
Scalability Challenges for Massively Parallel AMR Applications

Brian Van Straalen?, John Shalf†, Terry Ligocki?, Noel Keen?†, Woo-Sun Yang†‡
? ANAG, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
† NERSC, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

‡ Cray Inc. Seattle, WA 98104, USA

Abstract

PDE solvers using Adaptive Mesh Refinement on block structured grids are some of the most
challenging applications to adapt to massively parallel computing environments. We describe
optimizations to the Chombo AMR framework that enable it to scale efficiently to thousands of
processors on the Cray XT4. The optimization process also uncovered OS-related performance
variations that were not explained by conventional OS interference benchmarks. Ultimately the
variability was traced back to complex interactions between the application, system software, and
the memory hierarchy. Once identified, software modifications to control the variability improved
performance by 20% and decreased the variation in computation time across processors by a
factor of 3. These newly identified sources of variation will impact many applications and suggest
new benchmarks for OS-services be developed.

1 Introduction
As processor clock rates have stalled, future performance improvements for scientific applica-

tions increasingly depends on scaling HPC systems to unprecedented numbers of processors. The
move from exponentially improving clock rates towards exponential increases in system paral-
lelism puts stress on every aspect of HPC system design and raises fundamental questions about
languages and application programming models. Since future application performance scaling is
increasingly dependent on massive parallelism, it is critically important that both applications and
algorithms are reformulated to utilize these dramatic increases in system concurrency. Applications
and algorithmic approaches that fail to have good parallel scaling efficiency will be increasingly
marginalized as system parallelism will double every 18 months for the foreseeable future.

PDE solvers using adaptive mesh refinement, AMR, on block structured grids, e.g. [1, 2], are
among the most challenging applications to adapt to massively parallel computing environments.
AMR is typically discounted as being inherently unscalable due to complex load balancing de-
mands and intense communication requirements. This paper counters such arguments by describ-
ing optimizations to the Chombo AMR framework [4] that enable it to scale efficiently to thousands

1



of processors on the Cray XT4. A critical component of our study was developing a highly in-
strumented implementation of the Chombo code and appropriate test problem configurations that
provide a basis for understanding the advantages and disadvantages of our approach.

The instrumented version of Chombo, which was used to analyze scaling bottlenecks, uncov-
ered sources of performance variation that were directly attributable to changes in the OS rather
than any aspect of the hardware or application code. In particular, when one Cray XT4 system
used for testing was upgraded from the Catamount micro-kernel to Compute Node Linux (CNL),
we observed a 10% drop in application performance and an increase of the coefficient of variation
(CoV) of individual MPI task runtimes by a factor of 7, which was directly responsible for the
drop in application performance. However, the same sources of variation were not evident when
measured by traditional OS variation benchmarks, such as P-SNAP [5], which cast doubt upon
an OS-interference hypothesis. Ultimately, we found the source of variability was complex inter-
actions between the Linux/GNU libc heap management algorithm and the memory hierarchy that
were extremely difficult to detect using conventional means. Once identified, software modifica-
tions to control the source of variability improved performance by 20% and decreased the CoV of
individual MPI task runtimes by a factor of 3.

In this study, we demonstrate that with appropriate code instrumentation and code restructuring,
AMR codes can indeed be optimized to achieve scalable performance on leading HPC systems. In
so doing, we have demonstrated scalable performance on up to 8192 processors on the Cray XT4,
which is the best performance to date for an AMR hyperbolic gas dynamics solver, one of the most
demanding of our benchmark problems [3]. We also show that with increasing system concur-
rency, sources of system variation have an increasingly substantial impact on the performance of a
broad range of bulk-synchronous parallel applications. A unique contribution of this paper is the
analysis of a novel source of system variability that is related to the OS services such as memory
allocation management rather than the kernel itself. The difficulty of diagnosing this problem and
the ineffectiveness of existing OS interference benchmarks for diagnosing this problem suggests
the need to develop new benchmarks that capture this new class of variability in OS services.

2 Experimental Testbed
These experiments were run on two Cray supercomputers over the period of 8 months: Franklin

at LBNL and Jaguar at ORNL. Franklin is a 9,660 node XT4 system operated by the National
Energy Research Scientific Computing Center (NERSC) with two cores per node. Jaguar is as a
hybrid Cray XT system consisting of 5,294 dual-core XT4 nodes and 6,206 dual-core XT3 nodes,
which is operated by the ORNL National Center for Computational Sciences (NCCS).

2.1 Hardware: Cray XT4 and XT3

Each node of the Cray XT4 contains a dual-core 2.6 GHz AMD Opteron processor for a to-
tal of 19,320 compute processors on the entire Franklin system. The memory subsystem uses
DDR2-667MHz memory, which offers nearly 7GB/s aggregate memory bandwidth per core when
measured by the STREAM Triad memory bandwidth benchmark. The processors are tightly-
integrated to the XT interconnect via a Cray SeaStar 2.1 ASIC through a 6.4GB/s bidirectional
HyperTransport interface. All the SeaStar routing chips are interconnected in a 3D torus topology,
where each node has a direct link to six of its nearest neighbors on the torus with a peak bidirec-
tional bandwidth of 7.6GB/s. Both the processors and node architecture of Jaguar and Franklin are

2



nearly identical, giving us an opportunity to compare the CNL operating system to the Catamount
micro-kernel.

