
Tuning the MPI Runtime Environment
and Best Practices for Message

Passing on Hopper

Howard Pritchard
howardp@cray.com

Passing on Hopper

NERSC Users Group Workshop
February 2012

� Brief overview of Gemini NIC

� MPICH2 software stack overview

� Point-to-point messaging

� Inter-node messaging

� Intra-node messaging� Intra-node messaging

� Collectives

� Additional Performance Tuning Suggestions

� What Are We Working on Now?

2

� FMA (Fast Memory Access)
� Used for small messages

� Called directly from user mode

� Very low overhead � good latency

� BTE (Block Transfer Engine)
� Used for larger messages

� Processed via the OS (no direct user-mode access)� Processed via the OS (no direct user-mode access)

� All ranks on node share BTE resources (4 virtual channels/ node)

� Higher overhead to initiate transfer

� Once initiated, BTE transfers proceed without processor intervention

� I/O MMU
� Limited support for registering 4KB pages

� Optimized for large pages (2MB and larger)

3

� Initial MPT Gemini Release - MPT 5.0 (June 2010)
� Uses the ANL CH3/Nemesis device

� Cray wrote a GNI Network Module (NetMod) that plugs into Nemesis

� GNI carries forward to future Cray interconnects

Application

MPI Interface

4

MPICH2

ADI3

CH3 Device

CH3 Interface

Xpmem

Nemesis NetMod Interface

GNIGMMXPSMIBTCP
Cray XE6 specific

components

P
M

I

Nemesis

Jo
b

la
un

ch
er

ROMIO

ADIO

Lus. GPFS ...

Optimized
Collectives

5

� Eager Message Protocol
� E0 and E1 Paths

� Rendezvous Message Protocol
� R0 and R1 Paths

� MPI environment variables that alter those paths

6

� Four Main Pathways through the MPICH2 GNI NetMod
� Two EAGER paths (E0 and E1)

� Two RENDEZVOUS (aka LMT) paths (R0 and R1)

� Selected Pathway is Based (generally) on Message Size

0 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1MB ++

E0 E1 R0 R1

� MPI env variables affecting the pathway
� MPICH_GNI_MAX_VSHORT_MSG_SIZE

� Controls max size for E0 Path (Default varies with job size: 216-984 bytes)**

� MPICH_GNI_MAX_EAGER_MSG_SIZE

� Controls max message size for E1 Path (Default is 8K bytes)

� MPICH_GNI_NDREG_MAXSIZE

� Controls max message size for R0 Path (Default is 4M bytes) **

� MPICH_GNI_LMT_PATH=disabled

� Can be used to disable the entire Rendezvous (LMT) Path

7

� Sender’s data made available to the receiver whether or

not a matching receive has been posted.

� Two EAGER Pathways
� E0 – small messages that fit into GNI SMSG Mailbox

� Default mailbox size varies with number of ranks in the job

Ranks in Job Max user data (MPT 5.3) MPT 5.4 and later

< = 512 ranks 984 bytes 8152 bytes

� Use MPICH_GNI_MAX_VSHORT_MSG_SIZE to adjust size

� E1 – too big for SMSG Mailbox, but small enough to still go EAGER

� Use MPICH_GNI_MAX_EAGER_MSG_SIZE to adjust size

� Requires extra copies

8

< = 512 ranks 984 bytes 8152 bytes

> 512 and <= 1024 984 bytes 2008 bytes

> 1024 and < 16384 472 bytes 472 bytes

> 16384 ranks 216 bytes 216 bytes

Sender Receiver

1. GNI SMSG Send (MPI header + user data)

SMSG Mailboxes

CQs

PE 1

PE 82

PE 5
PE 22

PE 96

EAGER messages that fit in the GNI SMSG Mailbox

2. Memcpy

� GNI SMSG Mailbox size changes with the number of ranks in the job

� If user data is 16 bytes or less, it is copied into the MPI header

� Mailboxes use large pages by default (even if app isn’t using them itself)
9

Sender ReceiverSMSG Mailboxes

CQs

PE 1

PE 82

PE 5
PE 22

PE 96

EAGER messages that don’t fit in the GNI SMSG Mailbox

2. GNI SMSG Send (MPI header)

1. Memcpy data to pre-allocated MPI buffers

� User data is copied into internal MPI buffers on both send and receive side

� Default MPICH_GNI_NUM_BUFS is 64 (each buffer is 32K)

