
1

Best Practices for Hybrid OpenMP/MPI
Programming on Hopper.

 The Cray Center of Excellence:
Performance Optimization for the Multicore

Era
GTC, Gamess, fvCAM and PARATEC

Nicholas J Wright, Karl Fuerlinger, Hongzhang Shan,
Tony Drummond, Andrew Canning, and John Shalf

 NERSC/LBNL
Stephane Ethier

Princeton Plasma Physics Lab
Nathan Wichmann, Marcus Wagner, Sarah Anderson, Ryan

Olsen, and Mike Aamodt
 Cray Inc

2

The Multicore era
•  Moore’s Law continues

•  Traditional sources of
performance improvement
ending

–  Old Trend: double clock frequency
every 18th months

–  New Trend: Double # cores every
18 months

•  Power Limits Drive a number
of Broader Technology Trends

–  Number Cores 
–  Memory Capacity per core 
–  Memory Bandwidth per FLOP 
–  Network Bandwidth per FLOP 

Figure courtesy of Kunle Olukotun, Lance
Hammond, Herb Sutter, and Burton Smith

3

The Multicore era
•  Moore’s Law continues

•  Traditional sources of
performance improvement
ending

–  Old Trend: double clock frequency
every 18th months

–  New Trend: Double # cores every
18 months P. Kogge

•  Implication for NERSC users
–  3x increase in system performance with no per-core performance improvement
–  12x more cores in NERSC-6 (hopper) than NERSC-5 (franklin) (4 cores to 24 cores)
–  Same or lower memory capacity per core on compute nodes

•  Flat MPI-only model for parallelism will not scale
–  Need to transition to new model that can sustain massive growth in parallelism
–  Hopper changes are first step in a long-term technology trend
–  NERSC needs to take pro-active role in guiding transition of user community

4

Long-Term Concerns for NERSC Users

107

106

105

104

103

102

10

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Top500

COTS/MPP + MPI

COTS/MPP + MPI (+ OpenMP)

GPU CUDA/OpenCL
Or Manycore BG/Q, R

Exascale + ???

Franklin (N5)
19 TF Sustained
101 TF Peak

Franklin (N5) +QC
36 TF Sustained
352 TF Peak

Hopper (N6)
>1 PF Peak

NERSC-7
10 PF Peak

NERSC-8
100 PF Peak

NERSC-9
1 EF Peak

P
ea

k
Te

ra
flo

p/
s

5

NERSC/Cray “Programming Models Center of Excellence” combines:
•  Berkeley Lab strength in advanced programming models, multicore tuning, and

application benchmarking
•  Cray strength in advanced programming models, optimizing compilers, and

benchmarking
Immediate question: What is the best way to use cores in N6 (Hopper) node?
•  Flat MPI - Today’s preferred mode of operation

–  Model has diverged from reality (the machine is NOT flat)
–  4 - 8 cores? ✔ 128 - 1024 cores? ✗

•  MPI + OpenMP
•  MPI + pthreads
•  MPI + PGAS
•  PGAS, CUDA, OPENCL, ….

Center of Excellence with Cray

What should we tell
NERSC users to do ?

Multicore Era: Massive on-chip
concurrency necessary for
reasonable power use

6

NERSC COE: Project Plan

•  Phase 1: Prepare users for Hopper
–  NERSC-6 application benchmarks provide representative

set of NERSC workload and broad cross-section of
algorithms

–  User hybrid OpenMP/MPI model because it is most mature
–  Analyze performance of hybrid applications
–  Work with USG to create training materials for Hopper users

•  Phase 2: Prepare users for next decade
–  Evaluate advanced programming models
–  Identify durable approach for programming on path to

exascale

7

AMD – Magny-Cours

8

P2

P3

Memory
Memory

Memory

Memory
P1

Hopper Memory Heirarchy

•  “Deeper” Memory Hierarchy
–  NUMA: Non-Uniform Memory Architecture
–  All memory is transparently accessible but...
–  Longer memory access time to “remote” memory

2xDDR1333 channel
21.3 GB/s

3.2GHz x8 lane HT
6.4 GB/s bidirectional

3.2GHz x16 lane HT
12.8 GB/s bidirectional

Memory
Memory

Memory
Memory

Hopper Node

P0 NUMA NODE NUMA NODE

NUMA NODE NUMA NODE

– A process running on NUMA node 0 accessing NUMA
node 1 memory can adversely affect performance.

