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Overview

* Brief history of climate modeling

* Brief discussion of computational methods

- Environmental Justice connected to climate

change

* Behind the scenes White House origin of the U.
S. Global Change Research Program (USGCRP)

- The future of the USGCRP and National
Climate Assessment



The next two NASA satellite
videos give insight to how the
climate is changing and the
inferaction of vegetation on
the carbon cycle.

Credit to the NASA Aqua instrument:
Tom Pagano and colleagues at JPL
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The atmospheric carbon dioxide and
vegetation connection!




The Climate and Earth
System Modeling Story



Laws of Physics, Chemistry, and Biology

» Equations govern the dynamics of
atmosphere, ocean, vegetation, and sea ice

» Equations put into a form that can be solved
on modern computer systems

» Physical processes such as precipitation,
radiation (solar and terrestrial), vegetation,
boundary transfers of heat, momentum, and
moisture at earth’'s surface are included

* Forcings: GHGs, Volcanic, Solar variations



Mathematical equations (known since 1904)
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The Community Earth System Model (CESM)
is becoming more complete
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Timeline of Climate Model Development
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Atmospheric Grids .o
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1/4 degree grid

Part of the
global grid
(25 km) for
the next
TPCC
simulations




Vertical 6rid

- Vertical resolution is also

important for quality of simulations

- Levels are not equally spaced
(levels are closer near surface and

near tropopause where rapid
changes occurs)

* In CAM: “hybrid" coordinate

- bottom: sigma coordinate (follows
topography)

- Top: pressure coordinate

- middle: hybrid sigma-pressure
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Biogeochemical cycles C LM4

Hydrology
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Tropical stgrms, hurricanes, and intense hurricanes
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Leading Mode of Global SST Variability

Seasonal Capability (Neale, NCAR)
Observations CCSM4
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Examples of NERSC Use

» 20™ and 21s' century simulations for IPCC
+ Single forcing simulations

* Hurricane changes

» Closing Bering strait

- Heat waves, etc.

* Model development




Probability of US heat Waves Affected by
a Subseasonal Planetary Wave Pattern:
Prediction 15-20 days in Advance
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Role of the Bering Strait on the hysteresis of the ocean conveyor belt
circulation and glacial climate stability
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Hu, A, G. A. Meehl, W. Han, A. Timmermann, B. Otto-Bliesner, Z. Liu, W. M. Washington, W. Large, A. Abe-Ouchi, M. Kimoto, K. Lambeck and B. Wu,
2012, Role of the Berig Strait on the hysteresis of the ocean conveyor belt circulation and glacial climate stability, PNAS, doi:10.1073/pnas.
1116014109. (Highlighted by PNAS and receivedsignificant media attention)



The Pacific-Atlantic Seesaw and 1'he Ber'mg 51'r'a|1'
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Hu, A, G. A. Meehl, W. Han, A. Abe-Ouchi, C. Morrill, Y. Okazaki, and M.O. Chikamoto, 2012, The Pacific- Atlantic seesaw and the Bering Strait,
Geophys. Res. Lett., L03702,doi:10.1029/20116L050567. (Chosen to be AGU Research Spotlight)
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Climate and Earth System models have and continue to

£ A

contribute to understanding and pr ing the clima’re’
system. They allow the science commUnity to deferminess=
objectively the possible impacts of climate change on

food production, flooding, drought, sea level rise, and

health as well as decision support. Higher resolution and
more complete models will help.

From Istockphoto.com




Professions: Public Trust
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Genesis of U.S. Global Change Program

White House Cabinet meeting on climate change in 1990

President George H. W. Bush

John Sununu, Chief of Staff

We installed a climate model in The White Housel

Allan Bromley, President's
Science Advisor

Convinced the cabinet about climate change.
We have loss the bipartisan approach.



U.S. Global Change Research Program

$2.7 Billon over 12 agencies

Thomas R. Armstrong, PhD
Executive Director, USGCRP
Office of Science and Technology Policy
Executive Office of the President
Washington, DC

www.globalchange.gov

I chaired the Review Committee for the National Academies

Slides provided by Thomas Armstrong



Global Change Research Act

Global Change Research Act of 1190 (P.L. 101-606)
Act at http://www.globalchange.gov/about/program-structure/global-change-research-act

Called for a "comprehensive and integrated United States research
program which will assist the Nation and the world to understand,
assess, predict, and respond to human-induced and natural
processes of global change”

OMB/OSTP FY 14 S&T Memo:
Guidance to the Agencies

Memo at http://www.whitehouse.gov/sites/default/files/omb/memoranda/2012/m-12-15.pdf

"Emphasize research that advances understanding of vulnerabilities
in human and natural systems and their relationships to climate
extremes, thresholds, and tipping points”

Passed by bipartisan Congress



National Climate Assessment
released on May 6, 2014

at the White House



The End

Special thanks to the
Department of Energy, Office of Science (BER),
the National Science Foundation (NSF), and OSTP



USGCRP Research Enterprise
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USGCRP in the Federal Context

Principals: http://globalchange.gov/about/program-structure/officials

National Science
and Technology
Council (NTSCO)

Committee on Environment,
Natural Resources and
Sustainability (CENRS)

Subcommittee on
Global Change Research (SGCR)

U.S. Global Change
Research Program (USGCRP)

CENRS Sub-Committees, Wé6s,
& Task Forces

Air Quality Research (AQRS)

Critical and Strategic Mineral Supply Chains
(CSMSC)

Interagency Arctic Research Policy
Committee Interagency Working Group
(TARPC)

Integration of Science and Technology for
Sustainability Task Force

National Earth Observations Task Force
(NEO)

Disaster Reduction (SDR)
Ecological Services (SES)
Global Change Research (SGCR)
Ocean Science & Technology (SOST)
Water Availability & Quality (SWAQ)
Toxics & Risks (T&R)

US Group on Earth Observations (USGEO)




Research Goals
U.S. Global Change Research Program

* Goal 1. Advance science: Earth system understanding,
science of adaptation and mitigation, observations, modeling,
sharing information

+ Goal 2. Inform decisions: Scientific basis to inform,

adaptation and mitigation decisions

* Goal 3. Conduct sustained assessments: build capacity that
improves Nation's ability to understand, anticipate, and
respond

- Goal 4. Communicate and educate: Advance communication

and educate the public, improve the understanding of global
change, develop future scientific workforce



The USGCRP Strategic Plan

Outcomes and Priorities Activities

Outcomes

 Providing Knowledge on Scales Appropriate for Decision
Making

« Incorporating Social and Biological Sciences

« Enabling Responses to Global Change via Iterative Risk
Management

Priorities Activities
« Enhance Information Management and Sharing

« Enable new capabilities for Integrated Observations and
Modeling

* Increase Proactive Engagement and Partnerships i B
 Leverage International Investments & Leadership g % w

« Develop the Scientific Workforce for the Future



