
Domain Flow

Dr. E. Theodore L. Omtzigt
Re-emergence of data flow

March 2008

Review: Random Access Machine
• Constructed out of two concepts

– Conceptually infinite and
featureless memory

– Single sequential instruction
processor

• von Neumann stored program
innovation
– Program and data are the same
– Bits flow to and from memory
– Both instructions and operands

are explicitly requested to partake
in a computation

– Fundamentally a round-trip of
request/response to/from memory

memory

processor

requests

responses

Silicon Implementation: Energy

Operation Energy (65nm, 1.1V)

64-bit ALU operation 5 pJ

64-bit Register read 10 pJ

64-bit Read from Data Cache 100 pJ

64-bit Write across 10mm
wire

200 pJ

64-bit Write off-chip 2000 – 3000 pJ

Sequential vs Parallel Execution
• Sequential Execution

– Request/reply cycle to flat memory
– Large overhead to provision an operator

• fetch, decode, schedule, execute, write
– Not very energy efficient

• Control uses 30 times the energy of a 64-bit MAC
– Can’t take advantage of structure

• Parallel Execution
– Concurrent data movement

• No need for request/response cycles
– Can bake structure of the algorithm in the control strategy!

• Order of magnitude better efficiency

Explicit Data Movement Prior Art:
Signal Processing: Filters both analog and digital

Explicit Data Movement Prior Art:
Signal Processing: Amplifiers, conditioners, drivers, etc.

Signal Flow Graphs

Data Flow Graphs

Signal Processing Digital Transition
• 40’s Bode and Shannon: feasibility of digital filters

– 1945, H.W. Bode, “Network Analysis and Feedback Amplifier Design”
– 1949, C.E. Shannon, "Communication in the Presence of Noise", Proc.

of the IRE, vol 37
• 50’s Mainframes

– seismic digital processing algorithms are developed
– FORTRAN, abstract syntax trees, control flow, data flow

• 60’s formalization of digital signal processing and packet switching
– Cooley and Tukey transform DSP with FFT
– 1960, Carl Adam Petri, “Petri nets”, models for the analysis of

distributed systems (not Turing Equivalent)
– 1962, Paul Baran, RAND, Packet Switched Networks

• 70’s proliferation of Digital Signal Processing
– 1974, Jack B. Dennis, David P. Misunas, P.S. Thiagarajan, “Project

MAC”, first data flow machine

Energy is constrained
• Moving data is more expensive than

computing

• Algorithms that take advantage of proper
data movement can have orders of
magnitude better power behavior

• Parallel machines can take advantage of
data/compute structure

• But with flat memory, we have no means to
express physical data movement!

Computational Space-time
• Space-time affects structure of optimal algorithms

– Flat memory does not exist
• GAS does not help writing energy efficient algorithms

– Architecture needs to quantify time and distance
• Simplify architecture to allow software to be more efficient

• Space-time normalizes distance to time
– Perfect for making communication delays explicit
– Distance is proportional to energy spent
– Minimizing data movement minimizes energy and is good for performance

• Introduce new programming model
– Computational space-time captures distance/delay attributes of a machine
– Cones of influence are the parts of the machine you can affect in one unit of time

• One unit of time is equal to the fundamental operation in the SFG/DFG
• Think lattice filters

Cones of influence
Processor world line

3D Orthonormal Lattice
• Uniform computational space-time

for O(N2) parallelism

• Embed Data Flow Graph in 3D
orthonormal lattice with the
following rules:

– One computational event per
lattice point

– Dependent computations must be
separated by at least unit vector

• Parallelism will develop as activity
wavefront

• Use orthonormal projections to
map down to 2D physical
processor grid

– Project orthogonal to 2D
wavefronts and you are
guaranteed no collisions between
computational events

Domain Flow
• Single Assignment Form DFG

– Free schedule wavefronts exhibit
structure

– Convex domains of computation

• Typical algorithm
– Collection of DFGs exhibiting

specific structure

• Domain Flow Graph
– One structured DFG per node
– Structured Data Domains flow

through the arcs
• Have temporal and spatial extent!
• Can have its own schedule

C

A B

High-Performance Computing
• Computational Science

– genetics, proteomics, chemistry, physics, bioinformatics

• Product Engineering
– aerospace, automotive, pharmaceuticals, digital content

creation, energy, process industry

• Business Analytics
– BI, Risk Analysis, Trading Systems, Insurance

HPC has insatiable demand for high-fidelity computes

Fundamental
Science

Size

C
om

pu
ta

tio
na

l i
nt

en
si

ty

103 109 1012

Pharmaceuticals
Life-sciences

Chemical Process Industry

Digital Content Creation

Games

Financial Industry

Business Intelligence

1015106

Requirements by Industry

Aerospace

Automotive

CAD/CAE/CAM

Energy

Computational Science Needs

• Geometry and meshing
– Roughly 1 Tops per million cells
– Limited task level parallelism at 8-16 threads
– High integer/control content, arbitrary precision floating

point
– Multi-core CPU performance is paramount

• Solver
– Roughly 1 GFlops per million cells per time step
– Demand grows exponentially