9

What are the Basic Differences
Between MPI and OpenMP?

•  Program is a collection of processes.
•  Usually fixed at startup time

•  Single thread of control plus private
address space -- NO shared data.

•  Processes communicate by explicit send/
receive pairs

•  Coordination is implicit in every
communication event.

•  MPI is most important example.

K.Yelick, CS267 UCB

•  Program is a collection of threads.
•  Can be created dynamically.

•  Threads have private variables and
shared variables

•  Threads communicate implicitly by
writing and reading shared variables.
•  Threads coordinate by synchronizing

on shared variables
•  OpenMP is an example

Shared Address Space Model

Message Passing Model
Interconnect

10

11

12

Stream Benchmark

Double a[N],b[N],c[N};
…….
#pragma omp parallel for
#endif
 for (j=0; j<VectorSize; j++) {
 a[j] = 1.0; b[j] = 2.0; c[j] = 0.0;
 }
#pragma omp parallel for
 for (j=0; j<VectorSize; j++) {
 a[j]=b[j]+d*c[j];
}
…

13

Stream NUMA effects - Hopper

14

NERSC-6 Applications Cover
Algorithm and Science Space

Science areas
Dense
linear

algebra

Sparse
linear

algebra

Spectral
Methods

(FFT)s

Particle
Methods

Structured
Grids

Unstructured
or AMR Grids

Accelerator
Science X X

IMPACT-T
X

IMPACT-T
X

IMPACT-T X

Astrophysics X X
MAESTRO X X X

MAESTRO
X

MAESTRO

Chemistry X
GAMESS X X X

Climate X
CAM

X
CAM X

Combustion
X

MAESTRO
X

AMR Elliptic

Fusion X X
X

GTC
X

GTC
X

Lattice Gauge X
MILC

X
MILC

X
MILC

X
MILC

Material Science X
PARATEC

X
PARATEC

X
X

PARATEC

15

Hybrid MPI-OpenMP Programming

Benefits
 + Less Memory usage
 + Focus on # nodes (which is not increasing as fast) instead of # cores
 + Larger messages, less time in MPI

 + Attack different levels of parallelism than possible with MPI
Potential Pitfalls

-  NUMA / Locality effects
-  Synchronization overhead
-  Inability to saturate network adaptor

Mitigations
-  User training
-  Code examples using real applications
-  Hopper system configuration changes
-  Feedback to Cray on compiler & system software development

16

Important to Set Expectations

•  OpenMP + MPI unlikely to be faster than pure
MPI - but it will almost certainly use less
memory

•  Very important to consider your overall
performance
–  individual kernels maybe slower with OpenMP but the code

overall maybe faster

•  Sometimes it maybe better to leave cores idle
–  #1 Memory Capacity
–  #2 Memory Bandwidth
–  #3 Network Bandwidth
–  #4 Flops…….

17

Understanding Hybrid
MPI/OPENMP Model

T(NMPI,NOMP) = t(NMPI) + t(NOMP) + t(NMPI,NOMP) + tserial

count=G/NMPI

 Do i=1,count

count=G/NOMP
!$omp do private (i)
Do i=1,G

count=G/(NOMP*NMPI)
!$omp do private (i)
Do i=1,G/NMPI

count=G
Do i=1,G

Serial

Serial

Parallel

Serial

Parallel

Serial

MPI

18

Breaking Down the Runtime -
Tools

•  IPM – Integrated Performance Monitoring
http://ipm-hpc.sourceforge.net
–  Time in MPI, Messages sizes, Communication

Patterns
–  Simple Interface to PAPI
–  OpenMP profiler module added

•  OMPP – OpenMP Profiler
 http://www.cs.utk.edu/~karl/ompp.html

–  Time Spent in Openmp per region, Load
imbalance, Overhead

–  Also Interfaces to PAPI

19

20

Talk Outline

•  Gyrokinetic Toroidal Code (GTC)
•  Parallel Total Energy Code (PARATEC)
•  Finite Volume Community Atmosphere

Model (fvCAM)
•  General Atomic and Molecular

Electronic Structure System (Gamess)
•  Conclusions
•  Next Steps

21

Gyrokinetic Toroidal Code (GTC)

