
1

How to Hurt
Scientific Productivity

David A. Patterson
Pardee Professor of Computer Science, U.C. Berkeley

President, Association for Computing Machinery

February, 2006

2

High Level Message

 Everything is changing; Old conventional
wisdom is out

 We DESPERATELY need a new architectural
solution for microprocessors based on
parallelism
 21st Century target: systems that enhance scientific productivity

 Need to create a “watering hole” to bring
everyone together to quickly find that
solution
 architects, language designers, application experts, numerical

analysts, algorithm designers, programmers, …

3

Computer Architecture Hurt #1:
Aim High
(and Ignore Amdahl’s Law)

 Peak Performance Sells
+ Increases employment of computer scientists at

companies trying to get larger fraction of peak

 Examples
 Very deep pipeline / very high clock rate
 Relaxed write consistency
 Out-Of-Order message delivery

4

Computer Architecture Hurt #2:
Promote Mystery
(and Hide Thy Real Performance)

 Predictability suggests no sophistication
+ If its unsophisticated, how can it be expensive?

 Examples
 Out-of-order execution processors
 Memory/disk controllers with secret prefetch

algorithms
 N levels of on-chip caches,

where N ≈ (Year – 1975) / 10

5

Computer Architecture Hurt #3:
Be “Interesting”
(and Have a Quirky Personality)

 Programmers enjoy a challenge
+ Job security since must rewrite application with each

new generation

 Examples
 Message-passing clusters composed of shared address

multiprocessors
 Pattern sensitive interconnection networks
 Computing using Graphical Processor Units
 TLBs exceptions if access all cache memory on chip

6

Computer Architecture Hurt #4:
Accuracy & Reliability are for Wimps
(Speed Kills Competition)

 Don’t waste resources on accuracy, reliability
+ Probably blame Microsoft anyways

 Examples
 Cray et al 754 Floating Point Format, yet not compliant,

so get different results from desktop
 No ECC on Memory of Virginia Tech Apple G5 cluster
 “Error Free” intercommunication networks make error

checking in messages “unnecessary”
 No ECC on L2 Cache of Sun UltraSPARC 2

7

Alternatives to Hurting Productivity

 Aim High (& Ignore Amdahl’s Law)?
 No! Delivered productivity >> Peak performance

 Promote Mystery (& Hide Thy Real Performance)?
 No! Promote a simple, understandable model of execution and

performance

 Be “Interesting” (& Have a Quirky Personality)
 No programming surprises!

 Accuracy & Reliability are for Wimps? (Speed Kills)
 No! You’re not going fast if you’re headed in the wrong direction

 Computer designers neglected productivity in past
 No excuse for 21st century computing to be based on untrustworthy,

mysterious, I/O-starved, quirky HW where peak performance is king

8

Outline
 Part I: How to Hurt Scientific Productivity

 via Computer Architecture

 Part II: A New Agenda for Computer
Architecture
 1st Review Conventional Wisdom (New & Old)

in Technology and Computer Architecture
 21st century kernels, New classifications of apps and architecture

 Part III: A “Watering Hole” for Parallel
Systems Exploration
 Research Accelerator for Multiple Processors

9

 Old CW: Power is free, Transistors expensive
 New CW: “Power wall” Power expensive, Xtors free

(Can put more on chip than can afford to turn on)
 Old: Multiplies are slow, Memory access is fast
 New: “Memory wall” Memory slow, multiplies fast

(200 clocks to DRAM memory, 4 clocks for FP multiply)
 Old : Increasing Instruction Level Parallelism via compilers,

innovation (Out-of-order, speculation, VLIW, …)
 New CW: “ILP wall” diminishing returns on more ILP
 New: Power Wall + Memory Wall + ILP Wall = Brick Wall

 Old CW: Uniprocessor performance 2X / 1.5 yrs
 New CW: Uniprocessor performance only 2X / 5 yrs?

