Neptune: A Domain Specific Language for Deploying HPC Software on Cloud Platforms

Chris Bunch
Navraj Chohan
Chandra Krintz
Computer Science Department
University of California, Santa Barbara
\{cgb, nchohan, ckrintz\} @ cs.ucsb.edu

Khawaja Shams
Jet Propulsion Laboratory
California Institute of Technology
Khawaja.S.Shams@jpl.nasa.gov

ABSTRACT

In this paper, we present the design and implementation of Neptune, a domain specific language (DSL) that automates configuration and deployment of existing HPC software via cloud computing platforms. We integrate Neptune into a popular, open-source cloud platform, and extend the platform with support for user-level and automated placement of cloud services and HPC components. Such platform integration of Neptune facilitates hybrid-cloud application execution as well as portability across disparate cloud fabrics. Supporting additional cloud fabrics through a single interface enables high throughput computing (HTC) to be achieved by users who do not necessarily own grid-level resources but do have access to otherwise independent cloud technologies.

We evaluate Neptune using different applications that employ a wide range of popular HPC packages for their implementation including MPI, X10, MapReduce, DFSP, and dwSSA. In addition, we show how Neptune can be extended to support other HPC software and application domains, and thus be used as a mechanism for many task computing (MTC).

Categories and Subject Descriptors

D.3.2 [Programming Languages]: Software Engineering - Language Classifications (Extensible Languages); C.2.4 [Computer Systems Organization]: Computer-Communication Networks - Distributed Systems (Distributed Applications)

General Terms

Design, Languages, Performance

Keywords

Cloud Platform, Service Placement, Domain Specific Language

1. INTRODUCTION

Cloud computing is a service-oriented methodology that simplifies distributed computing through transparent and adaptive resource (compute, networking, storage) acquisition and management. With traditional systems, developers typically assume a static number of nodes and a fixed deployment style. Cloud computing enables developers to challenge these assumptions and to do so to build applications that can quickly acquire and release resources on-demand.

To date, public cloud providers largely have focused on delivering very low-cost, scalable web service support – at varying levels of abstraction. Amazon Web Services provides a scalable infrastructure from which users acquire access to individual and configurable virtual machine (VM) instances and to application-level services (e.g., persistent storage, key-value and relational databases, and queuing). As an alternative to fully customer self-service VM use, Amazon, Google, Microsoft, and others, offer complete runtime stacks (cloud platforms) that facilitate access to similar scalable services (storage, data management, queuing, messaging, etc.) through well-defined APIs. With platform cloud computing, developers implement and test their code locally against a non-scalable version of the platform and then upload their application to a proprietary implementation of the platform (typically executing on the provider’s resources) that implements scalable versions of the APIs, and that provides automatic scaling of the application front-end (web servers). Other cloud vendors, such as SalesForce, provide remote access to scalable implementations of complete applications, which can be customized by users.

Despite the abundance of offerings, there remain barriers to entry to the use of cloud systems for execution of HPC applications. Most significant is the challenge of configuration and deployment of libraries, services, and technologies that HPC applications employ for execution. Although not specific to cloud computing, this challenge is exacerbated by the cloud execution model since cloud fabrics are either fully customer self-service, or provide support that targets and is optimized for the web services domain. The former precludes the reuse of HPC application infrastructure (tools, services, packages, libraries, etc.) and requires non-trivial installation, configuration, and deployment effort to be repeated. This is in sharp contrast to the computational grid model in which the software infrastructure is configured and maintained by experts and used by developers.

Modern virtualization technology alleviates this problem to some degree: an expert developer can customize a single VM and distribute it to others to automate and share...
the software configuration. However, three key challenges remain. First, most applications require services to be customized for a particular use or instance (e.g., via writing configuration files) and for service components to be started in the proper order. Incorrect configuration and startup ordering can lead to the inability to use the software at all or to poorly performing programs. The cloud-based configuration and deployment process for a wide variety of popular HPC software imposes a severe learning curve on scientists and tends to make HPC application execution using cloud fabrics inaccessible to all but expert users [13]. Moreover, complex configuration and deployment of HPC applications can prevent scientists from reproducing results, as well as from comparing to, reusing, and extending the work of others, thus slowing or stifling scientific advance.

The other two primary challenges to HPC application deployment using cloud resources are specific to the cloud computing model: (i) clouds are, by definition, opaque, and (ii) extant cloud systems implement a wide range of APIs (even for access to similar services) that differ across systems and that evolve as their implementers identify new ways of improving their offerings for users. Both of these characteristics add an additional level of complexity to the software stack that developers must master to deploy software efficiently and in a repeatable fashion. Differing APIs pose a greater threat to application developers since targeting a single API (cloud system) leads to lock-in—the inability to easily move from one cloud system to another.

The goal of our work is to address these challenges to enable users to develop HPC applications for execution over cloud systems in a more flexible and portable fashion. While cloud infrastructures employ virtualization technologies and overprovision in a manner that may be unacceptable to scientists with HPC technologies, we still wish to provide them with a cloud solution that can transparently use cloud resources to provide both high throughput computing (HTC) and many task computing (MTC). To enable this, we present Neptune, a domain-specific language that facilitates configuration and deployment of disparate cloud-based services for use by applications. Neptune provides a single interface and language through which developers configure cloud resources and services for the execution of an HPC application. It also leverages hybrid cloud resources in a unified manner for HTC and MTC use cases.

