Data Management at NERSC

Lisa Gerhardt
NERSC User Services Group

New User Training
July 15, 2014
Where Do I Put My Data?

• Overview of NERSC file systems
 – Local vs. Global
 – Permanent vs. Purged

• HPSS Archive System
 – What is it and how to use it

• Data Sharing
NERSC File Systems
The compute and storage systems 2014

Edison: 2.6PF, 357 TB RAM

Cray XC30, 134K Cores

Hopper: 1.3PF, 217 TB RAM

Cray XE6, 153K Cores

Production Clusters
Carver, PDSF, JGI, MatComp, Planck

Vis & Analytics, Data Transfer Nodes, Adv. Arch., Science Gateways

Ethernet & IB Fabric
Science Friendly Security
Production Monitoring
Power Efficiency

WAN

HPSS
65 PB stored, 240 PB capacity, 40 years of community data

ESnet

2 x 10 Gb
1 x 100 Gb
Science Data Network
Protect Your Data!

• Some file systems are backed up
• Some file systems are not backed up
• Restoration of individual files/directories may *not* be possible
• Hardware failures and human errors *will* happen

BACK UP YOUR FILES TO HPSS!
Global File Systems

• NERSC Global Filesystem (NGF)
 – Based on IBM’s General Parallel File System (GPFS)
• Accessible on all NERSC systems
• Provides directories for home, global scratch, and project
• Shared by ~5000 active NERSC users
Global Homes File System Overview

• Provided by two ~100 TB file systems
 – 5 GB/s aggregate bandwidth
• Access with $HOME, ~/<file_in_home_dir>
• Other name
 /global/homes/d/dpturner
• Low-level name
 /global/u1/d/dpturner
 /global/u2/d/dpturner ->
 /global/u1/d/dpturner
Global Homes Use

• **Shared across all platforms**
 – Dot files that control user environment
 – $HOME/edison, $HOME/hopper, etc.

• **Tuned for small file access**
 – Compiling/linking
 – Configuration files
 – Do not send batch job output to $HOME!
Global Homes Policies

• **Quotas enforced**
 - 40 GB
 - 1,000,000 inodes (i.e. files and directories)
 - Quota increases rarely (i.e., never) granted
 - Monitor with `myquota` command

• **“Permanent” storage**
 - No purging
 - Backed up
 - Hardware failures and human errors *will* happen

BACK UP YOUR FILES TO HPSS!
Project File System Overview

• Provides 5.1 PB high-performance disk
 – 50 GB/s aggregate bandwidth
• Available on all NERSC systems
• Intended for sharing data between platforms, users, or with the outside world
• Beginning this year every MPP repo gets a project directory
 /project/projectdirs/m9999
Project Use

• Tuned for large streaming file access
 – Sharing data within a project or externally
 – Running I/O intensive batch jobs
 – Data analysis/visualization

• Access controlled by Unix file groups
 – Group name usually same as directory
 – Requires administrator (usually the PI or PI Proxy)
 – Can also use access control list (ACL)
Project Policies

• Quotas enforced
 – 1 TB
 – 1,000,000 inodes
 – Quota increases may be requested
 – Monitor with `prjquota` command
 % prjquota bigsci

• Permanent storage
 – No purging
 – Backed up if quota <= 5 TB
 – Hardware failures and human errors *will* happen

BACK UP YOUR FILES TO HPSS!
Global Scratch File System Overview

• Provides 4 PB high-performance disk
 – 80 GB/s aggregate bandwidth
• Access with $GSCRATCH$
• Low-level name
 /global/scratch2/sd/dpturner
Global Scratch Use

• Shared across all systems
 – Primary scratch file system for Carver

• Tuned for large streaming file access
 – Running IO intensive batch jobs
 – Data analysis/visualization
Global Scratch Policies

• **Quotas enforced**
 – 20 TB
 – 4,000,000 inodes
 – Quota increases may be requested
 – Monitor with `myquota` command

• **Temporary storage**
 – Bi-weekly purges of *all* files that have not been accessed in over 12 weeks
 • List of purged files in `$GSCRATCH/purged.<timestamp>`
 – Hardware failures and human errors *will* happen