� Internal MPI buffers use large pages 10

5. Memcpy
4. GNI SMSG Send (Recv done)

MPICH_GNI_NUM_BUFS

MPICH_GNI_NUM_BUFS

� Data is transferred after receiver has posted matching

receive for a previously initiated send

� Two RENDEZVOUS Pathways
� R0 – RDMA GET method

� By default, used for messages between 8K and 4 MB

� Use MPICH_GNI_MAX_EAGER_MSG_SIZE to adjust starting point

� Use MPICH_GNI_NDREG_MAXSIZE to adjust ending point� Use MPICH_GNI_NDREG_MAXSIZE to adjust ending point

� R1 – Pipelined RDMA PUT method

� By default, used for messages greater than 4 MB

� Use MPICH_GNI_NDREG_MAXSIZE to adjust starting point

� Highest bandwidth, little chance for communication/computation overlap

without using async progress threads

11

Sender ReceiverSMSG Mailboxes

CQs

PE 1

PE 82

PE 5
PE 22

PE 96

Rendezvous messages using RDMA Get

2. GNI SMSG Send (MPI header)

1. Register App Send Buffer

� No extra data copies

� Sensitive to relative alignment of send/recv buffers

12

5. GNI SMSG Send (Recv done)

3. Register App Recv Buffer

Sender ReceiverSMSG Mailboxes

CQs

PE 1

PE 82

PE 5
PE 22

PE 96

Rendezvous messages using RDMA Put

1. GNI SMSG Send (MPI header, RTS)

3. GNI SMSG Send (CTS msg)

� Repeat steps 2-6 until all sender data is transferred

� Chunksize is MPI_GNI_MAX_NDREG_SIZE (default of 4MB, starting with

MPT 5.4)
13

5. RDMA PUT

6. GNI SMSG Send (Send done)

4. Register Chunk of App
Send Buffer

2. Register Chunk of App
Recv Buffer

� MPICH_GNI_DYNAMIC_CONN
By default, mailbox connections are established when a rank first sends a

message to another rank. This optimizes memory usage for mailboxes. This

feature can be disabled by setting this environment variable to disabled.

For applications with all-to-all style messaging patterns, performance may be

improved by setting this env. variable to disabled.

� MPICH_GNI_LMT_PATH
Controls whether or not the LMT (R0,R1 paths) are used for the rendezvous Controls whether or not the LMT (R0,R1 paths) are used for the rendezvous

protocol. Setting this env. variable to disabled disables the use of the LMT

path for long messages. All messages are sent through the E0, E1 paths.

Mainly useful for debugging.

� MPICH_GNI_VSHORT_MSG_SIZE
Controls the maximum message size that can be sent using the E0 path. Upper

limit of 8192 bytes (minus overhead for MPICH internal message header).

14

� MPICH_GNI_MAX_EAGER_MSG_SIZE
Controls the threshold for switching from the eager (E0,E1) protocol to the

rendezvous (R0,R1) protocol. Default is messages larger then X bytes use

rendezvous protocol*.

� MPICH_GNI_NDREG_LAZYMEM
By default, memory deregistration of application message buffers is treated

lazily. This is done to reduce the overhead of registering/deregistering lazily. This is done to reduce the overhead of registering/deregistering

memory with the Gemini I/O MMU. Sometimes issues are encountered with

this technique. Setting this env. variable to disabled results in MPICH2 not

using this lazy memory deregistration. If this variable has to be set for an

application to run correctly, please file a bug report.

� MPICH_GNI_RDMA_THRESHOLD
Controls the threshold for switching from using the FMA hardware to the

RDMA engine (BTE) for data transfers. This impacts the E1, R0, and R1 paths.