We implement the Neptune language and runtime within the AppScale cloud platform—an open-source implementation of Google App Engine. We extend AppScale with new services that implement and export popular, general-purpose, HPC packages, including MPI, X10, MapReduce, and biological simulations via the Diffusive Finite State Projection algorithm (DFSP) [9] and doubly-weighted Stochastic Simulation Algorithm (dwSSA) [7]. Neptune is extensible in a way that users can add support for other HPC software packages in a straightforward manner. The Neptune runtime manages and controls these services.

In addition, we extend AppScale with support for dynamic placement of application components and platform services. This support can be employed manually by cloud administrators or automatically by the platform. The latter provides elasticity—the platform spawns only those nodes required by the cloud application and dynamically grows and shrinks the resources according to program behavior (and/or other factors, e.g., cost). The platform also reuses virtual machines between computations to amortize their cost over multiple runs. Also unique to our work, we target placement within virtual machines, allowing developers to specify which machines run which services without requiring the specific knowledge of how to do so. This support enables developers to experiment with their own placement strategies. This ability to experiment is vital—many platforms assume a fully separated system, where each component is run on a dedicated machine, is the optimal system layout, while others assume that colocating components will improve performance. Neptune allows developers to measure and quantify the differences between layouts. Finally, since Neptune is integrated at the platform-level and we have ported the platform to different cloud infrastructures, our system facilitates application portability across cloud fabrics. We use this support to investigate placement of HTC and MTC applications across private-public and public-public cloud hybrids using popular cloud infrastructures (Eucalyptus and Amazon EC2).

In summary, we contribute:

- The design of a domain specific language that automates configuration and deployment of cloud services for HPC applications.
- An implementation of the language that integrates with an open-source cloud platform to provide support for MPI, X10, and MapReduce for general-purpose computation, and DFSP and dwSSA for computational science.
- Platform-agnostic techniques for user-specified placement of platform services while retaining flexibility for the platform to intelligently schedule placement of other services, including the ability for the cloud platform to reuse virtual machines between computation jobs.
- Hybrid cloud placement techniques that facilitate developer deployment of HTC and MTC applications within homogeneous clouds (e.g., multi-availability zones within Amazon EC2) and heterogeneous clouds (e.g., a Eucalyptus cloud and an Amazon EC2 cloud).
- An experimental evaluation of the HPC software packages supported by Neptune as well as a cost analysis that harnesses the cloud platform’s ability to reuse virtual machines between computation jobs.
- An investigation into what is required to make arbitrary cloud software scale within their respective platforms, including what aids and hampers scaling for cloud applications and a discussion of how to extend Neptune with support for other services and application domains.

In the following, we describe the design and implementation of Neptune and our extensions to the AppScale cloud platform. We then empirically evaluate our system using HPC applications and different placement strategies. We then present related work and conclude.

2. DESIGN

Neptune is a domain-specific language that gives cloud application developers the ability to easily configure and deploy various HPC software over cloud fabrics. Neptune operates at the cloud platform layer (runtime system level) so that
it can control infrastructure-level entities (virtual machines) as well as application components and cloud services.

2.1 Syntax and Semantics

The Neptune language is a metaprogramming extension of the Ruby programming language. As such, it is high-level and familiar, and enables the Neptune runtime to leverage the large set of Ruby libraries with which it can interact with cloud infrastructures and platforms. Moreover, any legal Ruby code is also legal within Neptune programs, enabling users to use Ruby’s scripting capabilities to quickly construct functioning programs. The reverse is also true: Neptune can be used within Ruby programs, to which it appears in the way that a library or API would appear to users of a particular programming language.

Neptune uses a reserved keyword (denoted throughout this work via the `neptune` keyword) to identify and communicate with services within a cloud platform. Legal Neptune code follows the syntax:

```ruby
neptune :type => 'service-name',
          :option1 => 'setting1',
          :option2 => 'setting2'
```

The semantics of the Neptune language are as follows: each valid Neptune program consists of one or more Neptune invocations, each of which indicate a job to run in a given cloud. The `service-name` marker indicates the name of the job to run (e.g., MPI, X10) and thus which parameters (prefixed by a colon) are necessary for the given invocation. This point is important to emphasize: Neptune jobs are extensible enough to enable each job to require a certain set of keywords be used. This design choice is intentional: not all jobs are created equal, and while some jobs require little information be passed to the runtime, other runtimes can benefit greatly from this added information. As a further step, we leverage Ruby’s dynamic typing to enable the types of parameters to be constrained by the developer: thus Neptune can dictate exactly what parameters are needed to optimize a job and what data types are required for each. If the user specifies a Neptune job but fails to provide the necessary parameters, the runtime informs them which parameters are required and aborts execution.

The value that the block returns is also extensible: in the cases where a HPC job is being initiated, a common pattern is used: the Ruby symbol (similar to that of a constant string in other programming languages) `:success` is returned when the job is successfully started, and the symbol `:failure` is returned in all other conditions. In the scenario where the block asks for the data access policy for a particular piece of data stored in the underlying cloud platform, the return value for the block is the data access policy itself (and `:failure` in scenarios where the ACL cannot be retrieved).

