
Get Ready for Intel® MKL
on Intel® Xeon Phi™ Coprocessors

Zhang Zhang
Technical Consulting Engineer
Intel® Math Kernel Library

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Legal Disclaimer
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPETY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE
FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE
AND/OR USE OF INTEL® PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Intel may make changes to specifications and product descriptions at any time, without notice.

All products, dates, and figures specified are preliminary based on current expectations, and are subject to change without notice.

Intel, processors, chipsets, and desktop boards may contain design defects or errors known as errata, which may cause the product to deviate from published

specifications. Current characterized errata are available on request.

Sandy Bridge and other code names featured are used internally within Intel to identify products that are in development and not yet publicly announced for

release. Customers, licensees and other third parties are not authorized by Intel to use code names in advertising, promotion or marketing of any product or

services and any such use of Intel's internal code names is at the sole risk of the user

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as

SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors

may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases,

including the performance of that product when combined with other products. For more information go to http://www.intel.com/performance

Intel, Core, Xeon, VTune, Cilk, Intel and Intel Sponsors of Tomorrow. and Intel Sponsors of Tomorrow. logo, and the Intel logo are trademarks of Intel

Corporation in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright ©2011 Intel Corporation.

Hyper-Threading Technology: Requires an Intel® HT Technology enabled system, check with your PC manufacturer. Performance will vary depending on the

specific hardware and software used. Not available on all Intel® Core™ processors. For more information including details on which processors support HT

Technology, visit http://www.intel.com/info/hyperthreading

Intel® 64 architecture: Requires a system with a 64-bit enabled processor, chipset, BIOS and software. Performance will vary depending on the specific

hardware and software you use. Consult your PC manufacturer for more information. For more information, visit http://www.intel.com/info/em64t

Intel® Turbo Boost Technology: Requires a system with Intel® Turbo Boost Technology capability. Consult your PC manufacturer. Performance varies

depending on hardware, software and system configuration. For more information, visit http://www.intel.com/technology/turboboost

2

http://www.intel.com/performance
http://www.intel.com/info/hyperthreading
http://www.intel.com/info/em64t
http://www.intel.com/technology/turboboost

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Agenda

• Intel® MKL supports Intel® Xeon Phi™ Coprocessor

• Intel® MKL usage models on Intel® Xeon Phi™

– Automatic Offload

– Compiler Assisted Offload

– Native Execution

• Performance

• Where to find more information?

3

Using Intel® MKL on Intel® Xeon
Phi™ Coprocessors

8

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

9

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® MKL Supports for Intel® Xeon Phi™
Coprocessors

• Intel® MKL 11.0 and above supports the Intel® Xeon Phi™
coprocessors.

• Heterogeneous computing

– Takes advantage of both multicore host and many-core coprocessors.

• Optimized for wider (512-bit) SIMD instructions and threaded
for many cores.

• All Intel MKL functions are supported:

– But optimized at different levels.

Pairing highly parallel software
with highly parallel hardware.

10

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Highly Optimized Functions

BLAS Level 3, and much of Level 1 & 2

Sparse BLAS: ?CSRMV, ?CSRMM

Some important LAPACK routines (LU, QR, Cholesky)

Fast Fourier transforms

Vector Math Library

Random number generators in the Vector Statistical Library

Broader functionality to be optimized in future update releases.

11

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Usage Models on Intel® Xeon Phi™
Coprocessors

• No code changes required

• Automatically uses both host and target

• Transparent data transfer and execution
management

Automatic
Offload

• Explicit controls of data transfer and remote
execution using compiler offload
pragmas/directives

• Can be used together with Automatic Offload

Compiler
Assisted
Offload

• Uses the coprocessors as independent nodes

• Input data and binaries are copied to targets
in advance

Native
Execution

12

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Automatic Offload (AO)

• Offloading is automatic and transparent.

• Can take advantage of multiple coprocessors.

• By default, Intel MKL decides:

– When to offload

– Work division between host and targets

• Users enjoy host and target parallelism
automatically.

• Users can still specify work division between host
and target. (for BLAS only)

13

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

How to Use Automatic Offload

• Using Automatic Offload is easy:

• What if there doesn’t exist a coprocessor in the

system?

– Runs on the host as usual without penalty!

• The context of Automatic Offload is a single function.

Call a function:

mkl_mic_enable()

or

Set an env variable:

MKL_MIC_ENABLE=1

14

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Automatic Offload Enabled Functions

15

• A selected set of MKL functions are AO enabled.