BACK UP YOUR FILES TO HPSS!
Local File Systems on Cray Systems

• Edison and Hopper have local scratch
• Edison has two *scratch* file systems
 – Users randomly assigned
 – Each has 2.1 PB (1 PB on Hopper)
 – Each has 48 GB/s aggregate bandwidth (35 GB/s Hopper)
• Edison has extra high-performance scratch (*scratch3*)
 – 3.2 PB, 72 GB/s aggregate bandwidth
• Provided by Cray, based on Lustre
• Generally, IO access for batch jobs on Hopper and Edison will be fastest for local scratch
Edison Scratch Use

• Each user gets a scratch directory in /scratch1 or /scratch2 (Hopper: /scratch or /scratch2)
 /scratch2/scratchdirs/dpturner
 – Best name: $SCRATCH

• Access to /scratch3 must be requested
 – Large datasets
 – High bandwidth

• Tuned for large streaming file access
 – Running I/O intensive batch jobs
 – Data analysis/visualization
Edison Scratch Policies

• Quotas enforced in $SCRATCH by submit filter
 – 10 TB (5 TB Hopper)
 – 10,000,000 inodes (5M inodes Hopper)
 – Quota increases may be requested
 – Monitor with `myquota` command
 – No quota enforcement in /scratch3

• Temporary storage
 – Daily purges of *all* files that have not been accessed in over 12 weeks
 • List of purged files in $SCRATCH/purged.<timestamp>
 – Hardware failures and human errors *will* happen

BACK UP YOUR FILES TO HPSS!
Long-Term File Systems

• **Global home directories ($HOME)**
 – Source/object/executable files, batch scripts, input files, configuration files, batch job summaries (*not* for running jobs)
 – Backed up
 – 40 GB permanent quota

• **Global project directories**
 – Sharing data between people and/or systems, short term data storage
 – Backed up if quota less than or equal to 5 TB
 – All MPP repos have one, 1 TB default quota
Short-Term File Systems

- **Local scratch directories**
 - Cray (Edison, Hopper) only
 - Large, high-performance parallel Lustre file system
 - Not backed up; files purged after 12 weeks
 - Hopper: 5 TB default quota; Edison: 10 TB default quota
 - $SCRATCH, $SCRATCH2

- **Global scratch directories**
 - All systems
 - Large, high-performance parallel GPFS file system
 - Not backed up; files purged after 12 weeks
 - 20 TB default quota
 - $GSCRATCH
Where Do I Put My Data?

Local Scratch
- Fastest IO
- Only visible on one machine
- Purged

Project
- Medium IO
- Visible on all machines
- Never purged
- External sharing

Global Scratch
- Fast IO
- Visible on all machines
- Purged

Home
- Source code, config. files
- No batch output
File Systems Summary

<table>
<thead>
<tr>
<th>File System</th>
<th>Path</th>
<th>Type</th>
<th>Default Quota</th>
<th>Backups</th>
<th>Purge Policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Homes</td>
<td>$HOME</td>
<td>GPFS</td>
<td>40 GB / 1M inodes</td>
<td>Yes</td>
<td>Not purged</td>
</tr>
<tr>
<td>Global Scratch</td>
<td>$GSCRATCH</td>
<td>GPFS</td>
<td>20 TB / 4M inodes</td>
<td>No</td>
<td>12 weeks from last access</td>
</tr>
<tr>
<td>Global Project</td>
<td>/project/projectdirs/projectname</td>
<td>GPFS</td>
<td>1 TB / 1M inodes</td>
<td>Yes, if quota less than or equal to 5TB</td>
<td>Not purged</td>
</tr>
<tr>
<td>Hopper Scratch</td>
<td>$SCRATCH and $SCRATCH2</td>
<td>Lustre</td>
<td>5 TB / 5M inodes (combined)</td>
<td>No</td>
<td>12 weeks from last access</td>
</tr>
<tr>
<td>Edison Scratch</td>
<td>$SCRATCH</td>
<td>Lustre</td>
<td>10 TB / 5M inodes (none in /scratch3)</td>
<td>No</td>
<td>12 weeks from last access</td>
</tr>
</tbody>
</table>
Resources

http://www.nersc.gov/users/computational-systems/edison/file-storage-and-i-o/
http://www.nersc.gov/users/computational-systems/hopper/file-storage-and-i-o/
HPSS: The NERSC Archive System
Archiving Data is Necessary

- Data growth is exponential and file system space is finite
 - 80% of stored data is never accessed after 90 days
 - Cost of storing infrequently accessed data on flash or spinning disk is prohibitive
 - Store important data in an archive to free faster resources for processing workload
 - Data from publications, unique experimental, or simulation data