Finally, when the user wishes to retrieve data via a Neptune job, the block returns the location on the user’s filesystem where the output can be found, and `:failure` if the output could not be retrieved. Work in progress to expand the number of failure symbols to give users more information about why particular operations failed (e.g., if the data storage mechanism was unavailable or had failed, or if the cloud platform itself was unreachable in a reasonable amount of time), to enable Neptune programs written by users to become more robust and more adequately deal with failures at the cloud level.

2.2 Design Choices

It is important to contrast the decision to design Neptune as a domain specific language with other configuration options that use XML or other markup languages [16]. These languages work well for configuration but, since they are not Turing-complete programming languages, they are bound to their particular execution model. In contrast, Neptune’s strong binding to the Ruby programming language enables users to leverage Neptune and its HPC capabilities to easily incorporate it into their own codes. For example, Ruby is well known for its Rails web programming framework, and Neptune’s interoperability enables Rails users to easily spawn HPC applications without explicit knowledge of how Neptune or the HPC application operates.

To enable code reuse, we allow certain primitive operations to be used across HPC applications. In particular, setting access control policies (ACLs) for data produced by jobs and the ability to retrieve output from a job are two operations that occur throughout all the HPC software Neptune supports. Thus, the Neptune runtime enables these operations to share a single code base for the implementation of these functions. This feature is optional: not all software packages may support ACLs and a unified model for data output, so Neptune gives developers the option to implement support for only the features they require, but with the ability to leverage existing support as well.

3. Implementation

To enable deployment of Neptune jobs, the cloud platform must support a number of primitive operations. These operations are similar to those found in computational grid and cluster utilities such as the Portable Batch System [19]. The cloud platform must be able to receive Neptune jobs, acquire computational resources to execute jobs on, run these jobs, and place the output of these jobs in a way that enables users to retrieve them later or share them with other users. Additionally, there must be mechanisms from the user’s perspective that enable them to deploy jobs and modify the access permissions on data that has been uploaded to the cloud platform. For this work, we employ the AppScale cloud platform to add these capabilities.

AppScale is an open-source cloud platform that implements the Google App Engine APIs. Users deploy applications using AppScale via either a set of command-line tools or web interface, which then deploys and hosts the application. An AppScale cloud consists of one or more distributed database components, one or more web servers, a load balancer, a monitoring daemon (the AppController) that coordinates services on a single node as well as across nodes in the cloud, and a set of tools to configure, deploy, and manage a cloud. AppScale implements a wide range of distributed/replicated datastore technologies for its database interface (the Google Datastore API) via popular open source technologies, including Cassandra, Hypertable, and others. AppScale runs over virtualized and un-virtualized cluster resources as well as over Amazon EC2 and Eucalyptus [18] cloud infrastructures automatically. The full details of AppScale are described in [6, 3]. In this section, we overview the AppScale components (the AppScale Tools and AppController) that are impacted by our extensions that enable customized placement, automatic scaling, and Neptune support within AppScale.
3.1 Cloud Support

Our extensions to AppScale facilitate interoperiation with Neptune. In particular, we modified AppScale to acquire and release machines used for computation and to enable service placement (statically or automatically). To do so, we modify two components within AppScale: the AppScale Tools and the AppController.

3.1.1 AppScale Tools

The AppScale Tools are a set of command-line tools that developers and administrators can use to manage AppScale deployments and applications. In a typical deployment, the user writes a configuration file specifying which node in the system should run which components. For example, users can specify that they want to run each component on a dedicated machine by itself, or alternatively, users could specify that they want their database nodes running on the same machines as their AppServers and have all other components running on another machine. Critically, we also allow users to designate certain nodes in the system as “open,” which tells the AppController that no services are to run on this node and that it can be utilized for running Neptune jobs.

We extend this configuration model to enable users to provide a configuration file that identifies which nodes in the system should run which components. For example, users can specify that they want to run each component on a dedicated machine by itself, or alternatively, users could specify that they want their database nodes running on the same machines as their AppServers and have all other components running on another machine. Critically, we also allow users to designate certain nodes in the system as “open,” which tells the AppController that no services are to run on this node and that it can be utilized for running Neptune jobs.

We extend this support to enable hybrid cloud deployment of AppScale—in which different nodes are managed by different cloud infrastructures over which AppScale runs. Here, users specify which nodes belong to each cloud, and then export a set of environment variables that correspond to the credentials needed for each cloud. This is done by design, to mirror the styles used by Amazon EC2 and Eucalyptus. One potential use case of this hybrid cloud support is for users who have a small, dedicated Eucalyptus deployment and access to Amazon EC2: these users could indicate to use their smaller Eucalyptus deployment to test and optimize the performance of their HPC codes and then deploy to Amazon EC2 when a larger number of nodes are needed. Similarly, Neptune users can use this hybrid cloud support to run jobs in multiple availability-zones simultaneously, enabling them to always run HPC jobs in the availability zone that is physically closest (and thus with the lowest latency) to their data. Furthermore, for scenarios when the application to be deployed is not an HPC application (e.g., in the case of web applications), it may be beneficial to ensure that instances of the application are served in as many availability zones as possible to ensure that the user has access to a nearby instance whenever possible. This deployment strategy enables web users much lower latencies to their applications and some degree of fault-tolerance in the rare cases when an entire availability zone is temporarily inaccessible [12].