•  3D Particle-in-cell (PIC)
•  Used for simulations of non-linear

gyrokinetic plasma microturbulence
•  Paralleised with OpenMP and MPI.
•  ~15K lines of Fortran 90
•  OpenMP version 56 parallel regions/loops

(almost all)
•  10 loops required different implementation

for OpenMP version (~250 lines)

22

Particle-in-cell (PIC) method

23

Important Routines in GTC

poisson
charge
smooth
pusher
field
shift
load

Setup
"

Load
"

Charge "
"

Poisson "
"

Field "
"

Push "
"

Shift"
"

Charge "
"

Poisson "
"

Field "

Poisson – charge distribution  Electric field
Charge – deposits charge on Grid
Smooth – smoothes charge on grid
Pusher – Moves the Ions/Electrons
Field – Calculates Forces due to Electric
field
Shifter – Exchanges between MPI tasks

24

GTC MPI+OpenMP Performance

G
O
O
D

0

500

1000

1500

2000

2500

3000

3500

1 2 4 6 12

1536 768 384 256 128

Ti
m

e
/ S

ec
s

OPENMP threads / MPI tasks

pusher shift charge poisson

25

GTC - Memory Usage

0

2

4

6

8

10

12

14

16

1  2  3  4  6  12 

96  48  32  24  16  8 

M
em

or
y

pe
r n

od
e

/ G
B

OPENMP threads / MPI tasks

26

Small Test Case – 96 cores –
Breakdown

0

20

40

60

80

100

120

140

160

180

200

1  2  3  4  6  12 

96  48  32  24  16  8 

tim
e

/ s

OPENMP threads / MPI tasks

poisson

charge

smooth

pusher

field

shift

27

Small Test Case – 96 cores –
Breakdown

0

20

40

60

80

100

120

140

160

180

200

1  2  3  4  6  12 

96  48  32  24  16  8 

tim
e

/ s

OPENMP threads / MPI tasks

poisson

charge

smooth

pusher

field

shift

28

Small Test Case – 96 cores –
Breakdown

0

20

40

60

80

100

120

140

160

180

200

1  2  3  4  6  12 

96  48  32  24  16  8 

tim
e

/ s

OPENMP threads / MPI tasks

poisson

charge

smooth

pusher

field

shift

29

Small Case - Performance
Breakdown

0

50

100

150

200

250

300

350

400

450

500

0  2  4  6  8  10  12  14 

tim
e

/ s

Number OPENMP threads

wallt

MPI time

Poisson

Wallt-MPI-Poisson

30

GTC: Communication Analysis

0

10

20

30

40

50

60

70

80

0 2 4 6 8 10 12

Ti
m

e
/s

Number OPENMP threads per MPI task

Sendrecv time

Allreduce time

0.E+00
1.E+06
2.E+06
3.E+06
4.E+06

0 2 4 6 8 10 12

Av
er

ag
e

M
es

sa
ge

 S
iz

e
/

B
yt

es

Number OPENMP threads per MPI task

Sendrecv Aver mess
Allreduce Average Message

31

Strong Scaling

0

20000

40000

60000

80000

100000

120000

140000

0 200 400 600 800 1000 1200 1400

Ti
m

e
/ s

Ncores

pusher
shift
charge
poisson
smooth
total

32

Strong Scaling cont.

0

20000

40000

60000

80000

100000

120000

140000

0 200 400 600 800 1000 1200 1400

Ti
m

e
/ s

Ncores

total
OMP time
MPI time
Serial

33

0

20000

40000

60000

80000

100000

120000

140000

0 200 400 600 800 1000 1200 1400

Ti
m

e
/ s

Ncores

total
OMP time
R00025 poisson.f90 (92-100)
R00015 chargei.F90 (29-74)
R00053 pushi.f90 (64-111)
R00054 pushi.f90 (123-236)
R00016 chargei.F90 (86-161)

Strong Scaling cont.

!$omp parallel do private(i,j)
 do i=1,mi

 dnitmp(i,threadid) =
…
!$omp critical
 do k=1,nthreads

 do j=1,mgrid
 dni(j) = dni(j)+dnitmp(j,k)

.