The default data transfer size for switching to BTE is 1024 bytes.

15

*Not all send protocols use the R0,R1 path. MPI_Rsend ,for example, currently does not.

� MPICH_GNI_NDREG_MAXSIZE
Controls the maximum block size used for chunking up messages for the R1

protocol. Messages up to 1 block size in length may use the R0 path. The R1

path may still be used for such messages sizes when memory registration

resources are constrained or alignment of the send buffer is not suitable for

RDMA get based transfers.

16

17

� Use MPICH2 Nemesis infrastructure

� Messages smaller than 8192 bytes use an eager send

protocol using shared memory queues.

� Longer messages sent using a rendezvous protocol. A get

based mechanism is used, analogous to R0 for inter-node

messages.messages.

� Cray has chosen XPMEM based mechanism for rendezvous

protocol. XPMEM is based off open-sourced SGI XPMEM.

� Use MPICH_SMP_SINGLE_COPY_SIZE to control threshold

for switching from eager to rendezvous protocol

18

� Allows one process to export its process address so that

other processes with sufficient privilege can attach to

sections of this address space (not ptrace based).

� Attaching processes can directly load from/store to these

attached sections of the exporter’s address space – a kind of

dynamic shared memory.dynamic shared memory.

� No system calls involved once a memory segment is

attached to a process.

� Uses Linux mmu_notifier infrastructure to remove some

restrictions present with the original SGI XPMEM

implementation.

� Network independent. Does not rely on presence of a

network adaptor/driver.
19

6000

7000

8000

9000

IMB PingPong (2p on-node)

Comparing SINGLE_COPY mode to buffered mode

20

0

1000

2000

3000

4000

5000

M
B

/s
e

c

Message Size (in bytes)

Buffered

XPMEM (default)

SINGLE_COPY_SIZE=1K

� MPICH_SMP_SINGLE_COPY_SIZE
Specifies minimum message size that can be sent using the XPMEM single copy

method.

� MPICH_SMP_SINGLE_COPY_OFF
If set to any value, disables the use of the XPMEM single copy method. If set to any value, disables the use of the XPMEM single copy method.

Overrides any MPICH_SMP_SINGLE_COPY_SIZE setting. May be useful for

diagnosing/debugging problems.

21

22

� MPI_Bcast
� Switched to an SMP-aware tree algorithm for all data sizes

� MPI_Alltoall
� Randomized send_to / receive_from list

� MPI_Alltoallv
� Randomized send_to / receive_from list

Throttle for number of outstanding sends/receives� Throttle for number of outstanding sends/receives

� For small messages (< 256 bytes) or if processes not packed on node:

export MPICH_ALLTOALLV_THROTTLE=2 (or 3)

� MPI_Allgather / MPI_Allgatherv / MPI_Gatherv
� Optimizations for small transfer sizes at scale

� MPI_Allreduce
� Option to use DMAPP reduction

Note in general these optimizations apply to collective operations over intra-

communicators only.
23

50000

60000

70000

80000

8-Byte MPI_Allgather and MPI_Allgatherv Scaling

Comparing Default vs Optimized Algorithms

on Cray XE6 Systems

256,900 us 434,779 us

67X Improvement

at 53K Ranks!

24

0

10000

20000

30000

40000

50000

2048p 4096p 8192p 16384p 32768p 53488p

M
ic

ro
se

co
n

d
s

Number of Processes

Default Allgather

Optimized Allgather

Default Allgatherv

Optimized Allgatherv

5000000

6000000

7000000

4096 Byte MPI_Alltoall and MPI_Alltoallv Scaling

Comparing Default vs Optimized Algorithms

on Cray XE6 Systems

4.8X Improvement

at 10,000 Ranks.

25

0

1000000

2000000

3000000

4000000

1024p 2048p 4096p 8192p 10000p

M
ir

cr
o

se
co

n
d

s

Number of Processes

Default Alltoall

Optimized Alltoall

Default Alltoallv

Optimized Alltoallv

60000

70000

80000

90000

8 Byte MPI_Gatherv Scaling

Comparing Default vs Optimized Algorithms

on Cray XE6 Systems .