3.1.2 AppController

The AppController is the AppScale monitoring service that runs on every node in the cloud. On each node, the AppController configures and instantiates all necessary services. This typically involves the starting of databases and running Google App Engine applications. AppControllers also monitor the status of the services they run, and periodically sends heartbeat messages to other AppControllers to learn the status of the components running there. Specifically, it queries each node to learn the CPU, memory, and hard drive usage, although it is extensible to other metrics as well.

We extend the AppController component to receive Neptune jobs from users. Our extensions enable the AppController to receive and understand RPC (via SOAP) messages from the Neptune runtime and to coordinate Neptune activities across other AppControllers (and thus other nodes) in the AppScale deployment. Furthermore, upon receiving a configuration file from the AppScale Tools designating that certain machines are to be allocated for Neptune jobs, the AppController ensures that no other services run on those machines.

If running in hybrid cloud deployments, this also entails spawning machines in each cloud that the user has requested machines in, with the credentials that the user has provided. Additionally, as cloud infrastructures currently meter on a per-hour basis, we have modified the AppController to be cognizant of this and reuse virtual machines between Neptune jobs. Currently, any virtual machine that is not running a Neptune job at the 55-minute mark is terminated; all other machines are renewed for another hour.

Administrators can query the system via either the AppScale Tools and users via the web interface provided by the AppLoadBalancer. These interfaces inform users about the jobs in progress and in hybrid cloud deployments, which clouds are running which jobs.

A perk of providing a cloud platform is that since a well-specified set of APIs are offered to users, the platform can profile the usage patterns of the underlying system and act accordingly. We provide customizable scheduling mechanisms for scenarios in which the user is unsure how many nodes are required to achieve optimal performance, a use case that is unlikely to occur within HPC applications but more likely to occur within HTC and MTC applications. Here, users specify how many nodes the application can run over, necessary because many codes cannot run over an arbitrary number of nodes, but instead require specific numbers of nodes (e.g., powers of two). Neptune then employs a hill-climbing algorithm to determine how many machines to acquire: given an initial guess, Neptune acquires that number of machines and then runs the user’s job, recording the total execution time for later use. On subsequent job requests, Neptune tries the next highest number of nodes, and follows this strategy until the execution time fails to improve.

Our initial release of Neptune provides scheduling based on total execution time, total cost incurred (e.g., only acquire more nodes if it costs less to do so), or a weighted average of the two. This behavior is customizable, however, and is open to the implementation and experimentation of more advanced scheduling techniques. More appropriate to HPC users is the ability to automatically choose the type of instance acquired for computation. Cloud infrastructure providers offer a wide variety of machines, referred to as “instance types”, that differ in terms of cost and performance. Inexpensive instance types offer less compute power and memory, while more expensive instance types offer more compute power and memory. In the case of
Amazon EC2, specialized instance types are available that are designed for HPC computation. If the user does not specify an instance type to use for computation, Neptune will automatically acquire these HPC instances. A benefit of this strategy is that since these machines are among the more expensive machines available, the virtual machine reuse techniques we employ amortize their cost between multiple users for jobs taking less than an hour.

3.2 Job Data

Clouds that run Neptune jobs must allow for data to be used as input to other Neptune jobs and thus we must store this data and make it available for later use. In Neptune, the output of a job is stored as a three-tuple: a string containing the job's identification number, a string containing the output of the job, and a composite type indicating the access policy of the given data. The access policy used for Neptune is similar to that of the access policy used by Amazon’s Simple Storage Service [1]: a particular piece of data can be tagged as either private (only visible to the user that uploaded it) or public (visible to anyone). Data is by default private but can be changed by the user by running a Neptune job. Similarly, data is referenced as though it were on a file-system: paths must begin with a forward-slash ('/') and can be compartmentalized into folders in the familiar manner. The data itself is stored and accessed via a Google App Engine application that is automatically started when AppScale is deployed, thus allowing it to automatically store Neptune job outputs in the any datastore that AppScale supports.

The Neptune program required to set the ACL for a particular piece of data to be public is:

```
neptune :type => 'set-acl',
:output => '/mydata/nqueens-output',
:acl => 'public'
```

Just as a Neptune job can be used to set the ACL for a piece of data, a Neptune job is also used to the current ACL for a piece of data:

```
current_acl = neptune :type => 'get-acl',
:output => '/mydata/nqueens-output'
```

puts 'The current ACL is: ' + current_acl

Retrieving the output of a given job works in the same fashion as it does for access policies: a Neptune job suffices. By default, it returns a string containing the results of the job, but as many jobs return data that is far too large to efficiently be used in this manner, a special parameter can be used to instead indicate that it should be copied to a file on the local machine.

3.3 Employing Neptune for HPC Frameworks

To expand the set of cloud services available from extant fabrics in support of HPC applications, we serve-as-a-number of key HPC packages within the platform for use via Neptune. Specifically, we provide support for MPI, X10, and MapReduce, to enable users to run arbitrary codes for different computational models within cloud systems. We also provide two popular stochastic simulation algorithms (the diffusive finite state projection algorithm and the doubly weighted SSA coupled with the cross-entropy method) which are used by a wide range of computational science applications.