Conventional Wisdom (CW)
in Computer Architecture

10

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

P
er

fo
rm

an
ce

 (
vs

. V
A

X
-1

1/
78

0)

25%/year

52%/year

??%/year

Uniprocessor Performance (SPECint)

• VAX : 25%/year 1978 to 1986
• RISC + x86: 52%/year 1986 to 2002
• RISC + x86: ??%/year 2002 to present

From Hennessy and Patterson,
Computer Architecture: A Quantitative
Approach, 4th edition, 2006

⇒ Sea change in chip
design: multiple “cores” or
processors per chip from
IBM, Sun,, AMD, Intel today

3X

11

 Old CW: Since cannot know future programs,
find set of old programs to evaluate designs
of computers for the future
 E.g., SPEC2006

 What about parallel codes?
 Few available, tied to old models, languages, architectures, …

 New approach: Design computers of future
for numerical methods important in future

 Claim: key methods for next decade are 7
dwarves (+ a few), so design for them!
 Representative codes may vary over time, but these numerical

methods will be important for > 10 years

21st Century Computer Architecture

12

High-end simulation in the physical
sciences = 7 numerical methods:

1. Structured Grids (including
locally structured grids, e.g.
Adaptive Mesh Refinement)

2. Unstructured Grids
3. Fast Fourier Transform
4. Dense Linear Algebra
5. Sparse Linear Algebra
6. Particles
7. Monte Carlo

Well-defined targets from algorithmic,
software, and architecture standpoint

Phillip Colella’s “Seven dwarfs”

 If add 4 for embedded,
covers all 41 EEMBC
benchmarks
 8. Search/Sort
 9. Filter
10. Combinational logic
11. Finite State Machine

 Note: Data sizes (8 bit
to 32 bit) and types
(integer, character)
differ, but algorithms
the same

Slide from “Defining Software
Requirements for Scientific
Computing”, Phillip Colella, 2004

13

 SPECfp
 8 Structured grid

 3 using Adaptive Mesh Refinement

 2 Sparse linear algebra
 2 Particle methods
 5 TBD: Ray tracer, Speech Recognition, Quantum

Chemistry, Lattice Quantum Chromodynamics
(many kernels inside each benchmark?)

 SPECint
 8 Finite State Machine
 2 Sorting/Searching
 2 Dense linear algebra (data type differs from dwarf)
 1 TBD: 1 C compiler (many kernels?)

6/11 Dwarves Covers 24/30 SPEC2006

14

21st Century Code Generation

 Old CW: Takes a decade for compilers to
introduce an architecture innovation

 New approach: “Auto-tuners” 1st run
variations of program on computer to find
best combinations of optimizations (blocking,
padding, …) and algorithms, then produce C
code to be compiled for that computer
 E.g., PHiPAC (Portable High Performance Ansi C), Atlas (BLAS),

Sparsity (Sparse linear algebra), Spiral (DSP), FFT-W
 Can achieve large speedup over conventional compiler

 One Auto-tuner per dwarf?
 Exist for Dense Linear Algebra, Sparse Linear Algebra, Spectral

15

Reference

Best: 4x2

Mflop/s

Mflop/s

Sparse Matrix – Search for Blocking
for finite element problem [Im, Yelick, Vuduc, 2005]

16

21st Century Classification

 Old CW:
SISD vs. SIMD vs. MIMD

 3 “new” measures of parallelism
Size of Operands
Style of Parallelism
Amount of Parallelism

17

Operand Size and Type
Programmer should be able to specify data size,

type independent of algorithm
 1 bit (Boolean*)
 8 bits (Integer, ASCII)
 16 bits (Integer, DSP fixed pt, Unicode*)
 32 bits (Integer, SP Fl. Pt., Unicode*)
 64 bits (Integer, DP Fl. Pt.)
 128 bits (Integer*, Quad Precision Fl. Pt.*)
 1024 bits (Crypto*)
* Not supported well in most programming

languages and optimizing compilers

18

Style of Parallelism
Explicitly Parallel

Data Level Parallel
(≈ SIMD)

Thread Level Parallel
(≈ MIMD)

Streaming
(time is one
dimension)

General
DLP

No
Coupling

TLP

Barrier
Synch.

TLP

Tight
Coupling

TLP

Programmer wants code to run on as many
parallel architectures as possible so (if possible)

Architect wants to run as many different types
of parallel programs as possible so

Less HW Control,
Simpler Prog. model

More Flexible

19

Parallel Framework – Apps (so far)
 Original 7 dwarves: 6 data parallel, 1 no coupling TLP
 Bonus 4 dwarves: 2 data parallel, 2 no coupling TLP
 EEMBC (Embedded): Stream 10, DLP 19, Barrier TLP 2
 SPEC (Desktop): 14 DLP, 2 no coupling TLP

E
E
M
B
C

E
E
M
B
C

S
P
E
C

S
P
E
C D

w
a
r
f
S

D
W
A
R
F
S

Streaming DLP DLP No coupling TLPStreaming DLP DLP No coupling TLP Barrier TLP Tight TLPBarrier TLP Tight TLP

Most New
Architectures,
Languages

Most
Important
Apps?