34

0

20000

40000

60000

80000

100000

120000

140000

0 200 400 600 800 1000 1200 1400

Ti
m

e
/ s

Ncores

total
OMP time
R00025 poisson.f90 (92-100)
R00015 chargei.F90 (29-74)
R00053 pushi.f90 (64-111)
R00054 pushi.f90 (123-236)
R00016 chargei.F90 (86-161)

Strong Scaling cont.

!$omp parallel do private(i,j)
 do i=1,mgrid
 do j=1,nindex(i,k)
 ptilde(i)=ptilde(i)+ring(j,i,k)*phitmp(indexp(j,i,k))
 ..

35

PARATEC - First Principles
Electronic Structure Calculations

•  First Principles: Full quantum mechanical treatment
of electrons

•  Gives accurate results for Structural and Electronic
Properties of Materials, Molecules, Nanostructures

•  Computationally very expensive (eg. grid of > 1
million points for each electron)

•  Density Functional Theory (DFT) Plane Wave Based
(Fourier) methods probably largest user of
Supercomputer cycles in the world.

•  ~13% total NERSC workload including single
“biggest” code VASP

•  PARAllel Total Energy Code (PARATEC) proxy in the
NERSC6 benchmark suite

36

ab initio Density Functional
Theory (Kohn 98 Nobel Prize)

Kohn Sham Equation (65): The many body ground
state problem can be mapped onto a single particle
problem with the same electron density and a
different effective potential (cubic scaling).

Use Local Density Approximation
(LDA) for (good Si,C)

Many Body Schrodinger Equation (exponential scaling)

37

Load Balancing & Parallel Data
Layout

•  Wavefunctions stored as spheres of points (100-1000s spheres for 100s atoms)

•  Data intensive parts (BLAS) proportional to number of Fourier components

•  Pseudopotential calculation, Orthogonalization scales as N3 (atom system)

•  FFT part scales as N2logN

FFT

 Data distribution: load balancing constraints (Fourier Space):

•  each processor should have same number of Fourier coefficients (N3 calcs.)

•  each processor should have complete columns of Fourier coefficients (3d FFT)

Give out sets of columns of data to each processor

38

Basic algorithm & Profile of
Paratec

•  Orthogonalization – ZGEMM
–  N3

•  FFT
– N ln N

•  At small concurrencies ZGEMM
dominates at large FFT

39

What OpenMP can do for
Paratec?

•  ZGEMM very amenable to threading

•  FFT also
– Can thread FFT library calls themselves
– Can ‘package’ individual FFT’s so that

messages are combined -> more efficient
communication

0
0.2
0.4
0.6
0.8

1
1.2

1 2 4 6 12

Pa
ra

lle
l E

ffi
ci

en
cy

Number of Threads

40

Paratec MPI+OpenMP Performance

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 3 6 12

768 384 256 128 64

Ti
m

e
/ s

OpenMP threads / MPI tasks

FFT "DGEMM" MPI

G
O
O
D

41

Parallel “ZGEMM”

0

200

400

600

800

1000

1200

1400

1 2 3 6 12

768 384 256 128 64

Ti
m

e
/ s

OpenMP threads / MPI tasks

Computation Communication

42

FFT Breakdown

0

200

400

600

800

1000

1200

1400

1600

1 2 3 6 12

768 384 256 128 64

Ti
m

e
/ s

OpenMP threads / MPI tasks

Computation Communication

43

PARATEC - Memory Usage

0

2

4

6

8

10

12

1 2 3 6 12

768 384 256 128 64

M
em

or
y

pe
r n

od
e

(G
B

)

OpenMP threads / MPI tasks

44

Finite Volume Community
Atmospheric Model- fvCAM

•  Dynamics and physics use separate decompositions
–  physics utilizes a 2D longitude/latitude

decomposition
–  dynamics utilizes multiple decompositions

•  FV dynamics 2D block latitude/vertical and 2D
block longitude/latitude

•  Decompositions are joined with transposes
•  Each subdomain is assigned to at most one MPI

task
•  Additional parallelism via OpenMP ~500 OpenMP

directives over 72 .F90 files

45

fvCAM coordinate system

•  576x361x28 grid (Longitude x Latitude
x Vertical) (X Y Z)