3.3.1 MPI

The Message Passing Interface (MPI) is a popular, general-purpose computational framework for distributed scientific computing. The most popular implementation is written in a combination of C, C++, and assembly, however many other implementations exist for other programming languages, such as Java and Python. AppScale employs the C/C++ version, enabling developers to write code in either of these languages to access MPI bindings within an AppScale cloud.

The developer uses Neptune to specify the location of the compiled application binary and output data. This information is communicated via Neptune to the AppScale Shadow. The Shadow then starts up NFS on all the nodes in the system, as is required by MPI. The job is then run, and once it is completed, Neptune returns the standard output and standard error of the job (the results) to the developer. An example of such a specification is as follows:

```
neptune :type => 'mpi',
:code => 'nqueens',
:nodes_to_use => 4,
:output => '/mpioutput'
```

In this example, we specify the location where the compiled code to execute is located on the machine running Neptune, as well as how many machines are required to run the code using MPI. Finally, we also indicate where the output of the job should be placed for later retrieval. Note that this program does not use any input parameters nor need to write to any files on disk as part of its output, however, we can extend Neptune to do so if necessary. We also can designate which shared file system to use when running MPI. Currently, we support NFS and are working on support for the Lustre Distributed File System [17].

3.3.2 X10

While MPI is suitable for many types of application domains, one demand in computing has been to enable programmers to write fast, scalable code using a high-level programming language. In addition, as many years of research have gone into optimizing virtual machine technologies, it was also desirable for a new technology to be able to leverage this work. In this spirit, IBM introduced the X10 programming language [5], which uses a Java-like syntax and executes transparently over a non-distributed Java backend and a distributed MPI backend.

As X10 code can compile to executables for use by MPI, X10 jobs are reducible to MPI jobs. Thus, the following Neptune code deploys an X10 executable that has been compiled for use with MPI:

```
neptune :type => 'mpi',
:code => 'NQueensDist',
:nodes_to_use => 2,
:output => '/x10output'
```

With the combination of MPI and X10 within Neptune, users can trivially write algorithms in both frameworks and (provided a common output format exists) compare the results of a particular algorithm to ensure correctness across implementations.

3.3.3 MapReduce

Popularized by Google in 2004 for its internal data processing [8], the map-reduce programming paradigm (MapRe-
duce) has experienced a resurgence and renewed interest recently. In contrast to the general-purpose message passing paradigm embodied in MPI, MapReduce targets embarrassingly parallel problems. Users provide input, which is split and sent to a user-defined Map function. The output of this function is then sorted based on a key provided by the Map function and all the outputs with the same key are given to a user-defined Reduce function, which typically aggregates the data. As no communication can be done by the user in the Map and Reduce phases, these programs are highly amenable to parallelization.

Hadoop provides an open-source implementation of MapReduce that runs over the Hadoop Distributed File System (HDFS) [11]. The standard implementation requires users to write their code in the Java programming language, while the Hadoop Streaming implementation facilitates writing code in any programming language. Neptune has support for both implementations - users specify a Java archive file (JAR) for the standard implementation, or name where the Map and Reduce files are located on their computer.

Neptune copies the required files to AppScale. AppScale runs the job on the Neptune-specified nodes in the system. In particular, the AppScale Shadow contacts the Hadoop JobTracker node with this information, and polls for job completion (indicated by the output location having data). When this occurs, Neptune copies the data back to a user-specified location. From the user’s perspective, the necessary Neptune code is:

```java
neptune : type = "mapreduce",
    : input => "input\text.txt",
    : output => "moutput\text.txt",
    : mapreducejar => "hadoop\examples.jar",
    : main => "wordcount",
    : nodes_to_use => 4
```

Neptune exposes a number of interesting options specific to MapReduce to the user. As was the case with the MPI code, the user specifies where the input is located, where to write the output to (here this is an HDFS location), as well as the location of the code on their local machine. Users specify either a relative path or full path to their code. Since MapReduce inputs can be large, we allow the user to specify an HDFS input location for the input file instead of copying it over the network on every run. This is useful if a previous Neptune run has already copied the input or if it was already placed there by another service.

SSA

One type of algorithm that computational biologists employ in their research is the Stochastic Simulation Algorithm (SSA), popularized by Gillespie [10]. At the highest level of abstraction, SSA is a Monte Carlo algorithm that simulates chemical or biochemical systems of reactions efficiently and accurately. As these simulations are non-deterministic, a large number of these simulations must be performed to achieve acceptable estimation accuracy. Statistical analysis (such as mean and variance) is then performed on the results of these simulations. Such computations are embarrassingly parallel and like MapReduce, can be characterized as Single Program Multiple Data. Two implementations of the SSA are the Diffusive Finite State Projection algorithm (DFSP) [9] and the doubly weighed SSA coupled with the cross-entropy method (which we hereafter refer to as simply dwSSA) [7], which offer both accurate and efficient simulation compared to other methods.

