Using PVM on the T3E

Youngbae Kim
NERSC
Lawrence Berkeley National Laboratory
youngbae@nersc.gov
PVM (Parallel Virtual Machine)

- A software package to enable a collection of heterogeneous computer systems to be used as a virtual parallel computing resource.
- A widely-used, de facto standard method of programming such a parallel virtual machine.
- Available as a public domain software.
- Also available as a vendor-specific software.
- Widely available on various platforms.
PVM Overview

- Configure a virtual machine (VM) with a collection of computers where you want to execute a parallel application.
- An individual computer system is viewed as a host.
- Any combination of these hosts can be treated as a single VM to execute a parallel application.
- Write a parallel application using PVM library routines.
- Execute the parallel application on the virtual machine.
- Tasks are units of computation, possibly a Unix process.
- Tasks communicate with each other by explicit message passing.
- Supply the functions to automatically start up tasks on the VM and to allow the tasks to communicate.
PVM Overview (cont’d)

- PVM daemon (pvmd)
 - one daemon for each host
 - message router and controller
 - process control, fault tolerance
 - authentication, reconfiguration

- PVM libraries: subroutines
 - libpvm.a, libfpvm3.a, libgpvm3.a
 - task initiation, message passing
 - pack/unpack
 - synchronization, communication
 - dynamic configuration of tasks
 - data conversion (XDR)
T3E Implementation of PVM

- Cray own proprietary implementation based on PVM 3.3.10
- Support MPP architecture
- Operate in two different modes
 - Stand-alone mode
 - Distributed mode
- Interoperable with the generic PVM
- Available as a component of the MPT package
 module load mpt
Stand-alone Mode of T3E PVM

- Used as another message passing library within a single executable like MPI
- No PVM daemons – no process management
- SPMD (Single Program Multiple Data)
- Simply execute a parallel program on a partition of application PEs.
- Communicate among PEs within the same partition.
- Optimized for the T3E.
- Use SHMEM for communication – fast
- A predefined group (called global group) of all PEs within the same partition
- PVMALL is used in Fortran for the global group
- Any group allowed within the same partition
A PVM Example

PROGRAM PP1
INCLUDE 'fpvm3.h'

INTEGER MY_TID, ME, INFO, NPROC

CALL PVMFMYTID (MY_TID)
!CALL PVMFGETPE (MY_TID, ME)
CALL PVMFJOINGROUP (PVMALL, ME)

CALL PVMFBARRIER(PVMALL,NPROC,INFO)
CALL PINGPONG(ME)
CALL PVMFEXIT(INFO)

END PROGRAM PP1

PROGRAM PP2
INCLUDE 'fpvm3.h'

INTEGER MY_TID, ME, TIDS(16), NPROC, INFO

CALL PVMFMYTID (MY_TID)
CALL PVMFJOINGROUP ('foo', ME)

IF (ME .EQ. 0) THEN
 READ *, NPROC
 CALL PVMFSPAWN ('pp2', PvmTaskArch, '*', NPROC-1, TIDS, INFO)
ENDIF

CALL PVMFBARRIER('foo', NPROC, INFO)
CALL PINGPONG(ME)
CALL PVMFEXIT(INFO)

END PROGRAM PP2
SUBROUTINE PINGPONG(ME)
INCLUDE 'fpvm3.h'

INTEGER ME, THE_OTHER, ISTAT
INTEGER, PARAMETER :: MSG_TAG = 99
IF (ME .EQ. 0) THEN
 CALL PVMFINITSSEND (PVMDATARAW, ISTAT)
 CALL PVMFPACK (INTEGER8, ME, 1, 1, ISTAT)
 CALL PVMFSEND (1, MSG_TAG, ISTAT)
 CALL PVMFRECV(1, MSG_TAG, ISTAT)
 CALL PVMFUNPACK (INTEGER8, THE_OTHER, 1, 1, ISTAT)
 PRINT *, 'PE ', ME, ' received ', THE_OTHER
ELSE IF (ME .EQ. 1) THEN
 CALL PVMFINITSSEND (PVMDATARAW, ISTAT)
 CALL PVMFPACK (INTEGER8, ME, 1, 1, ISTAT)
 CALL PVMFSEND (0, MSG_TAG, ISTAT)
 CALL PVMFRECV(0, MSG_TAG, ISTAT)
 CALL PVMFUNPACK (INTEGER8, THE_OTHER, 1, 1, ISTAT)
 PRINT *, 'PE ', ME, ' received ', THE_OTHER
ENDIF
RETURN
END SUBROUTINE PINGPONG
Distributed Mode of T3E PVM