•  Original problem definition - 240 MPI
tasks - 60(Y) x 4(Z,X) decomposition

•  Dynamics uses Lat-Vert and Lat-Long
•  Physics uses Lat-Long decomposition

InitializationTranspose  Dynamics1  Transpose Dynamics2  Physics Dynamics

46

fvCAM MPI+OpenMP
Performance

0

100

200

300

400

500

600

700

1 2 3 6 12

240 120 80 40 20

Ti
m

e
/ s

OpenMP threads / MPI tasks

Dynamics Physics OpenMP MPI

G
O
O
D

47

fvCAM Physics

0

20

40

60

80

100

120

140

1 2 3 6 12

240 120 80 40 20

Ti
m

e
/ s

OpenMP threads / MPI tasks

OpenMP MPI

48

CAM: Physics

•  Columnar processes (typically
parameterized) such as precipitation,
cloud physics, radiation, turbulent
mixing lead to large amounts of work
per thread and high efficiency

!$OMP PARALLEL DO PRIVATE (C)
do c=begchunk, endchunk
 call tphysbc (ztodt, pblht(1,c), tpert(1,c),

snowhland(1,c),phys_state(c),phys_tend(c), pbuf,fsds(1,c)....
 enddo

49

fvCAM - Dynamics

0

100

200

300

400

500

600

1 2 3 6 12

240 120 80 40 20

Ti
m

e
/ s

OpenMP threads / MPI tasks

OpenMP MPI

50

0

2

4

6

8

10

12

14

1 2 3 6 12

240 120 80 40 20

M
em

or
y

pe
r N

od
e

(G
B

)

OpenMP threads / MPI tasks

Less Memory Usage with OpenMP
Compared to Flat MPI

fvCAM 

51

Advanced OpenMP techniques

52

GTC - Shifte Routine

•  Which e- to move?
•  Pack e- to be moved
•  Communicate # e- to

move
•  Repack non-moving e-

•  Send/Recv e-

•  And again….

0

0.2

0.4

0.6

0.8

1

1.2

R
el

at
iv

e
tim

e

serial
openmp
mpi

53

Shifte Routine

•  Which e- to move? ✔
•  Pack e- to be moved ✗
•  Communicate # e- to

move ✗
•  Repack non-moving e-

✗

•  Send/Recv e- ✗

•  And again…..
0

0.2

0.4

0.6

0.8

1

1.2

R
el

at
iv

e
tim

e

serial
openmp
mpi

54

OPENMP tasking

Executing Thread Encountering Task
 Region Adds Task to pool
#pragma omp task

Idle Threads Can
Execute Tasks in pool

55

Tasking - Results

0

0.2

0.4

0.6

0.8

1

1.2

old new

R
el

at
iv

e
tim

e

serial
openmp
mpi

Shifter ~30% faster !
GTC overall ~5% faster

56

Summary

•  OpenMP + MPI can be faster than pure MPI –
and is often comparable in performance

•  Beware NUMA !
– Don’t use >6 OpenMP threads unless absolutely

necessary or you can ‘first-touch’ perfectly
•  Beware !$OMP critical !

–  Unless you absolutely have to
•  Need Holistic view of your codes

performance bottlenecks
–  Adding more cores may not help –transpose

57

Advice to NERSC Users - Hopper

1.  Should I use OpenMP?
+  Need to save memory and have duplicated

structures across MPI tasks
+  Routine that parallelises with OPENMP only –

Poisson routine in GTC
-  Reduction operations – charge & push in GTC
-  Threads can be hard – locks, race conditions

2.  How hard is it to change my code?
•  Easier than serial to MPI
•  Easier than UPC/ CAF ?

3.  How do I know if it’s working or not?
–  IPM, OMPP, TAU, HPCToolkit, Craypat

58

Lessons for NERSC Users-
Longer Term

•  Are you going to tell me in 3 years that
I should have used CAF/UPC/Chapel ?

•  Uncertainty about Future Machine
model

–  GPU programming model – streaming
–  Many lightweight cores

•  OpenMP as it stands today is not
ideally suited to either model

–  Mend it? Broken ?? (GPU flavor of OMP)

59

Next Steps for COE

•  Phase 1 completing
–  Application studies completed
–  Final technical report by end of year

•  Phase 2 starting up
–  Apply lessons from phase1 to leading application codes

•  VASP: largest user base at NERSC (create OpenMP implementation)

–  Selecting advanced programming models for study
–  Selecting representative applications and kernels from

NERSC-6 applications
•  GTS: represents broad class of PIC algorithms (create CAF version)

60