500X Improvement

at 16,000 Ranks.

2,111,500 us

u
473,620 us

26

0

10000

20000

30000

40000

50000

1024P 2048P 4096P 8192P 16000P

M
ic

ro
se

co
n

d
s

Number of Processes

Default Gatherv

Optimized Gatherv

� Uses DMAPP GHAL collective enhancements

� Not enabled by default
� To use: export MPICH_USE_DMAPP_COLL=1

� Supported on CLE 4.0

� Restrictions on Use
� DMAPP (libdmapp) must be linked into the executable� DMAPP (libdmapp) must be linked into the executable

� Internally dmapp_init is called (may require hugepages)

� Message size must be between 4-16 bytes

� Operation must be a built-in (no user-defined ops)

� Data type must be supported (float, int, double, long, complex)

� Not supported for MPMD models

� Algorithm is not tolerant of transient network errors

� Will fall back to original algorithm if restrictions are not met

27

� Investigating ways to reduce number of restrictions
� Will involve changes to lower level software (dmapp/ugni)

� OS Noise is a factor when measuring performance
� Small-message allreduce is very sensitive to OS Noise

� We’ve found and removed a significant source of OS Noise

� Alps was polling every second instead of every 10 seconds (expensive)

� Alps fix is available in CLE 4.0 UP 01� Alps fix is available in CLE 4.0 UP 01

� Alps fix significantly reduces OS Noise on medium size systems (12,000

cores)

� However, we know other sources of OS Noise still exist

� Core Specialization is the only way to remove OS Noise from the app

� Add –r 1 to aprun command line

28

40

50

60

IMB 8-Byte MPI_Allreduce

Default vs Optimized Algorithms

run on CLE 4.0.20 (hera)

29

0

10

20

30

512p 1024p 2048p 4096p 8192p 12000p

M
ic

ro
se

co
n

d
s

Default version

Optimized version

� MPICH_ALLGATHER_VSHORT_MSG

� MPICH_ALLGATHERV_VSHORT_MSG
Specifies the max message size for which the XE optimized allgather/allgatherv

algorithm is used. For MPI_Allgatherv, this is the total amount of data in bytes

to be received by each process divided by the number of ranks in the

communicator.

� MPICH_ALLTOALL_SHORT_MSG� MPICH_ALLTOALL_SHORT_MSG
Controls the maximum message size (per rank) for which the default MPICH2

algorithm will be used. The default value varies with job size. See intro_mpi

man page.

� MPICH_COLL_SYNC
When set, adds an internal barrier operation before each collective call.

Setting to 1 forces a barrier for all collective operations. Can be set for

selective barrier operations. May be useful for codes having problems with

MPI_Gather(v), MPI_Scatter(v), MPI_Bcast, etc.

30

� MPICH_GATHERV_SHORT_MSG

Analogous to MPICH_ALLGATHERV_VSHORT_MSG.

� MPICH_ALLREDUCE_NO_SMP

� MPICH_REDUCE_NO_SMP
Disables the default SMP node aware allreduce and reduce algorithms. This

may be necessary for codes sensitive to changes in the order ranks’

contributions to global sums, etc.contributions to global sums, etc.

� MPICH_COLL_OPT_OFF
Disables Cray XE specific collective optimizations. Setting to 1 disables all

optimizations. See intro_mpi man page.

31

32

� Load one of the large page modules like craype-

hugepages2M

� man intro_hugepages

� May help MPI apps that have messages sizes large enough

to use the rendezvous path

No significant benefit to using larger than 2M pages for MPI � No significant benefit to using larger than 2M pages for MPI

only applications

� MPICH2 internally tries to use large pages for mailboxes and

DMA buffers. Starting with MPT 5.4.0, the default is to NOT

fall back to 4KB pages if large pages aren’t available. To

disable this and try to use 4KB pages if large pages aren’t

available –

export MPICH_GNI_MALLOC_FALLBACK = enabled
33

� Available starting in MPT 5.4 release.

� Uses helper threads to progress the MPI state engine while

application is computing.

