFT gradient,
MP2 gradient

GTC Fusion (FES) PIC, finite difference 512, 2048
Weak scaling

100 particles per
cell

IMPACT-T Accelerator
Physics (HEP)

PIC, FFT component 256,1024
Strong scaling

50 particles per
cell

MAESTRO Astrophysics
(HEP)

Low Mach Hydro;
block structured-
grid multiphysics

512, 2048
Weak scaling

16 32^3 boxes
per proc; 10
timesteps

MILC Lattice Gauge
Physics (NP)

Conjugate gradient,
sparse matrix; FFT

256, 1024, 8192
Weak scaling

8x8x8x9 Local
Grid, ~70,000
iters

PARATEC Material
Science (BES)

DFT; FFT, BLAS3 256, 1024
Strong scaling

686 Atoms, 1372
bands, 20 iters

13	

NERSC6 Benchmarks
Communication Topology*

MILC	

PARATEC	
 IMPACT-­‐T	
 CAM	

MAESTRO	
 GTC	

14	

*From	
 IPM	

Sample of CI & %MPI

*CI	
 is	
 the	
 computa/onal	
 intensity,	
 the	
 ra/o	
 of	
 #	
 of	
 Floa/ng	
 Point	

Opera/ons	
 to	
 #	
 of	
 memory	
 opera/ons.	

15	

For More Information

•  Using Cray Performance Analysis Tools,
S–2376–51
–  http://docs.cray.com/books/S-2376-51/S-2376-51.pdf

•  man craypat
•  man pat_build
•  man pat_report
•  man pat_help  very useful tutorial program
•  man app2
•  man hwpc
•  man intro_perftools
•  man papi
•  man papi_counters

16	

For More Information

•  “Performance Tuning of
Scientific Applications,”
CRC Press 2010

17	

Thank	
 you.	

18	

ADDITIONAL	
 INFORMATION	

Performance	
 Analysis	

Why Analyze Performance?

•  Improving performance on HPC systems has compelling
economic and scientific rationales.
–  Dave Bailey: Value of improving performance of a single application, 5%

of machine’s cycles by 20% over 10 years: $1,500,000
–  Scientific benefit probably much higher

•  Goal: solve problems faster; solve larger problems

•  Accurately state computational need

•  Only that which can be measured can be improved

•  The challenge is mapping the application to an increasingly
more complex system architecture
–  or set of architectures

20	

21	

Performance Evaluation as an
Iterative Process

Sell Machine

Vendor User

Buy Machine

Improve machine Improve code

Overall	
 goal:	
 more	
 /	
 beTer	
 science	
 results	

Performance Analysis Issues

•  Difficult process for real codes
•  Many ways of measuring, reporting
•  Very broad space: Not just time on one size

–  for fixed size problem (same memory per processor):
Strong Scaling

–  scaled up problem (fixed execution time):
Weak Scaling

•  A variety of pitfalls abound
–  Must compare parallel performance to best

uniprocessor algorithm, not just parallel program on 1
processor (unless it’s best)

–  Be careful relying on any single number
•  Amdahl’s Law

22	

Performance Questions

•  How can we tell if a program is
performing well?

•  Or isn’t?

•  If performance is not “good,” how can
we pinpoint why?

•  How can we identify the causes?

•  What can we do about it?

23	

24	

Supercomputer Architecture

Performance Metrics

•  Primary metric: application time
– but gives little indication of efficiency

•  Derived measures:
–  rate (Ex.: messages per unit time,

Flops per Second, clocks per instruction)

•  Indirect measures:
– speedup, efficiency, scalability, cache

utilization

25	

26	

Performance Metrics

CPU Time = Ninst * CPI * Clock rate

Application

Compiler

CPU Time =
Instructions

 Program

 Cycles

Instruction

 Seconds

 Cycle

X X

Instruction Set

Architecture

Technology

Performance Metrics

•  Most basic:
–  counts: how many MPI_Send calls?
–  duration: how much time in MPI_Send ?
–  size: what size of message in MPI_Send?