20

New Parallel Framework

1

10

100

1000

P
ar

al
le

lis
m

1 4 16 64 256 1024
Data - Streaming

Data - General

TLP - No Coupling

TLP - Barrier

TLP - Tightly

Operand Size CryptoBoolean

 Given natural operand size and level of parallelism,
how parallel is computer or how must parallelism
available in application?

 Proposed Parallel Framework for Arch and Apps

E
E
M
B
C

E
E
M
B
C

S
P
E
C

S
P
E
C

D
W
A
R
F
S

D
W
A
R
F
S

>>

21

Parallel Framework - Architecture

1

10

100

1000

P
ar

al
le

lis
m

1 4 16 64 256 1024
Data - Streaming

Data - General

TLP - No Coupling

TLP - Barrier

TLP - Tightly

Operand Size CryptoBoolean

 Examples of good architectural matches to each
style

MMX

T
C
C

C
M
5

C
L
U
S
T
E
R

Vec-
tor

I
M
A
G
I
N
E

>>

22

Outline
 Part I: How to Hurt Scientific Productivity

 via Computer Architecture

 Part II: A New Agenda for Computer
Architecture
 1st Review Conventional Wisdom (New & Old)

in Technology and Computer Architecture
 21st century kernels, New classifications of apps and architecture

 Part III: A “Watering Hole” for
Parallel Systems Exploration
 Research Accelerator for Multiple Processors

 Conclusion

23

1. Algorithms, Programming Languages, Compilers,
Operating Systems, Architectures, Libraries, … not
ready for 1000 CPUs / chip

2. Only companies can build HW, and it takes years
• $M mask costs, $M for ECAD tools, GHz clock rates, >100M transistors

3. Software people don’t start working hard until
hardware arrives

• 3 months after HW arrives, SW people list everything that must be fixed,
then we all wait 4 years for next iteration of HW/SW

4. How get 1000 CPU systems in hands of researchers
to innovate in timely fashion on in algorithms,
compilers, languages, OS, architectures, … ?

5. Avoid waiting years between HW/SW iterations?

Problems with Sea Change

24

Build Academic MPP from FPGAs
 As ≈ 25 CPUs will fit in Field Programmable Gate

Array (FPGA), 1000-CPU system from ≈ 40 FPGAs?
• 16 32-bit simple “soft core” RISC at 150MHz in 2004 (Virtex-II)
• FPGA generations every 1.5 yrs; ≈ 2X CPUs, ≈ 1.2X clock rate

 HW research community does logic design (“gate
shareware”) to create out-of-the-box, MPP
 E.g., 1000 processor, standard ISA binary-compatible, 64-bit, cache-

coherent supercomputer @ ≈ 100 MHz/CPU in 2007

 RAMPants: Arvind (MIT), Krste Asanovíc (MIT), Derek Chiou (Texas),
James Hoe (CMU), Christos Kozyrakis (Stanford), Shih-Lien Lu
(Intel), Mark Oskin (Washington), David Patterson (Berkeley, Co-PI),
Jan Rabaey (Berkeley), and John Wawrzynek (Berkeley, PI)

 “Research Accelerator for Multiple Processors”

25

 Completed Dec. 2004 (14x17 inch 22-layer PCB)
Board:
5 Virtex II FPGAs, 18

banks DDR2-400
memory,
20 10GigE conn.

RAMP 1 Hardware

BEE2: Berkeley Emulation Engine 2
By John Wawrzynek and Bob Brodersen with
students Chen Chang and Pierre Droz

1.5W / computer,
5 cu. in. /computer,
$100 / computer

1000 CPUs :
≈1.5 KW,
 ≈ _ rack,

≈ $100,000

Box:
8 compute modules in

8U rack mount chassis

26

RAMP Milestones

Cluster, MPI≈1000 32b soft
(Microblaze)

2H06ScaleBlue
(Cal)

Transactional
memory SMP

8 PowerPC
32b hard cores

1H06Get
Started

Red
(Stanf
ord)

New ’06 FPGA,
new board

4X CPUs of ‘04
FPGA

2H07?3rd party
sells it

2.0

CC-NUMA,
shared address,
deterministic,
debug/monitor

128? soft 64b,
Multiple
commercial
ISAs

1H07?Full
Features

WhiteWhite
(All)(All)

CPUs DetailsTargetGoalName

27

Can RAMP keep up?
 FGPA generations: 2X CPUs / 18 months

 2X CPUs / 24 months for desktop microprocessors

 1.1X to 1.3X performance / 18 months
 1.2X? / year per CPU on desktop?