� Only inter-node messaging is effectively progressed (relies

on BTE for data motion).on BTE for data motion).

� Only rendezvous path is effectively progressed.

� Don’t use with applications making use of derived data

types.

� Best if used in conjunction with corespec (see aprun –r

argument). Reserving a core/node is important for this

feature to be effective.

34

Need to set the following environment variables to activate the

asynchronous progress threads:

� export MPICH_NEMESIS_ASYNC_PROGRESS=1

� export MPICH_MAX_THREAD_SAFETY=multiple

� Run the application requesting corespec and reserving a core

35

aprun –n X –r 1 ./a.out

� apcount utility can help in scaling up the process count needed to run the

job for a given number of cores/node reserved for corespec. See apcount

man page.

� MPI-2 one sided currently uses the E0,E1 paths for data

transfers. This is not optimal.

� Cray is working with Argonne to enhance Nemesis to better

handle MPI-2 and MPI-3 RMA.

� MPI-2 RMA is not recommended at this time for

performance critical regions of applications running on

Hopper.

36

� Controls size of the receive (RX) CQ

� Apps trying to run at high scale with many to one patterns

may benefit somewhat by setting this higher than the

default of 40960 entries

� Note overrunning the RX queue is okay, but it slows MPICH2

down while its recovering from the overrun.

37

� MPICH_SCATTERV_SYNCHRONOUS – may be useful if an

app is spending a lot of time in this routine. Setting this

variable forces the algorithm to use blocking sends rather

than the default non-blocking sends.

� MPICH_GNI_DYNAMIC_CONN – may want to set to disabled

if the application does all-to-all or all-to-one patterns

38

� Using MPI collective I/O to a single shared file can have

significant advantages over MPI independent I/O or POSIX

I/O to a file per process. See "Getting Started on MPI I/O"

S-2490

� Cray's collective I/O implementation is tuned for Lustre

such that simply setting the stripe count on the directory

where the file will be created is often all the user needs to

set. See the "intro_mpi" man page for MPIIO hints for

additional tuning options.

NERSC Users Group 2 February 2012 39

� 5.4.3 has a more efficient and scalable MPI_File_open()

� Setting the romio_no_indep_rw=true hint causes only

aggregators to open the file. This is better for the

application and better for the whole system. See the application and better for the whole system. See the

"intro_mpi" man page for restrictions.

NERSC Users Group 2 February 2012 40

250

300

350

T
im

e
 (

se
co

n
d

s)

MPI_File_openMPI_File_open() Benchmark:() Benchmark:

Time Time vsvs Ranks, Mode and ReleaseRanks, Mode and Release

NERSC Users Group 2 February 2012 41

0

50

100

150

200

0 5000 10000 15000 20000 25000

T
im

e
 (

se
co

n
d

s)

Ranks

MPIIO - 5.3.4

w/ hint - 5.3.4

POSIX

MPIIO- 5.4.3

w/ hint - 5.4.3

42

� GPU (XK6) related enhancements

� Scalability Enhancements

� Gemini Shared Message Queue

� Working with ANL to reduce memory footprint of

MPICH2 internal structuresMPICH2 internal structures

� Improvements to MPI I/O

� Better tuning for GPFS via DVS

� Better percentage of file-per-process performance for

single-shared-file. (Currently ~50% for large writes)

� MPI Stats / Bottlenecks Display

43

44

� MPT 5.3 released June 2011. Last release supporting

XT/Seastar. You shouldn’t be using a package older than

this one.

� MPT 5.4 released November 2011. This is the

recommended package to be using.recommended package to be using.

� MPT 5.5 release planned for June 2012.

45

� MPICH2 Nemesis Internals –
http://wiki.mcs.anl.gov/mpich2/index.php/Nemesis_Network_Module_API

� Paper about MPICH2 on XE

A uGNI-Based MPICH2 Nemesis Network Module for

the Cray XE, H. Pritchard, I. Gorodetsky, and D.

Buntinas, EuroMPI 2011.Buntinas, EuroMPI 2011.

46

47