Some of our experiments were conducted on XT3 nodes on the NCCS Jaguar system, which
use the same 2.6 GHz AMD Opteron processor cores and interconnect topology. However, the
older-model XT3 nodes use slower DDR1-266MHz memory, which offers about half the effective
memory bandwidth of the XT4’s DDR2 memory subsystem.

2.2 Operating Systems: Catamount and Compute Node Linux

Cray XT series systems have been offered with two different operating systems; Catamount,
which is a specialized micro-kernel OS, and Compute Node Linux (CNL), which is based on
a Linux kernel. During our experiments, both systems initially ran Catamount and subsequently
migrated to CNL. This transition provided us with a unique opportunity to directly assess the effect
of the OS kernel on system variability and delivered system performance for both the Catamount
and CNL operating environments.

The Catamount micro-kernel was developed by Sandia National Laboratory for the Red Storm
computing system [6]. The simpler kernel design of Catamount minimizes the memory footprint
of the kernel and controls for a wide range of sources of OS-induced variation. One deficiency of
Catamount is that it does not support symmetric access to the device interface, or support shared
memory for symmetric multiprocessing. Another deficiency is that one of the two processors on
the socket must handle all I/O operations on behalf of both processors, leading to a slight load
imbalance. The Catamount kernel does not currently support the quad-core barcelona processor,
which motivated NERSC and ORNL to migrate to CNL.

CNL is a lightweight kernel based on the Linux OS. The CNL design also pays special attention
making many sources of OS interference quienscent, such as cron jobs and other stochastically
scheduled daemon processes that exist in a full Linux OS implementation. CNL provides many of
the familiar OS services present in a desktop Linux implementation, such as support for symmetric
multiprocessing, shared memory, and most conventional system libraries. However, the compute
nodes of the XT4 offer a very restricted environment that does not include dynamic linking, ad-
vanced scripting languages, or shell environment features. The shared memory support will enable
use of hybrid programming models using OpenMP, and allow each of the cores symmetric access
to the communication interface.

3 Application
Block-structured AMR, developed by Berger and Oliger [1, 2] for computational gas dynamics,

is a multiscale algorithm that achieves high spatial and temporal resolution in localized regions
of dynamic multidimensional numerical simulations. A broad range of physical phenomena mod-
elled by PDEs exhibit multiscale behavior where variations in the solution occur over scales that are
much smaller than the overall problem domain. Examples include flame fronts arising in the burn-
ing of hydrocarbon fuels, nuclear burning in supernovae, effects of localized features in orography
or bathymetry on ocean currents, tracking tropical cyclones, localized kinetic effects for plasma
physics problems, and, in general, small scale effects due to nonlinear instabilities. In each of these
problems, the fundamental mathematical description is given in terms of various combinations of
PDEs of classical type (elliptic, parabolic, hyperbolic).

3



the Berger and Oliger AMR algorithm organizes refined regions into rectangular structured-grid
patches of several hundred to several thousand grid points per patch. High-resolution structured-
grid methods (typically expressed as stencils) are used to advance the solution in time. Further-
more, the overhead of managing the irregular data is amortized over a relatively large number of
floating point operations on the rectangular patches. For time-dependent problems, refinement is
performed in time as well as space. Each level of spatial refinement has its own stable time step,
with the time steps on a level constrained to be integer multiples of the time steps on all finer levels.

3.1 Chombo AMR Framework

AMR applications require a long-term sustained investment in software infrastructure to create
scalable solvers that are capable of utilizing the full capabilities of the largest available HPC plat-
forms. We have created a framework for implementing scalable parallel AMR calculations called
Chombo [4] that provides an environment for rapidly assembling portable, high-performance AMR
applications for a broad variety of scientific disciplines.

Chombo is a fully instrumented C++ library. There are a set of timer macros that can be used
to time functions or sections of code. These timers attempt to use native instructions on the target
architecture in order to minimize the overhead of collecting detailed performance data. In the case
of the Cray XT, Chombo measures elapsed time using the rdtsc x86 assembly instruction. This
returns a 64-bit unsigned integer representing the number of clock cycles since last processor reset.
On the AMD Opteron processor this instruction takes, on average, 13 cycles to execute, and for
a 2.6GHz clock provides a 0.385 nanosecond timing resolution. The timers collect information
which is summarized and output at the end of a run for each processor. The output of the Chombo
timing infrastructure is similar in format to the GNU profiler (gprof) output but only instrumented
functions and sections of code are reported. This information is then post-processed to produce
various statistics, e.g., mean/min/max times, standard deviations, and correlations.

Additional analysis was performed using the CrayPat performance analysis tools on the Cray
XT system. Specifically, certain sections of code were manually instrumented with CrayPat
calls.

4 Benchmarking Methodology
In many applications that use PDE solvers, the primary motivation for using large numbers of

processors is to achieve weak scaling. Even with AMR, many leading scientific problems remain
out of reach due to inadequate grid resolution. In those cases, increasing the number of processors
is used to increase the spatial resolution of the grids using the minimum number of processors
necessary to fit the problem into the available memory. Therefore, we focus on a methodology
for constructing weak-scaled AMR benchmarks because this methodology models the dominant
use-case for scientific problems that employ this computational method.