 However, goal for RAMP is accurate system
emulation, not to be the real system
 Goal is accurate target performance, parameterized

reconfiguration, extensive monitoring, reproducibility,
cheap (like a simulator) while being credible and fast
enough to emulate 1000s of OS and apps in parallel
(like hardware)

28

RAMP + Auto-tuners = Promised land?

 Auto-tuners in reaction to fixed, hard to
understand hardware

 RAMP enables perpendicular exploration
 For each algorithm, how can the architecture

be modified to achieve maximum
performance given the resource limitations
(e.g., bandwidth, cache-sizes, ...)

 Auto-tuning searches can focus on
comparing different algorithms for each
dwarf rather than also spending time
massaging computer quirks

29

Multiprocessing Watering Hole

 Killer app: ≈ All CS Research, Advanced Development
 RAMP attracts many communities to shared artifact
⇒ Cross-disciplinary interactions
⇒ Ramp up innovation in multiprocessing

 RAMP as next Standard Research/AD Platform?
(e.g., VAX/BSD Unix in 1980s, Linux/x86 in 1990s)

Parallel file system

Flight Data Recorder Transactional Memory
Fault insertion to check dependability

Data center in a box

Internet in a box

Dataflow language/computer

Security enhancements
Router design Compile to FPGA

Parallel languages

RAMPRAMP

128-bit Floating Point Libraries

30

Conclusion: [1 / 2]
Alternatives to Hurting Productivity
 Delivered productivity >> Peak performance
 Promote a simple, understandable model of execution and

performance
 No programming surprises!
 You’re not going fast if you’re going the wrong way

Use Programs of Future to design Computers,
Languages, … of the Future

 7 + 5? Dwarves, Auto-Tuners, RAMP
 Although architect’s, language designers focusing

toward right, most dwarves are toward left

Streaming DLP DLP No coupling TLPStreaming DLP DLP No coupling TLP Barrier TLP Tight TLPBarrier TLP Tight TLP

31

 Research Accelerator for Multiple Processors
 Carpe Diem: Researchers need it ASAP

 FPGAs ready, and getting better
 Stand on shoulders vs. toes: standardize on Berkeley

FPGA platforms (BEE, BEE2) by Wawrzynek et al
 Architects aid colleagues via gateware

 RAMP accelerates HW/SW generations
 System emulation + good accounting vs. FPGA computer
 Emulate, Trace, Reproduce anything; Tape out every day

 “Multiprocessor Research Watering Hole”
ramp up research in multiprocessing via common
research platform ⇒ innovate across fields ⇒ hasten
sea change from sequential to parallel computing

Conclusions [2 / 2]

32

Acknowledgments

 Material comes from discussions on new
directions for architecture with:
 Professors Krste Asanovíc (MIT), Raz Bodik, Jim Demmel, Kurt

Kuetzer, John Wawrzynek, and Kathy Yelick
 LBNL discussants Parry Husbands,

Bill Kramer, Lenny Oliker, and John Shalf
 UCB Grad students Joe Gebis and Sam Williams

 RAMP based on work of RAMP Developers:
 Arvind (MIT), Krste Asanovíc (MIT), Derek Chiou (Texas), James

Hoe (CMU), Christos Kozyrakis (Stanford), Shih-Lien Lu (Intel),
Mark Oskin (Washington), David Patterson (Berkeley, Co-PI), Jan
Rabaey (Berkeley), and John Wawrzynek (Berkeley, PI)

 See ramp.eecs.berkeley.edu

33

Backup Slides

34

Summary of Dwarves (so far)

 Original 7: 6 data parallel, 1 no coupling TLP
 Bonus 4: 2 data parallel, 2 no coupling TLP