– Only functions with sufficient computation to offset data transfer

overhead are subject to AO

– Level-3 BLAS: ?GEMM, ?TRSM, ?TRMM, ?SYMM

– LAPACK 3 amigos: LU, QR, Cholesky

• Offloading happens only when matrix sizes are right. The

following are dimension sizes in numbers of elements.

– ?GEMM: M, N > 2048, K > 256

– ?SYMM: M, N > 2048

– ?TRSM/?TRMM: M, N > 3072

– LU: M, N > 8192

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Work Division Control in Automatic Offload

Examples Notes

mkl_mic_set_Workdivision(
MKL_TARGET_MIC, 0, 0.5)

Offload 50% of computation only to the 1st

card.

Examples Notes

MKL_MIC_0_WORKDIVISION=0.5 Offload 50% of computation only to the 1st

card.

Work division settings have no
effects for LAPACK functions.

16

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Compiler Assisted Offload (CAO)

Offloading is explicitly controlled by compiler pragmas or directives.

All MKL functions can be offloaded in CAO.

• In comparison, only a subset of MKL is subject to AO.

Can leverage the full potential of compiler’s offloading facility.

Can offload multiple MKL functions using one offload region.

More flexibility in data transfer and remote execution management.

• A big advantage is data persistence: Reusing transferred data for multiple operations.

17

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

How to Use Compiler Assisted Offload

• The same way you would offload any function call
to the coprocessor.

• An example in C:

#pragma offload target(mic) \

in(transa, transb, N, alpha, beta) \

in(A:length(matrix_elements)) \

in(B:length(matrix_elements)) \

in(C:length(matrix_elements)) \

out(C:length(matrix_elements) alloc_if(0))

{

sgemm(&transa, &transb, &N, &N, &N, &alpha, A, &N, B, &N,

&beta, C, &N);

}

18

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

How to Use Compiler Assisted Offload

• An example in Fortran:

!DEC$ ATTRIBUTES OFFLOAD : TARGET(MIC) :: SGEMM

!DEC$ OMP OFFLOAD TARGET(MIC) &

!DEC$ IN(TRANSA, TRANSB, M, N, K, ALPHA, BETA, LDA, LDB, LDC), &

!DEC$ IN(A: LENGTH(NCOLA * LDA)), &

!DEC$ IN(B: LENGTH(NCOLB * LDB)), &

!DEC$ INOUT(C: LENGTH(N * LDC))

!$OMP PARALLEL SECTIONS

!$OMP SECTION

CALL SGEMM(TRANSA, TRANSB, M, N, K, ALPHA, &

A, LDA, B, LDB BETA, C, LDC)

!$OMP END PARALLEL SECTIONS

19

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Using AO and CAO in the Same Program

• Users can use AO for some MKL calls and use CAO

for others in the same program.

– Only supported by Intel compilers.

– Work division must be set explicitly for AO.

– Otherwise, all MKL AO calls are executed on the host.

• Set ‘OFFLOAD_ENABLE_ORSL=1’ for better resource

synchronization.

• Can be done simultaneously from different threads.

– For example, one thread doing AO, the other doing CAO.

20

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Native Execution

• Use the coprocessor as an independent compute

node.

– Programs can be built to run only on the coprocessor by using the

–mmic build option.

• MKL function calls inside an offloaded code region

executes natively.

– Better performance if input data is already available on the

coprocessor, and output is not immediately needed on the host

side.

21

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Considerations of Using Intel® MKL on
Intel® Xeon Phi™ Coprocessors

High level parallelism is critical in maximizing
performance.

•BLAS (Level 3) and LAPACK with large problem size get the
most benefit.

•Scaling beyond 100’s threads, vectorized, good data locality

Minimize data transfer overhead when offload.

•Offset data transfer overhead with enough computation.

•Exploit data persistence: CAO to help!

You can always run on the host if offloading does
not offer better performance.