4.1 Replication Scaling Benchmarks

Classically, weak scaling studies of numerical methods for solving PDE on uniform grids have
been performed using mesh refinement, which involves scaling the problem, refining the grid by an
integer factor in each direction and increasing the number of processors so that the number of grid
points per processor is fixed. The analogous scaling method for AMR would refine the coarsest
grid by an integer factor and decrease the error tolerance so that the resolution at each level is

4



increased by the same integer factor. In practice, such an approach leads to scaling behavior that
is difficult to interpret. Under such a refinement scheme, the size of the refined regions at each
level can change significantly, which often decreases the physical size of the refined region at a
given level. Therefore, the data-dependent behavior of the AMR refinement heuristics can cause
changes in AMR scaling performance that are difficult to distinguish from loss in scaling due to
other causes. For this reason, we have developed benchmarking methods based replication scaling

(a) (b)

Figure 1. (a) Initial 3D data for the hyperbolic gas dynamics benchmark, with finest grids
covering the spherical shell of a shock front of an explosion. (b) Replicated initial 3D data
for the weak scaling performance study of the hyperbolic gas dynamics benchmark.

which take a grid hierarchy and data for a fixed number of processors and scales the problem to
higher concurrencies by making identical copies the hierarchy and the data (Figure 1). The full
AMR code (processor assignment, problem setup, etc.) is run without any modifications so it
doesn’t take advantage of the replicated grid structure. Replication scaling tests most aspects of
weak scalability, is simple to define, and provides results that are easy to interpret. Thus, it is a very
useful tool for understanding and correcting impediments to efficient scaling in an AMR context.
Furthermore, it is a good proxy for the scaling behavior of real applications. For example, a large
part of the simulation of a gas turbine will be the simulation of multiple identical burners arranged
in a ring.

Replication scaling does not rigorously test load balancing. Load imbalances that are inherent
at smaller scales tend to remain the same as regions are replicated to scale the problem. Thus,
the results obtained using replication scaling need to be supplemented with other measurements to
obtain definitive scaling behavior, such as showing that the twall ×Nproc divided by the number of
grid points (“grind time”) is bounded in the weak scaling limit using a more traditional AMR mesh
refinement study [10, 13]. This work follows very closely the approach taken in [12].

4.2 Hyperbolic Gas Dynamics Benchmark

We benchmarked an explicit method for unsteady inviscid gas dynamics in three dimensions
that is based on an unsplit PPM algorithm [7, 14]. This algorithm requires approximately 6000
flops/grid point. Since it is an explicit method, communication between processors is required
only once per time step. We used the implementation of this method from the Chombo software
distribution without significant modification. The operator peak performance for this method on

5



the Cray XT4 was 530 Mflops/processor. The initial grids used for the replication benchmark were
a spherical shock in 3D, with finest grids covering a spherical shell (Figure 1).

The benchmark used three levels of AMR with a factor of 4 refinement between levels and with
refinement in time proportional to refinement in space. We use fixed-sized 163 patches and a total
of 6.2 × 107 grid points and five unknowns per grid point, with 109 grid point updates performed
for the single coarse time step. In the results given here, we are only timing the cost of computing
a single coarse time step, which includes all intermediate and fine time steps on all AMR levels
but excludes the problem setup and initialization times.

5 Optimizing AMR for Scalability
Load balancing and communication volume are often blamed as the leading impediment to

AMR performance scalability, but careful profiling and analysis of the code performance showed
such concerns to be the lowest priority relative to other scalability bottlenecks that were identified.
Indeed, many of the problems related to early design decisions for the grid management infras-
tructure that had an inconsequential performance impact at low concurrencies, but became major
bottlenecks as the code was scaled to thousands of processors. We begin by describing the code
optimization strategies and then discuss new sources of OS/system variability and its impact on
AMR performance.

5.1 Baseline Code Optimizations

The code optimizations that improved our AMR scaling behavior fall into three major cate-
gories: Improving communication locality, converting to metadata management algorithms with
O(N) computational complexity, and optimizing coarse-fine boundary value computations.

5.1.1 Minimizing Communications Costs

We found it necessary to distribute patches in a way that minimizes communications costs using
space-filling curves. If D is the spatial dimension of the problem, Morton ordering [8] is a 1-1
mapping of ZD onto Z with good locality: the fraction of nearest neighbors in ZD of the inverse
image of an interval I ⊂ Z of length M whose Morton indices are not in I is O(M−1/D). Load
balancing is done by sorting the patches according to the Morton indices of their low corners, and
dividing the linearly-ordered patches into intervals with equal workloads.

The partitioning onto processors obtained using Morton ordering shows uniform distributions
with only a small fraction of the patches having neighbors that are off-processor. This is in contrast
to a recursive bisection approach that was used previously, in which it is possible to have long thin
partitions with all the patches requiring boundary data from off-processor. Morton ordering also
makes it advantageous, especially at high concurrencies (4096+ processors), to overlap the local
copying of data from neighbors that are on the same processor with the remote copying of data
from neighbors that are on other processors using asynchronous MPI calls.

5.1.2 Scalable Computation of Patch Metadata

There were a number of bottlenecks that were related to data management algorithms of O(N2)
complexity that were insignificant at small concurrencies, but rapidly grew into major scaling bot-
tlenecks for thousands of processors. Our study uncovered numerous examples where expedient

6



programming choices early in the development of the framework revealed themselves at higher
concurrencies. One such example is the management of patch metadata in the complex and dy-
namically changing grid hierarchies.