- require a PVM daemon running
- Allow to spawn more than one executable within the T3E
- Use `pvm_spawn` calls
  ```
  call pvmfspawn(/u1/youngbae/pvm3/examples/xslave',
     PvmTaskArch, 'CRAY', NPROC, tids(0), numt)
  ```
- Allow to configure a VM that includes the T3E and other systems
- Use sockets for communication — slow
 between T3E processes that were not started at the same time
 between the T3E and other systems
- May have several sockets open at once
- Limits the number of open files per application and the number of open
 sockets in the system.
Distributed Mode (cont’d)

- By default only PE 0 can communicate with processes outside the T3E or between processes inside the T3E

  ```
  setenv PVM_PE_LIST all # all PEs communicate
  
  N.B. This setting should be done before a PVM daemon is started.
  ```

- Use SHMEM for communication between processes started in the same `pvm_spawn` call.

 fast, but slower than in stand-alone mode due to considerable overhead

- No dynamic group that spans different partitions and processes outside the T3E

- Any groups allowed within the same process

- Decide automatically in which mode a PVM program run by checking if `pvmd` is running.
A Computing Model with PVM

1. Setting up a VM including the T3E and other hosts
 - Starting up local (master) and remote (slave) PVM daemons
 - Use remote shell like rsh to start remote daemons

2. Starting local and remote processes
Virtual Machine Setup

1. Using the PVM console on any host and 'add host'

[pierre.55] pvm
3.3.10 (Cray PVM for UNICOS Version 3.1.x.6)
t40001
pvm> add dolly.lbl.gov louis.lbl.gov
2 successful

<table>
<thead>
<tr>
<th>HOST</th>
<th>DTID</th>
</tr>
</thead>
<tbody>
<tr>
<td>dolly.lbl.gov</td>
<td>80000</td>
</tr>
<tr>
<td>louis.lbl.gov</td>
<td>c0000</td>
</tr>
</tbody>
</table>

pvm> conf # show the current configuration
3 hosts, 2 data formats

<table>
<thead>
<tr>
<th>HOST</th>
<th>DTID</th>
<th>ARCH</th>
<th>SPEED</th>
</tr>
</thead>
<tbody>
<tr>
<td>pierre</td>
<td>40000</td>
<td>CRAY</td>
<td>1000</td>
</tr>
<tr>
<td>dolly.lbl.gov</td>
<td>80000</td>
<td>SUNMP</td>
<td>1000</td>
</tr>
<tr>
<td>louis.lbl.gov</td>
<td>c0000</td>
<td>SUNMP</td>
<td>1000</td>
</tr>
</tbody>
</table>

pvm> quit # quit the PVM console
pvmd still running.
[pierre.56]
2. Using a host file w/ an entry per each host

```
[pierre.57] cat hostfile
dolly.lbl.gov dx=$PVM_ROOT/lib/pvmd
louis.lbl.gov dx=$PVM_ROOT/lib/pvmd
[pierre.58] pvmd hostfile &   # run pvmd
[1] 68001
socket address: /tmp/jtmp.008381a/aaa0000a68001
[pierre.58] pvm
pvmd already running.
3.3.10 (Cray PVM for UNICOS Version 3.1.x.6)
t40001
pvm> conf
3 hosts, 2 data formats

<table>
<thead>
<tr>
<th>HOST</th>
<th>DTID</th>
<th>ARCH</th>
<th>SPEED</th>
</tr>
</thead>
<tbody>
<tr>
<td>pierre</td>
<td>40000</td>
<td>CRAY</td>
<td>1000</td>
</tr>
<tr>
<td>dolly.lbl.gov</td>
<td>80000</td>
<td>SUNMP</td>
<td>1000</td>
</tr>
<tr>
<td>louis.lbl.gov</td>
<td>c0000</td>
<td>SUNMP</td>
<td>1000</td>
</tr>
</tbody>
</table>
```

```
pvm> quit
pvmd still running.
```