• Need 10x compute power for doubling of resolution
– Global schedules needed to hide memory latency
– Fine-grained MIMD parallelism, high-fidelity floating

point and massive memory bandwidth are paramount
• Visualization

– Roughly 50 MFlops per million pixels per frame
– Demand grows polynomial
– Low-fidelity floating point and massive memory

bandwidth are paramount

What are the pain points?
• Computer models are limited by solver

– 80% of run-time is spent in solver
– Efficiency on CPU and GPU is poor

• Typically less than 5% of peak performance

• Cost of computer clusters is too high
– Millions of scientists and engineers are left out
– No ecosystem of solutions can develop

• HPC does not connect with volume markets
– No standard hardware and software systems
– Fundamental algorithms are different
– No economies of scale

Economic Forces on CPU Evolution
• General Purpose Computing is inefficient

for HPC
– Typically only 5% of peak performance

• CPUs favor integer and control operations
– CSE needs Floating Point operations
– FPU = Floating Point Unit
– Typical CPU allocates less than 5% to FPU

• Die photo: Tiny blocks in top left and top right
– Chip resources allocated for OS, database

and web server workloads, not CSE

• CPUs can only exploit limited parallelism
through multi-core

– CSE needs 1000s of cores

• Volume design points limits I/O bandwidth
– I/O Bandwidth is essential for HPC

Multi-core CPUs cannot deliver performance
improvements needed for CSE innovation

The Solution
• Stillwater Knowledge Processing Unit™

– Fine-grained MIMD machine
– Scalable in cost and performance
– Specialized for solver stage

• Improve efficiency and power
– High-fidelity Floating Point
– Massive Memory Bandwidth

• Stillwater Run-Time
– Virtualization of CSE software stack
– One SKU for ISVs regardless of hardware

platform
• Equivalent to OpenGL/Direct3D but for CSE

– Create a platform scalable in price and
performance

– Differentiate with hardware acceleration

Stillwater Technology Roadmap

• Disclaimer: competitor performance is estimated based on current product or product
announcements and historical performance improvements

Stillwater Performance scales better
 as compared to Competition

1600

2560

4096

0

500

1000

1500

2000

2500

3000

3500

4000

4500

2007 2008 2009 2010 2011

Year of Production

Pe
ak

 P
er

fo
rm

an
ce

(G
flo

ps
/s

ec
)

Stillwater KPU Intel multi-core

IBM Cell NVIDIA Tesla

Stillwater T1

Stillwater T2

Stillwater T4

Stillwater Supercomputing
Value Proposition

• Dramatically Reduce Cost of HPC: 10/10/10
– 10T Flops/sec workstation for $10k by 2010
– Expand the Computational Science and

Engineering (CSE) community

• Focus on CSE Opportunity
– Computational demands grow exponentially
– Efficiency is paramount
– Large, important, and captive audience

• Enable Interactivity: iCSE
– Interactivity improves productivity
– Better for creativity and innovation
– Exclusive solution for interactive science,

engineering, and BI applications

Acceleration is the only economic way to
address submarkets

• Incur costs only for target market
– Massive memory bandwidth
– High-fidelity floating point
– Fine-grained MIMD parallelism

• Leverage economies of scale for
common components
– PC hardware and software ecosystem

• Add value at reasonable cost
– PC cost targets not Supercomputing

prices

• Product Introduction in 2H 2009
– Stillwater T1 KPU
– 65nm/100 mm2

– 1.6T SP Flops/sec, 0.8 DP Flops/sec
• Board Level product

– $500 PCI-Express Gen 2 AIC
– 1, 2, or 4 KPUs
– 2, 4, or 8 GBytes memory, GDDR 5
– 1, 2, or 4 TFlops/sec per AIC

• Follow on product in 2H 2010
– Stillwater T2 KPU
– 55nm/100 mm2

– 2.56 TFlops/sec
• Board Level Product in 2010

– First ever 10TFlops/sec AIC with 4 KPUs

Stillwater Supercomputing
Products

End-user Solutions

Thank You!

Dr. E Theodore L. Omtzigt
theo@stillwater-sc.com

	Domain Flow
	Review: Random Access Machine
	Silicon Implementation: Energy
	Sequential vs Parallel Execution
	Explicit Data Movement Prior Art:�Signal Processing: Filters both analog and digital
	Explicit Data Movement Prior Art:�Signal Processing: Amplifiers, conditioners, drivers, etc.
	Signal Flow Graphs
	Data Flow Graphs
	Signal Processing Digital Transition
	Energy is constrained
	Computational Space-time
	Cones of influence
	3D Orthonormal Lattice
	Domain Flow
	High-Performance Computing
	Requirements by Industry
	Computational Science Needs
	What are the pain points?
	Economic Forces on CPU Evolution�
	The Solution
	Stillwater Technology Roadmap�
	Stillwater Supercomputing �Value Proposition
	Acceleration is the only economic way to address submarkets
	Stillwater Supercomputing �Products
	End-user Solutions
	Thank You!