In current implementations of AMR, every processor has a copy of the metadata which consists
of all the patch outlines and processor assignments. These are used to compute intersection lists,
e.g. which patches/processors contain neighbor data, which much be copied periodically. At 1000
processors and above, it is essential to use O(log(Npatch)) sorts and searches to compute these
intersection lists. Otherwise, there is a catastrophic failure to scale due to performing O(Npatch)
computations on every processor. Even using fast methods, the cost of these computations are not
negligible, so significant performance improvements were obtained from caching intersection lists.

5.1.3 Optimizing Coarse-Fine Boundary Condition Calculations

Coarse-fine boundary conditions involve parallel communication and irregular computation.
While these calculations are scalable, they can substantially impact the variability of code runtimes
and are difficult to account for accurately in the load balancing. The best approach was to highly
optimize the irregular computations and thus minimize their overall impact. We make aggres-
sive use of residual-correction forms of the PDE to minimize how often the coarse-fine boundary
conditions are computed. For interpolation stencils that are regular, we call Fortran implementa-
tions of these stencils. Although we have not done so here, we could also have taken advantage
of fixed-size patches to make nearly all such calculations regular or develop fast irregular stencil
operations.

5.1.4 Load Imbalances

The hyperbolic gas dynamics benchmark highlighted several anomalies in the timing results that
initially appeared to be load imbalances in the core computational kernel. This core computational
kernel was a hyperbolic PDE, which can be broken down into three broadly-defined phases of
computation; pre-step, time advance, and post-step. The time advance phase is of primary interest
because it contains no communication or I/O but does perform most of the computation. This phase
executes once at the coarsest AMR level, four times at the intermediate level, and sixteen times
at the finest level. It was straightforward to monitor sources of variability by inserting barriers
between individual phases of computation. Timing the entry and exit to these barriers enabled
direct measurement of any load imbalances and the isolation of sections of code that contributed
to the imbalance.

The resulting measurements showed that nearly all the significant load imbalances were ob-
served in the time advance phase, which was unexpected because all the grids on all levels were the
same size, 163 elements, each processor had almost the same number of grids, and the work done
on each grid should have been insensitive to the data. For example, at the finest level, each proces-
sor had 232 or 233 grids, which should have resulted in a maximum 0.4% imbalance. Separately
conducted sensitivity experiments found that there could be a maximum 3.5% worst-case variation
in runtime per grid depending on the data present, but this could only occur under conditions that
were unlikely to be found in actual computations and did not occur during our benchmarks.

Further comparisons between the Jaguar system running Catamount (Jaguar/Catamount) and
the Franklin system running CNL (Franklin/CNL) led us to believe OS interference was at fault.
Specifically, on Jaguar/Catamount the maximum runtime on a few processors for the time advance

7



0 2000 4000 6000 8000
Processor Number

125

150

175

200

225
R

un
tim

e 
(s

ec
on

ds
)

Jaguar/Catamount XT4
Jaguar/Catamount XT3
Franklin/CNL XT4

(a)

150 160 170 180
Runtime (seconds)

0

200

400

600

800

1000

1200

1400

1600

N
um

be
r 

 o
f 

 P
ro

ce
ss

or
s Jaguar/Catamount XT4

Jaguar/Catamount XT3
Jaguar/CNL XT4
Franklin/CNL XT4

(b)

Figure 2. (a) Runtime of each MPI process rank on Jaguar/Catamount and Franklin/CNL. The
spikes in the Jaguar/Catamount runtimes were attributed to ECC memory correction overhead
on nodes experiencing high memory error rates. (b) Histogram of runtime variability for the
AMR hyperbolic gas dynamics runs on the evaluated systems.

phase was much greater than all the other processors, well above the mean by several standard de-
viations. Moreover, this behavior occurred much more frequently on large runs. On Franklin/CNL,
and later on Jaguar/CNL, the mean runtime was consistently higher, by about 10%, and the CoV
was 7 times greater than typical runtimes of our initial runs on Jaguar/Catamount. Uncovering
the source of variation became the subject of much deeper analysis of the AMR code’s interaction
with the software and OS environment of the Cray XT4 systems.

5.2 Isolating Sources of Runtime Variability

In our attempts to correct load-imbalances that were discovered in the Chombo code, we un-
covered sources of variability that were originally mis-attributed to algorithm characteristics. The
next subsections trace our approach to isolating sources of runtime variability on the Franklin and
Jaguar systems.

5.2.1 Jaguar Runtime Variability

Runtime variability caused by stochastic sources of interference can substantially impact the
runtime of bulk synchronous parallel applications such as Chombo. Figure 2(a) shows com-
parative runtimes for each MPI processor rank for identical code running on Jaguar/Catamount
XT3/XT4 and Franklin/CNL. Although each processor was given a nearly identical workload,
the Franklin/CNL nodes exhibited considerable variability in runtime performance as shown by
the very broad (noisy) red line. The Jaguar/Catamount performance for both XT3 and XT4 sys-
tems, shown by the blue and green lines, is much less noisy, but shows small spikes in the graph
where individual MPI ranks were delayed substantially compared to their peers. Given the bulk-
synchronous nature of this code, the worst-case delays end up determining the overall runtime on
Jaguar/Catamount. So, although the average performance of the Jaguar/Catamount XT4 system
was substantially better than Franklin/CNL, the delivered performance was no better.