22

Performance
http://software.intel.com/en-us/intel-mkl#pid-12768-1295

23

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

24

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

25

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

26

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

27

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

28

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Performance Tuning Hints

Problem size considerations:
– Large problems: more parallelism (limited by avail. memory)

– FFT: prefer power-of-2 (POT) sizes

Data alignment consideration:
– 64-byte alignment for better vectorization

– FFT: additional considerations for 2d+

OpenMP* thread count and thread affinity:
– Avoid thread migration for better data locality

Large (2 MB) pages for memory allocation:
– Reduce TLB misses and memory allocation overhead

– Libhugetlbfs, mmap(), MIC_USE_2MB_BUFFERS=<threshold>

– Automatic use is incorporated into newer Intel MPSS (THP)

29

Tips are documented and maintained here:
http://software.intel.com/en-us/articles/performance-tips-of-using-intel-mkl-on-intel-
xeon-phi-coprocessor

articles/performance-tips-of-using-intel-mkl-on-intel-xeon-phi-coprocessor

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Performance Tuning: Alignment

Compiler-assisted offload

• Memory alignment is inherited from host!

• Fast DMA transfers: align with page-granularity

General memory alignment (SIMD vectorization)

• Align buffers (leading dimension) to a multiple of
vector width (64 Byte)

• Use* mkl_malloc, _mm_malloc (_aligned_malloc),
or tbb::scalable_aligned_malloc

30

* Remember to call the corresponding free-function.

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Performance Tuning: FFT

Memory alignment for 2d (and higher) FFTs

– Single-precision (SP): strides divisible by 8
but not divisible by 16

– Double-precision (DP): strides divisible by 4
but not divisible by 8

Consider single call interface in case of parallelizing a
series of individual 1d FFTs!

31

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Performance Tuning: Affinity

Intel MKL threading runtime is OpenMP*

Environment variables OMP_* (similar MKL_* variables take precedence)

– Coprocessor (CAO): MIC_ENV_PREFIX=MIC MIC_OMP_NUM_THREADS=…

Intel OpenMP thread affinity

KMP_AFFINITY=<see below>

– Host: e.g., compact,1

– Coprocessor: balanced

MIC_ENV_PREFIX=MIC MIC_KMP_AFFINITY=<see below>

– Coprocessor (CAO): balanced

KMP_PLACE_THREADS

– New! Note: does not replace KMP_AFFINITY

– Helps to set/achieve pinning on e.g., 60 cores with 3 threads each

kmp_* (or mkl_*) functions take precedence over corresponding env. variables

Intel MPI process affinity

I_MPI_* variables

32

More information:
- Linking on Intel® Xeon Phi™

- Online resources

33

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® MKL Link Line Advisor

A web tool to help users to choose correct link line options.

• http://software.intel.com/sites/products/mkl/

Also available offline in the MKL product package.

34

http://software.intel.com/sites/products/mkl/

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Linking Examples

AO: The same way of building code on Xeon!

icc –O3 –mkl sgemm.c –o sgemm.exe

Native: Using –mmic

icc –O3 –mmic -mkl sgemm.c –o sgemm.exe

CAO: Using -offload-option

icc –O3 -openmp -mkl \

–offload-option,mic,ld, “-L$MKLROOT/lib/mic -Wl,\

--start-group -lmkl_intel_lp64 -lmkl_intel_thread \

-lmkl_core -Wl,--end-group” sgemm.c –o sgemm.exe

35

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Where to Find Code Examples

$MKLROOT/examples/mic_ao

– sgemm AO example

$MKLROOT/examples/mic_offload

– dexp VML example (vdExp)

– dgaussian double precision Gaussian RNG

– fft complex-to-complex 1D FFT

– sexp VML example (vsExp)

– sgaussian single precision Gaussian RNG

– sgemm SGEMM example

– sgemm_f SGEMM example(Fortran 90)

– sgemm_reuse SGEMM with data persistence

– sgeqrf QR factorization

– sgetrf LU factorization

– spotrf Cholesky

– solverc PARDISO examples

37

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Online Resources

How-to articles, tips, case studies, hands-on lab:

– http://software.intel.com/en-us/articles/intel-mkl-on-the-
intel-xeon-phi-coprocessors

Performance charts online:

– http://software.intel.com/en-us/intel-mkl#pid-12768-1295

The MIC developer community:

– http://www.intel.com/software/mic-developer

Intel® MKL forum:

– http://software.intel.com/en-us/forums/intel-math-kernel-
library

38

http://software.intel.com/en-us/articles/intel-mkl-on-the-intel-xeon-phi-coprocessors
http://software.intel.com/en-us/intel-mkl#pid-12768-1295
http://www.intel.com/software/mic-developer
http://software.intel.com/en-us/forums/intel-math-kernel-library

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

39