•  (MPI performance as a function of
message size)

27	

L =Message Size!

T=Time !

}ts = startup cost !

}tw = cost per word!

Tmsg = ts + twL 	

= Bandwidth!

Performance Data Collection

•  Two dimensions:
•  When data collection is triggered:

– Externally (asynchronous): Sampling
•  OS interrupts execution at regular intervals and

records the location (program counter) (and / or
other event(s))

–  Internally (synchronous): Tracing
•  Event based
•  Code instrumentation, Automatic or manual

28	

Instrumentation

•  Instrumentation:
adding measurement
probes to the code to
observe its execution.

•  Different techniques
depending on where
the instrumentation is
added.

•  Different overheads
and levels of accuracy
with each technique

29	

 User-level abstractions
 problem domain

source code

source code

object code libraries

instrumentation

instrumentation

executable

runtime image

compiler

linker

OS

VM

instrumentation

instrumentation

instrumentation

instrumentation

instrumentation

instrumentation performance
data run

preprocessor

Karl Fuerlinger, UCB

Source-Level Instrumentation

•  Goal is to
allow
performance
measurement
without
modification of
user source
code

30	

Performance Instrumentation

•  Approach: use a tool to “instrument”
the code
1.  Transform a binary executable before

executing
- Include “hooks” for important events

2.  Run the instrumented executable to capture
those events, write out raw data file

3.  Use some tool(s) to interpret the data

31	

Performance Data Collection

•  Two dimensions:
•  When data collection is triggered:

•  How performance data are presented:

32	

Performance Data Collection

•  How performance data are presented:
–  Profile: combine sampled events over time

•  Reflects runtime behavior of program entities
–  functions, loops, basic blocks
–  user-defined “semantic” entities

•  Good for low-overhead performance assessment
•  Helps to expose performance hotspots (“bottleneckology”)

–  Trace file: Sequence of events over time
•  Gather individual time-stamped events (and arguments)
•  Learn when (and where?) events took place on a global timeline
•  Common for message passing events (sends/receives)
•  Large volume of performance data generated; generally intrusive
•  Becomes very difficult at large processor counts, large numbers of

events
–  Example in Apprentice section at end of tutorial

33	

Performance Analysis Difficulties

•  Tool overhead
•  Data overload
•  User knows the code better than the tool
•  Choice of approaches
•  Choice of tools
•  CrayPat is an attempt to overcome several

of these
– By attempting to include intelligence to identify

problem areas
– However, in general the problems remain

34	

Performance Tools @ NERSC

•  IPM: Integrated Performance Monitor
•  Vendor Tools:

– CrayPat
•  Community Tools (Not all fully

supported):
– TAU (U. Oregon via ACTS)
– OpenSpeedShop (DOE/Krell)
– HPCToolKit (Rice U)
– PAPI (Performance Application Programming

Interface)

35	

Profiling: Inclusive vs. Exclusive

•  Inclusive time for
main:
– 100 secs

•  Exclusive time for
main:
– 100-20-50-20=10

secs
– Exclusive time

sometimes called
“self”

36	

37	

Exercise

Same	
 code,	
 same	
 problem	
 size,	
 run	
 on	
 the	
 same	
 24	
 cores.	
 	
 What	
 is	
 different?	
 	
 Why	
 might	
 	

one	
 perform	
 beTer	
 than	
 the	
 other?	
 	
 What	
 performance	
 characteris/cs	
 are	
 different?	

Exercise

•  Get the sweep3d code. Untar
•  To build: type ‘make mpi’
•  Instrument for mpi, user
•  Get an interactive batch session, 24 cores
•  Run 3 sweep3d cases on 24 cores creating

Apprentice traffic/mosaic views:
–  cp input1 input; aprun –n 24 …!
–  cp input2 input; aprun –n 24 …!
–  cp input3 input; aprun –n 24 …!

•  View the results from each run in Apprentice
and try to explain what you see.

38	

39	