A closer inspection of the data showed that the spikes were always two processors on the same
node, leading to an initial theory that XT3 nodes were allocated by mistake. However, the XT3

8



(a)

130 140 150 160 170 180
Runtime (seconds)

0

400

800

1200

1600

2000

2400

N
um

be
r 

 o
f 

 P
ro

ce
ss

or
s

Jaguar/Catamount XT4
Jaguar/Catamount XT3
Franklin/CNL XT4 - Nominal
Franklin/CNL XT4 - Environment Variables
Franklin/CNL XT4 - Local Memory Management

(b)

Figure 3. (a) 8192-way P-SNAP results on Franklin/CNL. (b) Histogram of AMR hyperbolic
gas dynamics runtime with memory optimizations.

runs also showed anomalous spikes in node performance (shown by the blue line) that were propor-
tionally higher than those of the nominal XT3 nodes and an examination of the batch logs showed
that no XT3 nodes participated in the XT4 jobs. The ultimate cause of the problem was tracked
down to the overhead of the ECC correction of single-bit errors in the memories of the affected
nodes, leading to measurable load imbalances. Both ORNL and NERSC were able to correct the
problem by increasing the voltage of the memory subsystems to the point that the memory errors
were all but eliminated. Subsequently, the spikes observed in Figure 2(a) no longer occurred.

5.2.2 Franklin Runtime Variability

The primary source of variability was corrected on Jaguar/Catamount XT3/XT4, but persisted
on Franklin/CNL. Franklin/CNL was now 8.7% slower than the Jaguar/Catamount XT4 and had a
CoV that was 7 times larger. Figure 2(b) shows node completion times plotted as a histogram. Un-
like Figure 2(a), this representation shows a clear structure to variation on Franklin/CNL as three
distinct Gaussian distributions; a tri-normal distribution. Given the Franklin/CNL and Jaguar/Catamount
systems are nearly identical in architecture, any differences in behavior are mostly likely due to
differences in the software environment.

One early hypothesis was that we had uncovered a classic case of OS interference that was
analyzed in detail on the ASCI White and ASCI Q systems [9]. Therefore, we obtained an op-
erating system benchmark developed at LANL named P-SNAP, which was developed to quantify
operating system interference or noise. P-SNAP uses a Fixed Work Quantity (FWQ) approach –
consisting of a simple loop of constant integer additions. All processors perform the exact same
operations and measure the time (by default, using MPI Wtime()). On a system with no interfer-
ence, each processor would report the same measured time. P-SNAP was run on 8192 processors
of Franklin/CNL using the default input parameters. The results shown in Figure 3(a) demon-
strate modest OS noise. However, the variation in runtime measured by P-SNAP is three orders of
magnitude smaller than the variation measured by our AMR benchmark, and does not exhibit the
distinctive tri-normal distribution observed in Figure 2(b). Therefore, classic OS interference is
unlikely to be the cause of the observed variation in application performance. At least, if it was OS
interference, a clean and straightforward benchmark like P-SNAP was not exposing this source of

9



3.360e+05 3.365e+05 3.370e+05 3.375e+05 3.380e+05
Number of calls to BArena:alloc()

160

165

170

175

180

185
R

un
tim

e 
(s

ec
on

ds
)

(a)

2 4 6 8 10 12 14

Accumulated Time in BArena:alloc()
160

165

170

175

180

185

R
un

tim
e 

(s
ec

on
ds

)

(b)

Figure 4. Scatterplot (a) shows no correlation between the run time variation and the number of
memory allocations performed. Scatterplot (b) shows a clear anti-correlation between the time
spent in the memory allocation routines and the runtime variation – meaning that processors
that showed the slowest runtime spent the least time in performing memory allocation, despite
a balanced workload.

variation.
In addition to Franklin/CNL, NERSC also maintains a smaller 128 processor XT4 machine

named Silence running CNL (Silence/CNL). Silence/CNL provided a dedicated controlled envi-
ronment and allowed for direct comparisons between the two XT4 machines at a concurrency of
128. Similar behavior was observed running the hyperbolic benchmark on Franklin/CNL and Si-
lence/CNL, which eliminated systematic effects caused by hardware configuration of Franklin.
Additionally, after Jaguar was upgraded from Catamount to CNL, nearly identical results were
produced to those of Franklin/CNL — eliminating theories that the variations were unique to the
Franklin hardware.

Other experiments that were tried include compiling with PGI and GNU compilers, using var-
ious compiler optimization flags, and running with one processor per node. In all cases the tri-
normal distribution of runtimes persisted although the average runtimes were reduced with com-
piler optimizations and running with one processor per node.

5.2.3 Isolating Sources of Variation in Heap Management

More detailed CrayPat instrumentation of the memory allocation algorithm was performed
which showed performance variation between 3 and 14 seconds. More importantly, there seemed
to be three distinct categories of memory allocation across the processors as shown in Figure 4(a).
Although the time variation in memory allocation would not account for the entire observed vari-
ation, this was compelling. Figure 4(a) shows that the number of calls to the memory allocation
routines have no correlation to the overall runtime variation. However, the total time spent in
memory allocation correlates strongly to overall runtime variation, Figure 4(b), but it is a negative
correlation: The faster the overall memory allocation, the slower the overall runtime. Looking at
the data in more detail reveals that the time spent in several Fortran 77 routines, which contain no
memory allocation or complex logic, are inversely proportional to the amount of time spent in the
allocation and accounted for the overall runtime variation. Note that since calloc() was used, the

10



issue could not be related to the time spent mapping TLB pages since calloc() (unlike malloc())
forces the pages to be mapped. Therefore, when the memory allocator spent less time in a memory
allocation operation, the performance of the F77 numerical kernels that used the allocated memory
suffered dramatically lower performance.

