Hopper, the New NERSC-6 System

Jonathan Carter

October 7th, 2009
Timeline

- Initial Project approval Mar 08
- Lehman Review Jul 08
- RFP released Sep 08
- Responses received Oct 08
- Evaluation conducted Nov 08
 - Jonathan Carter replaced Bill Kramer as Project Lead
- Negotiations conducted Dec 08 - Mar 09
- Final Project approval Apr 09
- Contract was signed Jul 09
- Factory Test of Phase 1 System Sep 09
Cray Proposal is the Best Value

- Best application performance per dollar
- Highest sustained application performance commitment
- Best sustained application performance per MW
- Excellent in-house testing facility and benchmarking/performance/support expertise at Cray
- Easy to integrate into our facility
- Acceptable risk
Hopper System

Phase 1 - XT5
- 668 nodes, 5,344 cores
- 2.4 GHz AMD Opteron (Shanghai, 4-core)
- 50 Tflop/s peak
- 5 Tflop/s SSP
- 11 TB DDR2 memory total
- Seastar2+ Interconnect
- 2 PB disk, 25 GB/s
- Air cooled

Phase 2
- >6000 nodes, >150,000 cores
- AMD Opteron (Magny-Cours, 12-core)
- >1.0 Pflop/s peak
- >100 Tflop/s SSP
- >200 TB DDR3 memory total
- Gemini Interconnect
- 2 PB disk, 80 GB/s
- Liquid cooled
Project Goals

• Deploy a complete, integrated computing environment for a multi-user, multi-application, parallel scientific workload

• Support entire DOE Office of Science Workload

• Greatly increase computational resources available to users using measured performance criteria

• Integrate into the NERSC environment
• 13 ‘Minimum Requirements’ (e.g., 24x7 support) that absolutely must be met
 – Proposals that don’t meet are not responsive and are not evaluated further
• 38 ‘Performance Features’ (e.g., fully featured development environment) wish list of features
 – Evaluated qualitatively via in-depth study of Offeror narrative.
• Benchmarks
 – Kernel tests and full applications
 – Sustained application performance (measured by SSP benchmarks)
• Supplier attributes (ability to produce/test, corporate risk, commitment to HPC, etc.)
• Cost of ownership (incl. life-cycle, facilities, base, and ongoing costs) and affordability
NERSC-6 Benchmarks

Full Workload

- composite tests
- full application
- stripped-down app
- kernels
- system component tests

SSP, Consistency

CAM, GTC, MILC, GAMESS, PARATEC, IMPACT-T, MAESTRO

AMR Elliptic Solve

NPB Serial, NPB Class D, UPC NPB, FCT

Stream, PSNAP, Multipong, IOR, MetaBench, NetPerf
NERSC-6 SSP Metric

The largest concurrency time of each full application benchmark is used to calculate the SSP

NERSC-6 SSP

For each benchmark measure
• FLOP counts on a reference system
• Wall clock run time on various systems
Technology Observations

• Multi-core continued its progression:
 – Most proposals had more than 2X number of cores as current largest NERSC system
 – All Offers had two sockets per node – interconnect becoming more sparse and NUMA becoming more important
 – Clock speeds remained the same or showed modest increase

• Several commodity-based systems (Nehalem / IB + Linux) packaged for HPC

• Systems with open-source software stacks were offered

• No accelerator- or GPU-based systems proposed

• Several different Infiniband topologies were offered

• Vendors responded to request to comply with stricter thermal (ASHRAE recommended) standards with innovative solutions
Feedback from NERSC Users was crucial to NERSC6 negotiations

User Feedback from Franklin

- Login nodes need more memory
- Shared libraries are not supported
- Need more disk space
- Increase I/O bandwidth
- Connect NERSC Global FileSystem to compute nodes
- Workflow models are limited by memory on MOM (host) nodes

NERSC6 Enhancement

- 8 external login nodes with 128 GB of memory (with swap space)
- Shared libraries are supported.
- Includes a 7x increase in disk space over Franklin (2PB)
- Includes a 3x increase in I/O bandwidth over Franklin (70 GB/sec)
- /project file system will be available to compute nodes
- Increased # and amount of memory on MOM nodes
- Phase II compute nodes can be repartitioned as MOM nodes
Feedback from NERSC users was crucial to NERSC6 negotiations

User Feedback from Franklin

NERSC6 Enhancement

- External login nodes will allow users to login, compile and submit jobs even when computational portion of the machine is down
- External file system will allow users to access files if the compute system is unavailable and will also give administrators more flexibility during system maintenances
- Gemini interconnect has redundancy and adaptive routing. (System will survive a down link.)

(All will still require some shakeout!)
Software and Compilers

• Software will be very similar to Franklin but with shared library support

• Four different compilers
 – Portland Group
 – PathScale
 – Cray Compilers
 – GNU

• Some codes see significant performance improvements with a specific compiler

• NERSC will provide guidance and support to help users choose
Hopper Login Nodes

- 8 login nodes external to main XT system
- Quad socket, quad-core AMD Opteron 2.4GHz
- 128 GB of memory with swap space
- Load balanced for more optimal usage
- Ability to run more intensive tools on login nodes, IDL, debuggers, etc.
- Available when XT is down
Access to data and login nodes even when XT is unavailable

- Submit jobs when XT down
- Local PBS server on login nodes
- Holds jobs while XT is down
- Jobs forwarded to internal XT PBS server when XT available again
Dynamic and Shared Libraries

• All user software has a shared library version (mpich, acml, libsci, etc.)
• Static binaries is default environment
• Use the -dynamic compiler and linker flag
• In batch script set environment variable CRAY_ROOTFS=DSL which enables shared root file system
aprune Options

- Hopper has 2 sockets per core, increasing the aprune options, particularly for openMP codes

Compute Node

- New options to specify, how many sockets, which socket, cores per socket, strict memory containment between sockets

- NERSC will provide guidance on the options
Hopper Phase I Target Users

- Application performance will be similar to Franklin
- All users welcome to run on Hopper, but target users who need additional functionality
 - I/O intensive applications
 - Shared and dynamic libraries support
 - Heavy use of login nodes
 - Heavy use of MOM (host) nodes
Proposed Hopper Queues

<table>
<thead>
<tr>
<th>Submit Queue</th>
<th>Execution Queue</th>
<th>Nodes</th>
<th>Cores</th>
<th>Time Limit</th>
<th>Relative Priority</th>
<th>Charge Factor</th>
<th>User Run Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>interactive</td>
<td>interactive</td>
<td>1-16</td>
<td>1-128</td>
<td>30 mins</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>debug</td>
<td>debug</td>
<td>1-64</td>
<td>1-512</td>
<td>30 mins</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>regular</td>
<td>reg_short</td>
<td>1-16</td>
<td>1-128</td>
<td>4 hrs</td>
<td>3</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>reg_small</td>
<td>1-16</td>
<td>1-128</td>
<td>48 hrs</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>reg_med</td>
<td>17-64</td>
<td>129-512</td>
<td>36 hrs</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>reg_big</td>
<td>65-256</td>
<td>513-2,048</td>
<td>24 hrs</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>reg_long</td>
<td>1-4</td>
<td>1-32</td>
<td>72 hrs</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>low</td>
<td>low</td>
<td>1-64</td>
<td>1-512</td>
<td>12 hrs</td>
<td>4</td>
<td>0.5</td>
<td>5</td>
</tr>
</tbody>
</table>

Limits
- 5 running jobs/user (system-wide limit)
- 4 queued (eligible for scheduling) jobs/user
- reg_long: 1 running job/user, 1 queued job/user, 4 running jobs max