Currently, scientists at UCSB and elsewhere execute simulations in an ad-hoc manner. Scientists reserve a set of compute nodes and run a large number of simulations over these nodes, with at least 10,000 simulations needed to minimize error to acceptable levels for DFSP and 1,000,000 simulations for dwSSA. To simplify these processes, we implement cloud service support for both DFSP and dwSSA in AppScale and export Neptune support to end-users. With Neptune, scientists only need to specify the number of simulations they wish to run. Neptune then contacts the AppScale Shadow, which splits the work across nodes in the system that are used for the computation. Neptune then merges the results and stores the final output in the distributed datastore for retrieval when completed.

3.4 Employing Neptune for Cloud Scaling and Enabling Hybrid Clouds

Our goal with Neptune is to simplify configuration and deployment of HPC applications. However, Neptune is flexible enough to be used with other application domains. Specifically, Neptune can be used to control the scaling and placement of services within the underlying cloud platform. Furthermore, if the platform supports hybrid cloud placement strategies, Neptune can also be used to control how services are placed across cloud infrastructures. This allows Neptune to be used as a mechanism for both high throughput computing (HTC) and many task computing (MTC). In the former case, resources can be claimed from various cloud infrastructures and used to serve user jobs. In the latter case, Neptune can be used to serve both compute-intensive jobs as well as web service programs.

To demonstrate this, we use Neptune to enable users to manually scale up a running AppScale deployment. Users need only specify which component they wish to scale up (e.g., the load balancer, application server, or database server) and how many of them they required. This reduces the typically difficult problem of scaling up a cloud to the following code:

```java
neptune : type = "appscale",
    : nodes_to_use => { : cloud1 => 3,
                       : cloud2 => 6 },
    : add_component => "appengine",
    : time_needed_for => 3600
```

In this example, the user has specified that they wish to add nine application servers to their AppScale deployment. Furthermore, three of the servers should be placed in the first cloud that the platform is running over, while six servers should be placed in the second cloud that the platform is running over. This type of scaling would be useful for instances where the amount of load in both clouds is known: here, this would be useful if both clouds are over-provisioned but the second is either expecting greater traffic in the near future or is sustaining more load than the first cloud.

As was the case with other Neptune-enabled services, scaling and automation is only amenable to the same degree as the underlying services allow for. For example, while the Cassandra database does allow new nodes to be added to the system dynamically, users cannot add more nodes to the system than already exist (e.g., in a system with N nodes, no more than $N - 1$ nodes can be added at a time) [4].
Therefore, if more than the allowed for number of nodes are needed, either multiple Neptune jobs must be submitted or the cloud platform must absorb this complexity into its scaling mechanisms. Similarly, the underlying cloud platform must have the capability to manually add user-specified components: Neptune directs these capabilities and does not implement them.

3.5 Limitations with Employing Neptune

As previously stated, Neptune enables automatic configuration and deployment of software by a supported cloud platform to the extent that the underlying software allows. It is thus important to make explicit scenarios in which Neptune encounters difficulties, as they are the same scenarios in which the supported software packages are not amenable to being placed in a cloud platform. From the end-users we have designed Neptune to aid, we have experienced three common problems that are not specific to Neptune or to distributed systems (e.g., clouds, grids) in general:

- Programs that require a unique identifier, whether it be an IP address or process name to be used to locate each machine in the computation (e.g. as is required by Erlang systems).
- Programs that are run on machines of a different architecture than the cloud supports, requiring either remote compilation or cross-compilation.
- Programs that have highly specialized libraries for end-users but are not free/open-source, and thus are currently difficult to dynamically acquire and release licenses for.

We are investigating how to mitigate these limitations as part of future work. In particular, since Neptune is extensible in the parameters it supports, we can extend it to enable remote-compilation as-a-service. For unique identifiers, it is possible to have Neptune take a parameter containing a list of process identifiers to use within computation. For licensing issues, we can have the cloud fabric make licenses available on per-use basis. Our platform then can guide developers to cloud fabrics have the appropriate licenses for execution of their application.

3.6 Extensibility

Neptune is designed to be extensible, both in the type of job supported as well as to the infrastructures that it can harness. Developers who wish to add support for a given software framework within Neptune need to modify the Neptune runtime as well as the cloud platform that receives Neptune job requests. With respect to the Neptune runtime, the developer needs to indicate which parameters users need to specify in their Neptune code (e.g., how input and output should be handled) and if any framework-specific parameters should be exposed to the user. At the cloud platform layer, the developer needs to add functionality that can understand the particulars of their Neptune job. This often translates into performing special requests based on the parameters present (or absent) in a Neptune job request. For example, MapReduce users can specify that the input be copied from the local file system to the Hadoop Distributed File System, and our implementation within AppScale skips this step if the user indicates that the input is already present within HDFS.

4. EVALUATION

We next use Neptune to empirically evaluate how effectively the supported services execute within the AppScale cloud platform. We begin by presenting our experimental methodology and then discuss our results.

4.1 Methodology

To evaluate the software packages supported by Neptune, we use benchmark and example applications provided by each. We also measure the cost of running Neptune jobs with and without VM reuse.

To evaluate MPI and X10, we use publicly available implementations that solve the n-queens problem. The MPI version is made available by the authors of [21], while the X10 version is provided by the X10 team as a sample application. To ensure that a sufficient amount of computation is available, we set $n = 16$, thus creating a 16x16 chessboard and placing 16 queens on the board.