One hypothesis for this effect is that the CNL memory allocator has more sophisticated heuris-
tics for managing the heap than Catamount. Simplifying the memory allocator could correct
this behavior. We tested this hypothesis by changing two of the system environment variables,
MALLOC MMAP MAX and MALLOC TRIM THRESHOLD , to simplify the memory allocation
strategies. In particular the MALLOC MMAP MAX option determines whether the mmap() sys-
tem call will be used for large allocations. The default value is 64, but setting the value to zero
does away with expensive mmap() system calls altogether. The MALLOC TRIM THRESHOLD
option determines how much free space must be available on the heap (the pool of dynamically
allocatable memory) before malloc() uses the brk()/sbrk() system calls to return that memory to
the OS. Given we are not sharing the node with other processes, there is no good reason to return
memory to the OS until we relinquish the node. Setting the MALLOC TRIM THRESHOLD to -1
ensures that the heap only grows, and doesn’t waste CPU cycles returning the memory to the OS.
On the Silence/CNL test systme, the changes to the malloc environment variables decreased the
overall runtime and its variation dramatically. This did cause the time spent in memory allocation
to double to an average of 25 seconds but with a variation of only one second.

The second hypothesis was that the order of memory allocation and free operations was reducing
the efficiency of the data layout in the heap. Having Chombo manage its own heap could improve
performance by replacing a stochastic sequence of malloc() and free() operations with a single
allocation. The default memory allocation system in Chombo is the BArena which simply makes
calls to the system malloc/free() while tracking memory usage so Chombo users get memory usage
reports. Another Chombo memory allocation system, CArena, maintains several large-granuality
queues of memory of fixed sized blocks of memory in addition to tracking memory usage. When
a request for new memory is made, CArena first checks if there is a large enough memory chunk
in one of its existing queues. If so, it returns that to the user, otherwise it invokes the system
malloc(). Freed memory is added to the queue with largest chunk-size that fits the freed memory
size. The memory is never returned to the general heap. The system was originally developed
for older Cray systems that behaved poorly with dynamic memory applications. Using Chombo’s
memory allocation routine CArena, the overall runtime and its variation decreased significantly
and the time spent in memory allocation at any level did not increase.

Thus both hypotheses were true and both approaches appeared to be successful. The experiments
were scaled up to duplicate the size of the original benchmarks. The results are shown in the
leftmost of the two histograms in Figure 3(b). Clearly, the tri-normal distribution disappears when
either of these optimizations are employed. The overall performance increased significantly, 15%
to 20%, while the CoV decreased by a factor of three. These performance results are even better
than the original Catamount runs although the CoV is still greater by a factor of two.

In order to examine the performance effect of the memory allocation strategies in more detail,
we measured hardware counter data with the Cray performance analysis tool called CrayPat.
Table 1 shows a summary of the counter data of these runs collected for the PAPI TLB DM (Data
translation lookaside buffer misses), PAPI L1 DCA (Level 1 data cache accesses), PAPI FP OPS
(Floating point operations) and DATA CACHE MISSES (Data Cache Misses) events as well as
the times spent in functions.

11



Events BArena BArena + env vars CArena
avg CoV (%) avg CoV (%) avg CoV (%)

getadwdxf
Time 29 2.09 24 0.71 26 1.65
PAPI TLB DM 10,943,900 9.67 5,304,520 1.30 6,681,630 2.92
PAPI L1 DCA 27,707,000,000 0.17 27,573,100,000 0.16 27,579,600,000 0.16
PAPI FP OPS 1,836 1.99 1,908 1.87 1,776 2.21
DATA CACHE MISSES 1,021,830,000 0.72 987,418,000 0.21 989,721,000 0.20

riemannf
Time 29 1.25 24 0.95 24 0.97
PAPI TLB DM 6,922,770 11.53 1,350,350 2.64 2,809,500 1.99
PAPI L1 DCA 10,922,100,000 0.51 10,851,900,000 0.51 10,856,100,000 0.51
PAPI FP OPS 865 2.08 883 1.93 876 2.02
DATA CACHE MISSES 399,837,000 0.81 405,767,000 0.75 406,493,000 0.78

FArrayBox:operator +=()
Time 17 0.99 16 0.61 17 0.75
PAPI TLB DM 3,335,420 10.82 2,674,980 4.09 3,237,070 3.19
PAPI L1 DCA 20,223,700,000 0.23 20,208,700,000 0.28 20,165,200,000 0.12
PAPI FP OPS 261 2.32 263 2.49 254 2.42
DATA CACHE MISSES 973,626,000 0.21 971,004,000 0.18 970,407,000 0.17

secondslopediffsf
Time 14 6.05 4 1.47 7 1.42
PAPI TLB DM 5,928,940 15.59 1,328,920 1.42 2,659,650 3.01
PAPI L1 DCA 4,525,960,000 2.14 3,486,850,000 0.16 3,488,510,000 0.16
PAPI FP OPS 169 5.51 408 5.64 226 3.99
DATA CACHE MISSES 581,476,000 6.00 204,598,000 0.16 204,569,000 0.16