- NERSC provides the HPSS archive system for data archiving

\[\text{Cumulative Storage by Month and System}\]

40 PB of data
Started in 1998, but oldest file is from the 70s
Features of the NERSC archive

• NERSC implements an online or “active archive”
 – Parallel high-speed transfer and fast data access
 • Data is transferred over parallel connections to the NERSC internal 10Gb network
 • Access to first byte in seconds or minutes as opposed to hours or days
 – Tiered internal storage facilitates high speed data access:
 • Initial data ingest to high-performance disk cache
 • Data migrated to automated enterprise tape system and managed by HSM software (HPSS) based on file age and usage
 – Indefinite data retention policy
• The archive is accessible to all NERSC users
• Often referred to as HPSS
HPSS is Heavily Used

- Transfer Rate [TB / Day]
- Total Number of Files [Millions]

U.S. DEPARTMENT OF ENERGY | Office of Science
Accessing HPSS from NERSC Systems

• **HSI**
 - Fast, parallel transfers, unix-like interface
 - Store from file system to archive:
 - `bash-3.2$ hsi
 A:/home/n/nickb-> put myfile
 put 'myfile' : '/home/n/nickb/myfile' (2097152 bytes, 31445.8 KBS (cos=4))`

• **HTAR**
 - Parallel, puts tar file directly into HPSS, excellent for groups of small files
 - Syntax: `htar [options] <archive file> <local file/dir>
 -bash-3.2$ htar -cvf /home/n/nickb/mydir.tar ./mydir`
Accessing HPSS from Outside NERSC

- HSI and HTAR precompiled binaries available for most systems
- **ftp:** non-parallel, but common
- **gridFTP:** parallel, requires credential
- **Globus:** parallel, requires endpoint
Tape IO Characteristics

• Ultimately all data in HPSS is written to tape
• Tape is linear media
 – Behaves differently than disk:
 • Data cannot be re-written in place, it is appended at the end
 • Reading and writing are sequential operations – no random access
• Tape drives behave differently than disk drives
 – Take time to seek to file locations on tape
 – Take time to ramp up to full speed
 – Tape drives stop after reading or writing each file
• HPSS will not respond like a normal file system
 – Presents itself as one, but some things can have unexpected results
Size Matters

• **Sweet Spot**
 – Tape drives perform best when operating at full rate for long durations
 – Large file are best for tape drive performance
 – Many small files causes frequent stops and low-speed operations, can take a very long time to retrieve
 – File bundles in the **100s of GB** currently provide best performance

• **Group small files for optimal storage**
 – Use HTAR, GNU tar, or zip to bundle groups of small files together to optimize tape and network performance

• **There is such a thing as too big**
 – Files spanning multiple tapes incur tape mount delays
Best Practices

• Group small files together and avoid excessive writes
 – Use htar or tar to group into ~100s of GB

• Order your retrievals
 – Grab files from a tape in order of tape position
 – Grab all files from a tape while tape is mounted

• Avoid excessive transfer failures
 – Globus with unreliable network will retry many times
 – Directory permission issues

• No exclusive access to the archive
 – No batch system
 – Inefficient use affects performance for everyone
Further Reading

- **NERSC Website**
 - Archive documentation:
 - Data management strategy and policies:
 - Accessing HPSS

- **HSI and HTAR man pages are installed on NERSC compute platforms**

- **Gleicher Enterprises Online Documentation (HSI, HTAR)**

- **“HSI Best Practices for NERSC Users,” LBNL Report #LBNL-4745E**
Data Sharing
Data Sharing

• Ensure security
 – Do not share passwords
 – Do not share files from $HOME

• Project directories designed for sharing
 – Open to anyone in the repository

• Use Unix group permissions
 – Request creation of Unix group
 – Set permissions with chgrp/chmod
 • Use setgid bit
give/take

• New, but based on old LLNL and LANL commands
• Appropriate for smaller files

 joe% give -u bob coolfile

 – File copied to spool location

 – Bob gets email telling him Joe has given him a file

 bob% take -u joe coolfile

 – File copied from spool location

• Spooled files count against giver’s GSCRATCH quota
Science Gateways on Project

• Make data available to outside world
 mkdir /project/projectdirs/bigsci/www
 chmod o+x /project/projectdirs/bigsci
 chmod o+rx /project/projectdirs/bigsci/www