 To Be Done: FSM

 EEMBC (Embedded): Stream 10, DLP 19
 Barrier (2), 11 more to characterize

 SPEC (Desktop): 14 DLP, 2 no coupling TLP
 6 dwarves cover 24/30; To Be Done: 8 FSM, 6 Big SPEC

 Although architect’s focusing toward right,
most dwarves are toward left

Streaming DLP DLP No coupling TLPStreaming DLP DLP No coupling TLP Barrier TLP Tight TLPBarrier TLP Tight TLP

35

Supporters (wrote letters to NSF)
 Gordon Bell (Microsoft)
 Ivo Bolsens (Xilinx CTO)
 Norm Jouppi (HP Labs)
 Bill Kramer (NERSC/LBL)
 Craig Mundie (MS CTO)
 G. Papadopoulos (Sun CTO)
 Justin Rattner (Intel CTO)
 Ivan Sutherland (Sun Fellow)
 Chuck Thacker (Microsoft)
 Kees Vissers (Xilinx)

 Doug Burger (Texas)
 Bill Dally (Stanford)
 Carl Ebeling (Washington)
 Susan Eggers (Washington)
 Steve Keckler (Texas)
 Greg Morrisett (Harvard)
 Scott Shenker (Berkeley)
 Ion Stoica (Berkeley)
 Kathy Yelick (Berkeley)

RAMP Participants: Arvind (MIT), Krste Asanovíc (MIT),
Derek Chiou (Texas), James Hoe (CMU), Christos Kozyrakis (Stanford),
Shih-Lien Lu (Intel), Mark Oskin (Washington), David Patterson (Berkeley,
Co-PI), Jan Rabaey (Berkeley), and John Wawrzynek (Berkeley, PI)

36

RAMP FAQ

 Q: What about power, cost, space in RAMP?
 A:

1.5 watts per computer
$100-$200 per computer
5 cubic inches per computer
 1000 computers for $100k to $200k,

1.5 KW, 1/3 rack
 Using very slow clock rate, very simple CPUs,

and very large FPGAs

37

RAMP FAQ

 Q: How will FPGA clock rate improve?
 A1: 1.1X to 1.3X / 18 months

 Note that clock rate now going up slowly on desktop

 A2: Goal for RAMP is system emulation, not
to be the real system
 Hence, value accurate accounting of target clock cycles,

parameterized design (Memory BW, network BW, …), monitor,
debug over performance

 Goal is just fast enough to emulate OS, app in parallel

38

RAMP FAQ

 Q: What about power, cost, space in RAMP?
 A:

1.5 watts per computer
$100-$200 per computer
5 cubic inches per computer

 Using very slow clock rate, very simple CPUs
in a very large FPGA (RAMP blue)

39

RAMP FAQ

 Q: How can many researchers get RAMPs?
 A1: RAMP 2.0 to be available for purchase

at low margin from 3rd party vendor
 A2: Single board RAMP 2.0 still interesting

as FPGA 2X CPUs/18 months
 RAMP 2.0 FPGA two generations later than RAMP 1.0, so

256? simple CPUs per board vs. 64?

40

Parallel FAQ
 Q: Won’t the circuit or processing guys solve

CPU performance problem for us?
 A1: No. More transistors, but can’t help with

ILP wall, and power wall is close to
fundamental problem
 Memory wall could be lowered some, but hasn’t

happened yet commercially

 A2: One time jump. IBM using “strained
silicon” on Silicon On Insulator to increase
electron mobility (Intel doesn’t have SOI)

⇒ clock rate↑ or leakage power↓
 Continue making rapid semiconductor investment?

41

Parallel FAQ

 Q: How afford 2 processors if power is
the problem?

 A: Simpler core, lower voltage and
frequency
 Power ≈ Capacitance x Volt2 x Frequency : 0.854≈ 0.5
 Also, single complex CPU inefficient in transistors,

power

42

RAMP Development Plan
1. Distribute systems internally for RAMP 1 development

 Xilinx agreed to pay for production of a set of modules for initial contributing
developers and first full RAMP system

 Others could be available if can recover costs

2. Release publicly available out-of-the-box MPP emulator
 Based on standard ISA (IBM Power, Sun SPARC, …) for binary compatibility
 Complete OS/libraries
 Locally modify RAMP as desired

3. Design next generation platform for RAMP 2
 Base on 65nm FPGAs (2 generations later than Virtex-II)
 Pending results from RAMP 1, Xilinx will cover hardware costs for initial set of