FArrayBox:performCopy()
Time 12 4.36 7 2.14 8 1.54
PAPI TLB DM 8,064,020 13.23 2,385,110 1.30 2,911,920 2.11
PAPI L1 DCA 5,902,970,000 0.18 5,846,700,000 0.18 5,868,130,000 0.21
PAPI FP OPS 0 0.00 0 0.00 0 0.00
DATA CACHE MISSES 321,141,000 0.43 333,987,000 0.16 334,268,000 0.16

BArena:alloc() CArena:alloc()
Time 9 36.38 27 1.62 3 1.53
PAPI TLB DM 3,709,400 26.27 9,690,860 2.97 2,880,100 10.06
PAPI L1 DCA 2,998,400,000 38.47 9,860,940,000 0.16 1,738,590,000 0.32
PAPI FP OPS 0 63.56 0 2.49 0 0.00
DATA CACHE MISSES 273,451,000 56.78 1,163,740,000 0.17 74,493,400 2.62

GodunovPhysics:computeUpdate()
Time 6 32.39 1 0.81 5 2.02
PAPI TLB DM 3,929,470 42.76 309,207 5.54 1,956,370 1.16
PAPI L1 DCA 1,218,480,000 0.28 1,212,140,000 0.17 1,214,380,000 0.17
PAPI FP OPS 0 34.34 0 8.64 0 6.38
DATA CACHE MISSES 166,742,000 2.64 155,399,000 0.21 156,721,000 0.29

BArena:free() CArena:free()
Time 5 14.67 1 1.70 1 1.60
PAPI TLB DM 4,619,490 14.55 321,497 8.41 816,420 14.07
PAPI L1 DCA 389,883,000 0.55 399,047,000 0.22 545,853,000 0.32
PAPI FP OPS 0 0.00 0 0.00 0 26.02
DATA CACHE MISSES 7,349,520 3.36 5,654,840 3.37 16,148,800 3.62

Table 1. CrayPat dump of Chombo AMR code performance

As noted above, when the CNL malloc environment variables are set to non-default values, the
Chombo memory allocation in BArena takes about three times longer. However, this extra time is
counterbalanced by the gains in most of the time-consuming functions, making the overall runtime
shorter. This is a result of a more effective memory allocation/deallocation strategy which results
in a large reduction in TLB misses in many key functions. For example, altering the heap alloca-
tion environment variables reduced the time spend in getadwdxf , a Fortran routine, from 29 to 24
seconds, mostly due to TLB misses dropping from 10.9×106 to 5.3×106. A similar order effect
occured in riemannf , another Fortran routine. An even more dramatic effect was observed for FAr-
rayBox::performCopy, in which TLB misses dropped from 8.1×106 to 2.4×106 and performance
improved from 12 to 7 seconds. Also note that setting the Linux malloc environment variables to
implement a more efficient memory allocation strategy significantly reduces the runtime variability
of MPI processes. When Chombo’s CArena memory management strategy is used for memory al-
location and deallocation, the hardware counter statistics are more similar to those with the malloc
environment variables set to non-default values. As a result, the benchmark runtime is reduced and
the variability of MPI processes is smaller than with the default BArena strategy. Therefore, we
conclude that the variation was due to the more sophisticated heap management routines employed
by the CNL memory management compared to the Catamount memory management. The memory

12



allocator effects are exacerbated by the relatively small memory page sizes (4 KB) employed by
CNL combined with the lack of sequential ordering preference that is provided by Catamount for
page mapping.

6 Scaling Results
In this section, we describe the experiments performed on the Cray XT4 systems at NCCS,

Jaguar/Catamount. All timing results were measured using Chombo’s integral instrumentation as
described in section 3.1.

The scaling experiments performed consisted of a set of runs ranging from 128 to 8192 pro-
cessors in powers of two. All the runs were performed in 3D with 2 levels of AMR refinement
(3 levels total) and a refinement ratio of 4 between levels. The unreplicated domain was 163 at
the coarsest level and 2563 at the finest level. The computation was run for 1 coarse time step
which, in this case, implies there were 16 time steps at the finest level. The 128 processor runs
had a replication factor of 2 in the x direction and 1 in the y/z directions. Thus, the finest domain
was 512×256×256. As the number of processors in a run doubled, we doubled the replication
in the least replicated direction starting with x then y then z. Thus, the 8192 processor runs had
a replication factor of 8 in the x direction and 4 in the y/z directions and the finest domain was
2048×1024×1024.

Each experiment consisted of seven runs so that we could always compute weak scaling infor-
mation for each experiment. In addition, it allowed us to determine if there were anomalous or
unexpected behavior at different run sizes.

100 1000 10000
Processors

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
or

m
al

iz
ed

 R
un

tim
e

Total
Perfect
Kernel

AMR Gas Dynamics Benchmark Weak Scaling
Cray XT4

8 billion 124 million

Figure 5. Hyperbolic gas dynamics weak scaling results where the y-axis is normalized to the
total time for the 128 processor computation.

