Tutorial on Aztec

Kesheng John Wu

outline

• what does it do
• how to use it
• questions

Aztec

A massively parallel iterative solver library for solving sparse linear systems

Sandia National Laboratories

Ray S. Tuminaro
John N. Shadid
Scott A. Hutchinson
Lydie Provost
Charles H. Tong

web address

Software description

- \(Ax = b \)
- Distributed (SPMD): MPI
- Matrix type: unstructured sparse data-local matrices, e.g., from finite elements
- simple parallelization: no need to -
 - define ghost variables
 - map global to local indices
 - identify neighboring processors
 - determine messages
- efficient machine utilization
 - fast (grouped) communication
 - sparse point & block matrices
 - advanced parallel preconditioning
 - builds on advanced partitioning
 - computation overlaps communication

Major Components

- Linear system solver
 - CG,
 - CGS,
 - BiCGSTAB,
 - GMRES,
 - TFQMR
- Preconditioners
 - point & block Jacobi,
 - Gauss-Seidel,
 - least-square polynomials,
 - overlapping domain decomposition using sparse LU, ILU, BILU within the domains
- Used in (with the help of the developers)
 - reacting flows
 - heat transfer
 - free surface moving-mesh
 - structural dynamics
 - ...
Preconditioners

- AZ_Jacobi -- (block) Jacobi, (options[AZ_poly_ord] steps)
- AZ_Neuman -- Neuman series polynomial, order options[AZ_poly_ord]
- AZ_ls -- least squares polynomial, order options[AZ_poly_ord]
- AZ_lu -- overlapping additive Schwarz preconditioner with ILU
- AZ_ilu -- overlapping additive Schwarz preconditioner with ILU(0)
- AZ_bilu -- overlapping additive Schwarz preconditioner with BILU(0) for VBR
- AZ_sym_GS -- additive Schwarz preconditioner with options[AZ_poly_ord] steps of symmetric Gauss-Seidel iterations

How to use it

Basic steps:

- prepare the linear system
distribute the matrix
call AZ_transform to format the distributed matrix
- set right-hand-side and initial guess
call AZ_reorder_vec
- select an iterative solver and a preconditioner
call AZ_solve
call AZ_invorder_vec to restore order of the solution
Aztec matrix format

schematics

• MSR
 bindx[NNZ+1]
 bindx[0:N] -- pointers to start of N rows
 bindx[N+1:NNZ] -- column indices
 val[NNZ+1]
 val[0:N-1] -- diagonal element values
 val[N+1:NNZ] -- off-diagonal element values

• VBR
 rpntr
 cpntr
 bpntr
 indx
 val
Overlapping domain decomposition

Features

✓ small package focused on solving linear systems
✓ good sparse matrix support -- efficient matrix-vector multiplication, block entry format, automatic analysis
✓ common Krylov subspace methods
✓ parallel preconditioners
✗ use external partitioning
✗ single right-hand side only
✗ real linear system only