RAMP 2 machines
 Find 3rd party to build and distribute systems (at near-cost), open

source RAMP gateware and software
 Hope RAMP 3, 4, … self-sustaining

 NSF/CRI proposal pending to help support effort
 2 full-time staff (one HW/gateware, one OS/software)
 Look for grad student support at 6 RAMP universities from industrial donations

43

the stone soup of
architecture research

platforms

the stone soup of
architecture research

platforms

I/OI/O
PattersonPatterson

MonitoringMonitoring
KozyrakisKozyrakis

Net SwitchNet Switch
OskinOskin

CoherenceCoherence
HoeHoe

CacheCache
AsanovicAsanovic

PPCPPC
ArvindArvind

x86x86
LuLu

Glue-supportGlue-support
ChiouChiou

HardwareHardware
WawrzynekWawrzynek

44

 Gateware Design Framework

 Design composed of units
that send messages over
channels via ports

 Units (10,000 + gates)
 CPU + L1 cache, DRAM controller….

 Channels (≈ FIFO)
 Lossless, point-to-point,

unidirectional, in-order message
delivery…

Channel Receiving UnitSending Unit

Port

Port

Sending Unit

Channel

Port “DataOut”

DataOut

__DataOut_READY

__DataOut_WRITE

Receiving Unit

Port “DataIn”

DataIn

__DataIn_READ

__DataIn_READY

45

 Gateware Design Framework
 Insight: almost every large building block fits

inside FPGA today
 what doesn’t is between chips in real design

 Supports both cycle-accurate emulation of
detailed parameterized machine models and rapid
functional-only emulations

 Carefully counts for Target Clock Cycles
 Units in any hardware design language

(will work with Verilog, VHDL, BlueSpec, C, ...)
 RAMP Design Language (RDL) to describe plumbing

to connect units in

46

Quick Sanity Check
 BEE2 uses old FPGAs (Virtex II), 4 banks DDR2-400/cpu
 16 32-bit Microblazes per Virtex II FPGA,

0.75 MB memory for caches
 32 KB direct mapped Icache, 16 KB direct mapped Dcache

 Assume 150 MHz, CPI is 1.5 (4-stage pipe)
 I$ Miss rate is 0.5% for SPECint2000
 D$ Miss rate is 2.8% for SPECint2000, 40% Loads/stores

 BW need/CPU = 150/1.5*4B*(0.5% + 40%*2.8%)
 = 6.4 MB/sec

 BW need/FPGA = 16*6.4 = 100 MB/s
 Memory BW/FPGA = 4*200 MHz*2*8B = 12,800 MB/s
 Plenty of BW for tracing, …

47

RAMP FAQ on ISAs
 Which ISA will you pick?

 Goal is replaceable ISA/CPU L1 cache, rest infrastructure unchanged (L2
cache, router, memory controller, …)

 What do you want from a CPU?
 Standard ISA (binaries, libraries, …), simple (area), 64-bit (coherency),

DP Fl.Pt. (apps)
 Multithreading? As an option, but want to get to 1000 independent

CPUs

 When do you need it? 3Q06
 RAMP people port my ISA , fix my ISA?

 Our plates are full already
 Type A vs. Type B gateware
 Router, Memory controller, Cache coherency, L2 cache, Disk module,

protocol for each
 Integration, testing

48

Handicapping ISAs

 Got it: Power 405 (32b), SPARC v8 (32b),
Xilinx Microblaze (32b)

 Very Likely: SPARC v9 (64b)
 Likely: IBM Power 64b
 Probably (haven’t asked): MIPS32, MIPS64
 No: x86, x86-64

 But Derek Chiou of UT looking at x86 binary translation

 We’ll sue: ARM
 But pretty simple ISA & MIT has good lawyers

49

Related Approaches (1)
 Quickturn, Axis, IKOS, Thara:

 FPGA- or special-processor based gate-level hardware emulators
 Synthesizable HDL is mapped to array for cycle and bit-accurate netlist

emulation
 RAMP’s emphasis is on emulating high-level architecture behaviors

 Hardware and supporting software provides architecture-level
abstractions for modeling and analysis

 Targets architecture and software research
 Provides a spectrum of tradeoffs between speed and

accuracy/precision of emulation

 RPM at USC in early 1990’s:
 Up to only 8 processors
 Only the memory controller implemented with configurable logic