To evaluate MapReduce, we use the publicly available Java WordCount benchmark, which takes an input data set and finds the number of occurrences of each word in that set. Each Map task is assigned a line of the input text, and for every word it finds, it reports this with an associated count of one. Each Reduce task then sums the counts for each word and saves the result to the output file. Our input file consists of the works of William Shakespeare appended into performing special requests based on the parameters present (or absent) in a Neptune job request. For example, MapReduce users can specify that the input be copied from the local file system to the Hadoop Distributed File System, and our implementation within AppScale skips this step if the user indicates that the input is already present within HDFS.

4.2 Experimental Results

We begin by discussing the performance of the MPI and X10 n-queens codes within Neptune. We time the computation (including any necessary communication required for the computation); we exclude the time to start NFS, to write MPI configuration files, and to start prerequisite MPI services. When applicable, we also present the parallel effi-
ciency, given by the standard formula:

\[E = \frac{T_1}{pT_p} \]

where \(E \) denotes the parallel efficiency, \(T_1 \) denotes the running time of the algorithm running on a single node, \(p \) denotes the number of processors used in the computation, and \(T_p \) denotes the running time of the algorithm running on \(p \) processors.

Figure 1 shows these trends: the MPI code’s performance is optimal at 4 nodes, while the X10’s code performance is optimal at 16 nodes. The X10’s n-queens code suffers substantially at the lower numbers of nodes compared to its MPI counterpart; this is likely due to its relatively new work-stealing algorithm, and is believed to be improved in subsequent versions of X10. This is also the rationale for the larger standard deviation encountered in the X10 code. We omit the discussion of parallel efficiency for this code: this is because the MPI code dedicates the first node to coordinate computation, and thus we cannot compute the time needed to run this code on a single node (required for computing parallel efficiencies).

MapReduce WordCount experiences a superior scale-up compared to our MPI and X10 codes. This is largely because this MapReduce code is highly optimized by Hadoop and does not use any communication between nodes aside from that required for communication between the Map and Reduce phases. Figure 2 and Table 1 show the running times of WordCount via Neptune. Like with MPI, we measure computation time and not the time incurred starting and stopping Hadoop on the nodes involved.

Figure 2 and Table 1 show opposing trends compared to the MPI results. With our MapReduce code, we see consistent speedups as more nodes are added to the system, although the impact of this is diminished as we add more nodes to the system. This is clear from the decreasing parallel efficiencies, and as stated before, these speedups are not related to MapReduce specifically but are due to the programs evaluated here.

DFSP also benefits from parallelization and support via Neptune and a cloud platform. This is because the DFSP implementation used has no internode communication during its computation and is embarrassingly parallel. This is in contrast to the MapReduce framework, where communication occurs between the Map and Reduce phases. Figure 3 and Table 2 show the running times for 10,000 simulations via Neptune. Unlike MapReduce and MPI, which provide distributed runtimes, the DFSP code does not, so we time all interactions once AppScale receives the message to begin computation from Neptune until the results have been merged on the master node.

Figure 3 and Table 2 show similar trends for the DFSP code as seen in MapReduce WordCount. This code also sees a consistent reduction in runtime as the number of nodes increase, but retains a much higher parallel efficiency compared to the MapReduce code. This is due to the lack of communication within computation, as the framework needs only to collect results once the computation is complete, and does not need to sort or shuffle data, as is needed in the MapReduce framework. As even less communication is used here compared to the WordCount code, the DFSP code exhibits a smaller standard deviation, and a standard deviation that tends to decrease with respect to the number of nodes in the system.

One final example that follows similar trends to the DFSP code is the other Stochastic State Algorithm, dwSSA, shown in Figure 4 and Table 3. This code achieves a reduction in runtime with respect to the number of nodes in the system, but does not do so at the same rate as the DFSP code, as can be seen through the lower parallel efficiencies.

4.3 VM Reuse Analysis

Next, we perform a brief examination of the costs of the experiments in the previous section if run over Amazon EC2,
Figure 3: Average running time for the DFSP code over varying numbers of nodes. As the code used here does not have a distributed runtime, timings here include the time that AppScale takes to distribute work to each node and merge the individual results.

Table 2: Parallel efficiency for the DFSP code over varying numbers of nodes.

<table>
<thead>
<tr>
<th># of Nodes</th>
<th>Parallel Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.9929</td>
</tr>
<tr>
<td>8</td>
<td>0.9834</td>
</tr>
<tr>
<td>16</td>
<td>0.9650</td>
</tr>
<tr>
<td>32</td>
<td>0.9216</td>
</tr>
<tr>
<td>64</td>
<td>0.8325</td>
</tr>
</tbody>
</table>

Table 3: Parallel efficiency for the dwSSA code over varying numbers of nodes.

