Richard Gerber
NERSC Senior Science Advisor to the Director

April 29, 2014
Requirements Reviews

1½-day reviews with each Program Office
Computing and storage requirements for next 5 years

- Participants
 - DOE Program Managers & ADs
 - Leading NERSC users & key potential users
 - NERSC staff

Scientific Objectives
Computing, Storage, Software, Services Requirements
Reports From 9 Requirements Reviews Have Been Completed

- Computing and storage requirements for 2014 & 2017
- Executive Summary of requirements
- Case studies
- Second round, for 2017 requirements, will be completed in April 2014 (NP)

http://www.nersc.gov/science/hpc-requirements-reviews/reports/
Impact

• **Scientific justification for ASCR budget requests**
 - Quantitative requirements
 - Description of scientific benefit
 - Documented needs from science teams

• **Basis for NERSC 7 and NERSC 8 Mission Need**
 - Demand for hours beyond available resources
 - Science at scale, support for ensemble runs & HTC
 - Rich development environment

• **Guides NERSC services directions**
 - Application readiness teams
 - Queues for science at scale & HTC
 - Support for standard tools, libraries, applications
 - Planning for NERSC data services
Meeting Goals

• Gather computing, storage, and HPC services required to support NP research through 2017
• Collect a set of project-based “case studies” with scientific goals and how HPC requirements support achieving those goals
• Before we leave: high-level findings
• Ultimately: a written report for DOE
PRRs Influenced the Selection of Edison & N8

• Findings from first round of PRRs (Program Requirements Reviews)
 – The NERSC community would not be ready to effectively use accelerators in production by 2014
 – There is a need for improved I/O rates and disk storage
 – Many codes benefit from more memory per node, faster single-processor performance, and a high-bandwidth, low-latency interconnect
 – Productivity is more important than “feeds and speeds”

• PRRs findings formed basis of NERSC 7 Mission Need Statement
 – Edison has fast commodity Intel x86 processors, 64 GB/node memory, 6+ PB of /scratch, and novel high bandwidth, low-latency Aries interconnect
 – Adoption by NERSC community was immediate, with little porting effort
 – Performance is running 2X-4X that of Hopper on a per-core basis
Process

• Collect and refine requirements for 2017
 – Case study worksheets
 – Discussions at this meeting lead to high-level findings
 – Post-meeting refinement of case studies

• Draft a written report (Richard & Harvey)
 – Assemble case studies and check for internal consistency and compare against historical trends
 – Aggregate requirements and summarize
 – Create draft report for you & NP to review

• Send final draft to NP & ASCR for final approval

• Publish final report
Strategy Overview

Tell how these are needed to achieve your scientific goals – as specifically as possible

– Computational and storage resources
– HPC services
– Software

Additional important info: Are your codes ready for many-core? If not, what do you need?
Quantitative Method

• **Quantitative requirements are very important**
 – Hours needed
 – Archival data (HPSS) storage needed
 – Disk storage needed

• **For hours and archival storage**
 – Requirements from this review are summed
 – Scaled to full NP need by the fraction of 2013 NP usage represented by case studies
 – Important: Associate each case study with 2013 NERSC repo or repos
 – New/potential projects’ requirements added in separately

• **Like to do the same for Scratch and Project shared disk**
 – Please state 2013 usage and 2017 need so we can create a ratio
• The unit of “Hour” is defined as 1 Hopper core hour

• Please state your requirements in these units
 – How much computing will you need in multiples of a Hopper hour?
 – For this exercise, ignore the architecture – we will normalize this when future systems arrive, based on average application performance

• Give your best estimate for 2017 specifically
 – Remember that each year’s usage has historically been 2X the previous year’s
Computational Hours

NERSC and NP Computational Hours Used

- **NERSC Trend**
- **NP Trend**
- **NP Usage**
- **All NERSC Usage**
- **NP Review Target 2014**
- **All Reviews Target 2014**

![Graph showing computational hours](image)

- **2002**
- **2003**
- **2004**
- **2005**
- **2006**
- **2007**
- **2008**
- **2009**
- **2010**
- **2011**
- **2012**
- **2013**
- **2014**
- **2015**
- **2016**
- **2017**

- 2.02 X/year
- 2.08 X/year
- 216 M used
- 4.9 B need
- 86 B trend
- 9.7 B trend
- 15.7 B need
- 2.1 B used
Data Storage Requirements

• **Archival storage estimate for 2017**
 – This is an aggregate number, not what you will add in 2017
 – Historical trend: $1.5-1.7X$ / year

• **Scratch (temporary)**
 – What is the maximum you will need at any given time during 2017?
 – Not just what you will need for a single run

• **Project shared disk space (permanent)**
 – What will you need for source code, data files or executables that will be constantly accessed and/or shared, etc.
Logistics: Schedule

- Agenda on workshop web page
 - http://www.nersc.gov/science/requirements/NP/
- Mid-morning / afternoon break, lunch
- Today: Case study presentations & discussions
- Self-organization for dinner
- Wednesday: overview, review, and discuss key findings
- Report: NP Intro + PI case studies + NERSC summary
 - Final Case Studies due June 1
 - Richard / Harvey review
 - PI/DOE draft review August 1
 - Final: September 1
- Final reports from previous workshops on web
 - http://www.nersc.gov/science/requirements
Logistics

• Get your presentations to us (Harvey/Richard)
 – Email
 – Web download
 – USB stick

• The laptop at the front will be used to display presentations

• We will stay on time
 – Descriptive and concise science justification
 – Please emphasize requirements and application readiness for manycore
 – Watch countdown timer
Questions?
Terms

- **“Memory”**
 - Volatile or “RAM”
 - Each “node” has a pool of RAM shared among all cores on the node
 - “Global memory requirement” means the sum of all the RAM on the nodes on which your job is running

- **“Many Core”**
 - “Processors” with 100s+ of “light-weight” cores
 - Slower clock speeds (energy efficient)
 - Not self-hosted; need a master CPU (today)
 - Special ways needed to write programs
 - GPUs and Intel Phi
Storage Terms

• “Scratch storage”
 – Temporary, purged after ~6 weeks
 – Fast: 10s – 100s of GB/sec
 – Not backed up
 – Access from a single system (at least at high performance)
 – Default quotas: ~ 10s TB + today

• “Permanent storage”
 – Not purged
 – Usually backed up (feasible into the future?)
 – Somewhat less performant
 – Maybe sharable
 – Center-wide access
 – Default quotas: ~10s GB (Home) to ~10-100 TB (Project) today

• “Archival Storage”
 – Permanent & long term
 – Much slower access time
 – No quotas: up to 10 PB today

Burst Buffers