50

Related Approaches (2)
 Software Simulators
 Clusters (standard microprocessors)
 PlanetLab (distributed environment)
 Wisconsin Wind Tunnel (used CM-5 to simulate

shared memory)
All suffer from some combination of:

 Slowness, inaccuracy, scalability, unbalanced
computation/communication, target inflexibility

51

RAMP uses (internal)

Internet-in-a-BoxInternet-in-a-Box
PattersonPatterson

TCCTCC
KozyrakisKozyrakis

DataflowDataflow
OskinOskin

Reliable MPReliable MP
HoeHoe

1M-way MT1M-way MT
AsanovicAsanovic

BlueSpecBlueSpec
ArvindArvind

x86x86
LuLu

Net-uPNet-uP
ChiouChiou

WawrzynekWawrzynek

BEEBEE

52

RAMP Example: UT FAST
 1MHz to 100MHz, cycle-accurate, full-system,

multiprocessor simulator
 Well, not quite that fast right now, but we are using embedded 300MHz

PowerPC 405 to simplify

 X86, boots Linux, Windows, targeting 80486 to
Pentium M-like designs
 Heavily modified Bochs, supports instruction trace and rollback

 Working on “superscalar” model
 Have straight pipeline 486 model with TLBs and caches

 Statistics gathered in hardware
 Very little if any probe effect

 Work started on tools to semi-automate micro-
architectural and ISA level exploration
 Orthogonality of models makes both simpler

Derek Chiou, UTexas Derek Chiou, UTexas

53

Example: Transactional Memory

 Processors/memory hierarchy that support
transactional memory

 Hardware/software infrastructure for
performance monitoring and profiling
 Will be general for any type of event

 Transactional coherence protocol

Christos Kozyrakis, StanfordChristos Kozyrakis, Stanford

54

Example: PROTOFLEX

 Hardware/Software Co-simulation/test
methodology

 Based on FLEXUS C++ full-system
multiprocessor simulator
 Can swap out individual components to hardware

 Used to create and test a non-block MSI
invalidation-based protocol engine in
hardware

James Hoe, CMUJames Hoe, CMU

55

Example: Wavescalar Infrastructure

 Dynamic Routing Switch
 Directory-based coherency scheme and

engine

Mark Oskin, U WashingtonMark Oskin, U Washington

56

Example RAMP App: “Internet in a Box”

 Building blocks also ⇒ Distributed Computing
 RAMP vs. Clusters (Emulab, PlanetLab)

Scale: RAMP O(1000) vs. Clusters O(100)
Private use: $100k ⇒ Every group has one
Develop/Debug: Reproducibility, Observability
Flexibility: Modify modules (SMP, OS)
Heterogeneity: Connect to diverse, real routers

 Explore via repeatable experiments as vary
parameters, configurations vs. observations on
single (aging) cluster that is often idiosyncratic

David Patterson, UC BerkeleyDavid Patterson, UC Berkeley

57

 Old CW: Programming is hard
 New CW: Parallel programming is really hard

 2 kinds of Scientific Programmers
 Those using single processor
 Those who can use up to 100 processors

 Big steps for programmers
 From 1 processor to 2 processors
 From 100 processors to 1000 processors

 Can computer architecture make many processors look like fewer
processors, ideally one?

 Old CW: Who cares about I/O in Supercomputing?
 New CW: Supercomputing

= Massive data + Massive Computation

Conventional Wisdom (CW)
in Scientific Programming

58

Size of Parallel Computer

 What parallelism achievable with good or bad
architectures, good or bad algorithms?
 32-way: anything goes
 100-way: good architecture and bad algorithms

 or bad architecture and good algorithms
 1000-way: good architecture and good algorithm