6.1 Hyperbolic Gas Dynamics Benchmark Performance

Figure 5 shows plots of normalized wall clock time for the total calculation on the Jaguar/Catamount,
“Total” (red), and for the portion of the computation containing no communications, “Kernel”

13



(blue). The vertical axis of the plots is normalized by the time required to solve the smallest prob-
lem on 128 processors. We observe 96% efficient scaled speedup over a range of 128 to 8192
processors, corresponding to a wall clock time of 177±4 seconds to compute 2×109 - 1.28×1011

grid-point updates. The FLOP rate for these calculations was approximately 450 Mflops/processor,
which is comparatively low as a percentage of the peak processor FLOP rate, but is 85% of the peak
achievable performance for the serial case using a non-adaptive computational kernel. The finest
grids cover about 6.3% of the finest domain. This represents an order of magnitude improvement
over previous scaling demonstrations for this class of AMR algorithms [12].

7 Summary and Conclusions
The computing industry trend toward massive parallelism requires scientific application devel-

opers to dramatically improve the scalability of algorithms to stay ahead of the technology curve.
In this work, we have described our experience re-architecting a production AMR application to
achieve scalable performance. To help us isolate scaling bottlenecks in the Chombo AMR infras-
tructure, we created benchmarks for an AMR hyperbolic gas dynamics computation. In so doing,
we have demonstrated scalable performance on up to 8192 processors on the Cray XT4, which is
the best performance to date for this class of AMR problems.

The investigation showed that the traditional concerns over load imbalance and communication
volume were not as critical to application performance as identifying and isolating subtle use of
non-scalable algorithms in the grid management infrastructure of the AMR framework. The in-
vestigation also revealed that variability in the system software was an equally important source of
performance loss; when our AMR benchmark was run on a Cray XT4 system with CNL, it showed
no performance improvement over a much slower Cray XT3 system with Catamount. However,
the performance variability seen in this work was not identified using existing OS interference di-
agnostics such as FWQ benchmarks and Fixed Time Quantum (FTQ) benchmarks [11]. Although
the source of variability was eventually tracked down to differences in the heap management al-
gorithm and implementation on these XT systems, it demonstrates that many sources of system
variability are much more subtle than kernel interference and are consequently more difficult to
isolate.

This work represents the first steps toward a scalable AMR code infrastructure. In the future, we
will focus more attention on additional optimization, such as finer-grained load-balancing, where
we see opportunities to improve scalability by another one to two orders of magnitude. AMR
offers a much more algorithmically efficient approach to scientific computing that applies comput-
ing power only where it is needed. We have demonstrated that traditional assumptions regarding
the inability of AMR algorithms to scale on highly parallel computer systems are unfounded. Ulti-
mately, AMR frameworks such as Chombo are well poised to fully utilize petascale HPC resources
that will be available in the near future.

8 Acknowledgments
We would like to individually thank: Patrick Worley for access to Jaguar via the PEAC INCITE

grant, Helen He for her help on Franklin during all phases of this work, and Steve Luzmoor for
his part in gathering detailed information and brainstorming. LBNL authors were supported by the
Office of Advanced Scientific Computing Research in the Department of Energy under Contract
DE-AC02-05CH11231.

14



References
[1] M. Berger and P. Collela. Local adaptive mesh refinement for shock hydrodynamics. J.

Computational Physics, 82:64–84, May 1989.

[2] M. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic partial differential equa-
tions. Journal of Computational Physics, 53:484–512, 1984.

[3] P. Colella, J. Bell, N. Keen, T. Ligocki, M. Lijewski, and B. V. Straalen. Performance and
scaling of locally-structured grid methods for partial differential equations. SciDAC, 2007.

[4] P. Colella, D. Graves, T. Ligocki, D. Martin, D. Modiano, D. Serafini, and B. V.
Straalen. Chombo software package for AMR applications: design document.
http://davis.lbl.gov/apdec/designdocuments/chombodesign.pdf.

[5] G. Johnson. P-SNAP: a system benchmark for quantifying operating system interference or
noise. http://www.c3.lanl.gov/pal/software/psnap/.

[6] A. B. Maccabe, P. G. Bridges, R. Brightwell, R. Riesen, and T. B. Hudson. Highly con-
figurable operating systems for ultrascale systems. In First International Workshop on Op-
erating Systems, Programming Environments and Management Tools for High-Performance
Computing on Clusters, St. Malo, France, 2004.

[7] G. Miller and P. Colella. A conservative three-dimensional Eulerian method for coupled
solid-fluid shock capturing. 183:26–82, 2002.

[8] G. M. Morton. A computer oriented geodetic data base and a new technique in file sequenc-
ing. 1966.

[9] F. Petrini, D. Kerbyson, and S. Pakin. The case of missing supercomputer performance:
achieving optimal performance on the 8,192 processors of ASCI Q. In Supercomputing,
2003.

[10] C. Rendleman, V. Beckner, M. Lijewski, W. Crutchfield, and J. Bell. Parallelization of struc-
tured, hierarchical adaptive mesh refinement algorithms. Computing and Visualization in
Science, 3:147–157, 2000.

[11] M. Sottile and R. Minnich. Analysis of microbenchmarks for performance tuning of clusters.
In Cluster 2004.

[12] T. Wen, J. Su, P. Colella, K. Yelick, and N. Keen. An adaptive mesh refinement benchmark
for modern parallel programming languages. In Supercomputing, 2007.

[13] A. M. Wissink, D. Hysom, and R. D. Hornung. Enhancing scalability of parallel structured
AMR calculations. LLNL Technical Report UCRL-JC-151791, 2003.

[14] P. R. Woodward and P. Colella. The numerical simulation of two-dimensional fluid flow with
strong shocks. 54:115–173, 1984.

15