• Access with web browser
 http://portal.nersc.gov/project/bigsci
Data Transfer

• Global file systems
 – Use local cp instead of remote scp

• Use scp for small-to-medium files over short-to-medium distance
 – Even better if HPN versions installed

% ssh -v
OpenSSH_5.1p1NMOD_2.9-hpn13v5, OpenSSL 0.9.8e-fips-rhel5 01 Jul 2008

• Use bbcp for larger files and/or longer distances
 – Many tuning options
 – Complicated command line
Globus

• Do-it-all web-based file transfer service
• High-performance
 – Parallel data channels (gridftp)
• Fire and forget model
• Also has a command-line interface for scripting
Further Reading

• Sharing data

• Transferring Data
Asking Questions, Reporting Problems

• Contact NERSC Consulting
 – Toll-free 800-666-3772
 – 510-486-8611, #3
 – Email consult@nersc.gov.
 – https://www.nersc.gov/users/getting-help/
Thank you.
NERSC File Systems

- Global
 - Global Scratch
- Local
 - Edison Scratch
 - Hopper Scratch
- Project
- Permanent
 - Homes

Purged
File System Suggestions

• **DO NOT RUN BATCH JOBS IN $HOME**
 – Use $SCRATCH for running Edison/Hopper batch
 – Use $GSCRATCH for running Carver batch

• **Performance can be limited by metadata**
 – Do not store 1000s of files in single directory

• **Use “tar” to conserve inodes**

• **Use HPSS to archive important data**
 – Protection against hardware failure
 – Quota management

• **DO NOT USE /tmp!**
Local File Systems on Hopper

• Hopper *scratch* file systems

 /scratch

 /scratch2

 – Each has 1.0 PB

 – Each has 35 GB/s aggregate bandwidth

• Provided by Cray, based on Lustre
Hopper Scratch Use

- Each user gets a scratch directory in
 /scratch1 and /scratch2
 /scratch/scratchdirs/dpturner
 - $SCRATCH
 /scratch2/scratchdirs/dpturner
 - $SCRATCH2

- Tuned for large streaming file access
 - Running I/O intensive batch jobs
 - Data analysis/visualization
Hopper Scratch Policies

• **Quotas enforced by submit filter**
 – Combined (scratch/scratch2) quotas
 – 5 TB
 – 5,000,000 inodes
 – Quota increases may be requested
 – Monitor with `myquota` command

• **Temporary storage**
 – Daily purges of *all* files that have not been accessed in over 12 weeks
 • List of purged files in `$SCRATCH/purged.<timestamp>`
 – Hardware failures and human errors *will* happen

BACK UP YOUR FILES TO HPSS!
Reading from Tape

- Loading a tape into a drive is one of the slowest system activities
- Positioning a tape to the beginning of data is slow compared to seeking on disk
 - Reading a few large files from tape is relatively quick
 - Reading many small files stored on multiple tapes is slow
- Minimize tape mounts and positioning activity for best read performance
Globus Issues

• **Retry Logic**
 – GO retries failed transfers until they succeed
 – Transfers that fail for non-transient issues (e.g. permissions, quota) show up as repeated HPSS errors
 • Can lead to administrative action

• **Recursive directory syncs**
 – Can store a lot of small files—Use tar or HTAR

• **Interrupted writes to HPSS**
 – Resume not possible with current interface—interrupted transfers start over from the beginning

• **High-latency/unreliable networks**
 – HPSS very sensitive to transfer failures. Store to NGF first if using unreliable connection
HPSS is a Shared Storage Resource

• No exclusive access to the archive
 – No batch system
 – Inefficient use affects performance for everyone

• The archive relies on mechanical devices
 – Robots, tape drives, tape cartridges
 – Limited number of drives and robots to serve requests

• Avoid administrative action
 – Group small files together/avoid excessive writes
 – Order your retrievals
 – Excessive transfer failures (Globus with unreliable network)
NERSC Data Resources

• **Two types of files systems**
 – ‘Temporary’ storage, fast IO
 • Named scratch
 • Good for output from batch jobs
 • Can be either local to the machine or global to all of NERSC
 – ‘Permanent’ storage, slower IO
 • Named project
 • Good for longer term storage of data that is being actively analyzed
 • Visible on all NERSC systems

• **Long Term Archive**
 – Tape based, named HPSS