3. Calling `pvm_addhosts()` in a PVM program
VM Setup including the T3E

- Normal VM setup doesn’t work on the T3E
 - Incoming remote shell is not permitted for security reasons
 - Outgoing remote shell is permitted

- Other methods of VM setup on the T3E
 1. Using the T3E as a master host
 - start the master daemon on the T3E first
 - start a slave daemon on remote host
 2. Starting daemons by hand
 - use `so=ms` option in the host file
 - need an interactive login session for each host
 - work on any VM configuration
 3. Using `ssh`
 - `ssh` into the T3E is permitted within the LBL domain
 - `ssh` from the T3E is not supported yet.
A Manual Startup of PVM Daemons

- **On a local workstation (dolly)**

  ```
  [dolly.122.~] cat hostfile
dolly.lbl.gov   so=ms
pierre.nersc.gov so=ms
  [dolly.123.~] pvmd hostfile
7f000001:a467
  *** Manual startup ***
Login to "pierre.nersc.gov" and type:
$PVM_ROOT/lib/pvmd -S -d0 -npierre.nersc.gov \
  1 83f3f0e6:c467 4096 2 8037c86b:0000}
Type response: ddpro<2315> arch<CRA> ip<8037c86b:057e> mtu<32768>
Thanks
  ```

- **On the T3E (pierre)**

  ```
  [pierre.1.~ ] $PVM_ROOT/lib/pvmd -S -d0 -npierre.nersc.gov \
  1 83f3f0e6:c467 4096 3 8037c82e:0000
ddpro<2315> arch<CRA> ip<8037c82e:132f> mtu<32768>
[pierre.2.~ ]
  ```
Using ssh: currently not supported

- On the T3E

 setenv PVM_RSH /usr/local/bin/ssh

- On your local workstations

 Re-compile the PVM source code

 by setting RSHCOMMAND to the full path of ssh

 in the $PVM_ARCH.def file

- This also works if you want to use a different remote shell
Using PVM under NQS

- Works fine
 - in stand-alone mode (no pvmd)
 - in distributed mode (w/ pvmd running inside batch job)
 only when processes are spawned in the same batch job
 without adding any hosts
- PVM works differently in batch mode
 if you add hosts in the same batch job
 if you connect to the running pvmd from outside the batch job.
- There is a serious concern with T3E scheduling
 a batch job reserve # of PEs
 run pvmd inside the batch job
 do nothing until any PVM job started
- Recommend not to use PVM daemons under NQS
Why Not Use PVM?

- Moving target, overridden by MPI
- PVM vs. MPI
 - MPI is message passing standard
 - MPI has more functionality
 - MPI-2 specification released and being implemented on various architectures
 * MPI_SPAWN to start both MPI and non-MPI processes
 * One-sided communication such as put and get
 * Nonblocking collective communication
 * Parallel I/O
 * Language bindings
 - Invest the time and effort to write codes in MPI
 - Recommend MPI for communication within the T3E
Why Use PVM?

- Distributed computing in a heterogeneous environment
 - virtual machine concept
 - dynamic resource management and process control
 - support for heterogeneity
 - interoperability
- Recommend PVM for communication with processes outside the T3E
More Information on the T3E PVM

- CRAY T3E Fortran Optimization Guide
- On-line Documentations – xhelp, man page, dynaweb
- PVM: A Users’ Guide and Tutorial for Networked Parallel Computing
 http://www.epm.ornl.gov/pvm