<table>
<thead>
<tr>
<th># of Nodes</th>
<th>Parallel Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.7906</td>
</tr>
<tr>
<td>8</td>
<td>0.4739</td>
</tr>
<tr>
<td>16</td>
<td>0.3946</td>
</tr>
<tr>
<td>32</td>
<td>0.2951</td>
</tr>
<tr>
<td>64</td>
<td>0.1468</td>
</tr>
</tbody>
</table>

Figure 4: Average running time for the dwSSA code over varying numbers of nodes. As the code used here does not have a distributed runtime, timings here include the time that AppScale takes to distribute work to each node and merge the individual results.

with and without the VM reuse. The VMs are configured with 1 virtual CPU, 1 GB of memory, and a 64-bit platform. This is similar to the Amazon EC2 “Small” machine type (1 virtual CPU, 1.7 GB of memory, and a 32-bit platform) which costs $0.085 per hour.

Each MapReduce, DFSP, and dwSSA experiment is run five times at 1, 4, 8, 16, 32, and 64 nodes to produce the data shown earlier, while each NQueens experiment is run five times at 2, 4, 8, 16, 32, and 64 nodes. We compute the cost of running these experiments without VM reuse (that is, by acquiring the needed number of machines, running the experiments, and then powering them off) compared to the cost with VM reuse (that is, by acquiring the needed number of machines, performing the experiment for all numbers of nodes, and not powering them off until all runs complete).

Note that in the reuse case, we do not perform reuse between experiments.

Table 4 shows the expected cost of running these experiments with and without VM reuse. In all experiments, employing VM reuse greatly reduces the cost. This is largely due to inefficient use of nodes without reuse: many scenarios employ large numbers of nodes to run experiments that use only a subset of an hour (VMs are charged for by AWS by the hour).

5. RELATED WORK

Other works exist that provide either language support for cloud infrastructures or automated configuration or deployment, but not both. In the former category exist projects like SAGA [14], the RightScale Gems [20] and boto [2]. SAGA enables users to write programs in C++, Python, or Java that interact with grid resources, with the recent addition of support for cloud infrastructure interaction. A key difference between SAGA and Neptune is that SAGA is conceptually designed to work with grid resources, and thus the locus of control remains squarely in that of the user. The programming paradigm embodied here serves use cases that favor a static number of nodes and an unchanging environment. Conversely, Neptune is conceptually designed to work over cloud resources, and thus can elastically add or remove resources based on the environment, which is automatically monitored by AppScale. The RightScale Gems and boto are similar to SAGA but only provide interaction with cloud infrastructures (e.g., Amazon EC2 and Eucalyptus).

In the latter category, the Nimbus Context Broker [15] automates configuration and deployment of otherwise complex software packages in a manner similar to that of Neptune. It acquires a set of virtual machines from a supported cloud infrastructure and runs a given series of commands to unify them as the user’s software requires. Conceptually, this is similar to what Neptune offers. However, it does not offer a language by which it can be operated, like Neptune and SAGA. Furthermore, the Nimbus Cloud Broker, like SAGA, does not make decisions dynamically based on the underlying environment. A set of machines could not be acquired, tested to ensure a low latency exists, and released within a script running on Nimbus Cloud Broker. Furthermore, it does not employ virtual machine reuse techniques such as those seen within Neptune. This would require a closer coupling with the supported cloud infrastructures or the use of a middleware layer to coordinate VM scheduling, which would effectively present a cloud platform.
Table 4: Cost to run all experiments for each type of Neptune job, with and without reusing virtual machines.

<table>
<thead>
<tr>
<th># Type of Job</th>
<th>Cost with VM Reuse</th>
<th>Cost without VM Reuse</th>
</tr>
</thead>
<tbody>
<tr>
<td>NQueens(MPI)</td>
<td>$12.92</td>
<td>$64.60</td>
</tr>
<tr>
<td>NQueens(X10)</td>
<td>$13.01</td>
<td>$64.60</td>
</tr>
<tr>
<td>MapReduce</td>
<td>$13.01</td>
<td>$64.60</td>
</tr>
<tr>
<td>DFSP</td>
<td>$35.70</td>
<td>$78.63</td>
</tr>
<tr>
<td>dwSSA</td>
<td>$12.84</td>
<td>$64.18</td>
</tr>
<tr>
<td>Total</td>
<td>$87.48</td>
<td>$336.19</td>
</tr>
</tbody>
</table>

6. CONCLUSIONS

We contribute Neptune, a Domain Specific Language (DSL) that abstracts away the complexities of deploying and using high performance computing services within cloud platforms. We integrate support for Neptune into AppScale, an open-source cloud platform and add cloud software support for five disparate HPC software packages: MPI, X10, MapReduce, and the SSA packages DFSP and dwSSA. Neptune allows users to deploy supported software packages across varying numbers of nodes with minimal effort, simply, uniformly, and scalably.

We also contribute techniques for placement support of critical components within cloud platforms in a way that ensure that running cloud software does not negatively impact existing services. This also entails hybrid cloud placement techniques, facilitating deployment of applications by developers across cloud infrastructures without application modification. We implement these techniques within AppScale and provide sharing support that allows users to share the results of Neptune jobs between one another and to publish data to the scientific community via a data tagging system. The system is also flexible enough to allow users to reuse Neptune job outputs as inputs to other Neptune jobs. Neptune is open-source and can be downloaded from http://neptune-lang.org. Users with Ruby installed can also install Neptune directly via Ruby’s integrated software repository by running `gem install neptune`. Our modifications to AppScale have been committed back to the AppScale project and can be found at http://appscale.cs.ucsb.edu.

7. REFERENCES