59

1

10

100

1000

P
ar

al
le

lis
m

1 4 16 64 256 1024
Data

TLP - No coupling

TLP - Stream

TLP - Barrier

TLP - Tightly

Data flow

Operand Size

Parallel Framework - Benchmarks

CryptoBoolean

 EEMBC

Angle to Time
CAN Remote

Bit
Manipulation

Basic Int

Cache Buster

60

1

10

100

1000

P
ar

al
le

lis
m

1 4 16 64 256 1024
Data

TLP - No coupling

TLP - Stream

TLP - Barrier

TLP - Tightly

Data flow

Operand Size

IIR
PWM

Road Speed

Matrix

Parallel Framework - Benchmarks

CryptoBoolean

 EEMBC

iDCT

Table Lookup
FFT
iFFT

FIR

Pointer
Chasing

61

1

10

100

1000

P
ar

al
le

lis
m

1 4 16 64 256 1024
Data

TLP - No coupling

TLP - Stream

TLP - Barrier

TLP - Tightly

Data flow

Operand Size

JPEG

Parallel Framework - Benchmarks

CryptoBoolean

 EEMBC

Hi Pass
Gray Scale

RGB
To

YIQ
RGB
To

CMYK
JPEG

62

1

10

100

1000

P
ar

al
le

lis
m

1 4 16 64 256 1024
Data

TLP - No coupling

TLP - Stream

TLP - Barrier

TLP - Tightly

Data flow

Operand Size

Parallel Framework - Benchmarks

CryptoBoolean

 EEMBC

IP NAT,
QoS

OSPF, TCP

IP
Packet
Check

Route
Lookup

63

1

10

100

1000

P
ar

al
le

lis
m

1 4 16 64 256 1024
Data

TLP - No coupling

TLP - Stream

TLP - Barrier

TLP - Tightly

Data flow

Operand Size

Parallel Framework - Benchmarks

CryptoBoolean

 EEMBC

Text
Processing

Dithering
Image

Rotation

64

1

10

100

1000

P
ar

al
le

lis
m

1 4 16 64 256 1024
Data

TLP - No coupling

TLP - Stream

TLP - Barrier

TLP - Tightly

Data flow

Operand Size

Parallel Framework - Benchmarks

CryptoBoolean

 EEMBC

Bit Alloc

Autocor

Convolution,

Viterbi

65

SPECintCPU: 32-bit integer

 FSM: perlbench, bzip2, minimum cost flow
(MCF), Hidden Markov Models (hmm), video
(h264avc), Network discrete event simulation,
2D path finding library (astar), XML
Transformation (xalancbmk)

 Sorting/Searching: go (gobmk), chess (sjeng),
 Dense linear algebra: quantum computer

(libquantum), video (h264avc)
 TBD: compiler (gcc)

66

SPECfpCPU: 64-bit Fl. Pt.
 Structured grid: Magnetohydrodynamics (zeusmp),

General relativity (cactusADM), Finite element code
(calculix), Maxwell's E&M eqns solver (GemsFDTD),
Fluid dynamics (lbm; leslie3d-AMR), Finite element
solver (dealII-AMR), Weather modeling (wrf-AMR)

 Sparse linear algebra: Fluid dynamics (bwaves),
Linear program solver (soplex),

 Particle methods: Molecular dynamics (namd, 64-bit;
gromacs, 32-bit),

 TBD: Quantum chromodynamics (milc), Quantum
chemistry (gamess), Ray tracer (povray), Quantum
crystallography (tonto), Speech recognition (sphinx3)

67

1
10

100
1000

10000
100000

P
a
ra

ll
e
li
s
m

1 4 16 64 256 1024
Data

TLP - No coupling

TLP - Stream

TLP - Barrier

TLP - Tightly

Data flow

Operand Size

Parallel Framework - Benchmarks

CryptoBoolean

 7 Dwarfs: Use simplest parallel model that works

Monte Carlo

Dense
Structured

Unstructured

Sparse
FFT

Particle

68

1

10

100

1000

P
ar

al
le

lis
m

1 4 16 64 256 1024
Data

TLP - No coupling

TLP - Stream

TLP - Barrier

TLP - Tightly

Data flow

Operand Size

Parallel Framework - Benchmarks

CryptoBoolean

 Additional 4 Dwarfs (not including FSM, Ray tracing)

Comb.
Logic

Searching / Sorting

cryptoFilter

69

1

10

100

1000

P
ar

al
le

lis
m

1 4 16 64 256 1024
Data

TLP - No coupling

TLP - Stream

TLP - Barrier

TLP - Tightly

Data flow

Operand Size
CryptoBoolean

Angle to Time
CAN Remote

Bit
Manipulation

Basic Int

Cache Buster

8 - 32 bitTightly Coupled102

8 - 32 bitStream1010

8 - 32 bitData1005

8 - 32 bitData100014

OperandStyleParallelismNumber EEMBC
kernels

Parallel Framework – EEMBC Benchmarks

