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Logistics: Schedule 

• Agenda on workshop web page 
–  http://www.nersc.gov/projects/science_requirements/BER/agenda.php 

• Mid-morning / afternoon break, lunch 
• Self-organization for dinner 
• 3 science areas, one workshop 
– Science-focused but cross-science discussion 
– Explore areas of common need (within BER) 

• Breakout sessions Friday AM in one room 



Logistics: Case Studies 

• Two co-leads (for each science area) 
– help roll up discussions into major case studies 

• Case Studies: 
– Narrative describing science & NERSC reqmts 
–  Initial set based on discussions with co-leads 

• Minimum set to capture BER mission and unique 
NERSC requirements 

• Actual number may vary 
– Co-leads suggested discussion leader 
– Encourage participation by all; roundtable 
–    



Logistics: Templates 

• Web templates: web “Reference Material” 
– Based on NERSC info 
– Summary of projects as we know them 
– Good point of departure 

• A framework for discussion 
• But not necessarily the entire story  



Logistics: Final Report Content 

• Format similar to ESnet 
– But NERSC requirement space much broader 

than Esnet 
– See “Reference Material” on web site 
– Contents 

• Executive summary,  
• ~2-page case study reports,  
• NERSC synthesis of all results 



Logistics: Final Report Schedule 

• Revised case studies due to NERSC .. May 21 
• NERSC draft report …………………..  June 21 
• Participants review period ……………… July 7 
• NERSC Near final ................................ July 21 
• BER AD approval  ............................. August 4 
• NERSC Revisions ........................... August 15 
• Final Report posted on Workshop Webpage  

........................................................  August 16 



Why is NERSC Collecting 
Computational Requirements? 

• Help ASCR and NERSC make informed 
decisions for technology and services.  

•  Input is used to guide procurements, staffing, 
and to improve the effectiveness of NERSC 
services. 

–  Includes hardware, software, support,  data, storage, 
analysis, work flow 

• Result: NERSC can better provide what you 
need for your work. 



Examples of Information Sought 

• Type of simulation, #, reason for #, algorithms, 
solver 

• Parallelism: method, weak or strong scaling, 
implementation, concurrency, limits 

• Key physical parameters and their limits: 
–  spatial resolution, # of atoms/energy levels, 

integration range, … 
• Representative code 
• Key science result metrics and goals 



Examples of Information Sought 

• Typical science process (workflow) 
• Data: amount stored / transferred for input, results, 

and fault mitigation 
• How all of this is  

–  Driven by the science 
–  Likely to change and why  



Climate Science 

•  Lawrence Buja (NCAR), David Randall (Colo. State) 
•  Role of Eddies in Meridional Overturning Circulation 

–  Christopher Wolfe (Scripps/UCSD) 

•  Coupled High-Res Modeling of the Earth System 
–  Christopher Kerr (GFDL) 

•  km-scale cloud resolving model 
–  Dave Randall 

•  CCSM moderate/high-res studies 
–  L. Buja 

•  Vegetation-air exchanges / regional climate models 
–  Ned Patton (NCAR) 



Environmental Science 

• Timothy Scheibe, Bruce Palmer (PNNL) 
• Subsurface science / biogeochemistry 
• Climate science 
– Ned Patton (NCAR) 



Biological Science 

• Teresa Head-Gordon, Victor Markowitz (LBNL) 
• Biological pathways and networks:  

–  Costas Maranas (Penn State): 
• Molecular dynamics:  

–  Teresa 
• Bioinformatics, database, data management, 

JGI, JBEI:  
–  Victor Markowitz, (LBNL) 

• Proteomics, clustering, Metabolomics 
–  Lee Ann McCue (PNNL) 



Final Thoughts 

• LBNL will try to record – could use help 

• Requirements characterization process 
is not complicated. 

• Mutually beneficial. 



Scaling Science 

Inspired by P. Kent, 
“Computational Challenges in 
Nanoscience: an ab initio 
Perspective”, Peta08 workshop, 
Hawaii (2008) and Jonathan 
Carter (NERSC). 

Length, Spatial 
extent, #Atoms, Weak 
scaling 

Time scale 
Optimizations, Strong 
scaling 

Simulation method, 
e.g. DFT, QMC or HF/
SCF; LES or DNS 

Initial Conditions, e.g. 
molecule, 
boundaries, 
Ensembles 

Convergence, 
systematic errors 
due to cutoffs, etc. 



BACKUP SLIDES 



Workload Analysis 

• Ongoing activity within NERSC SDSA* 
• Effort to drill deeper than this workshop 
– Study representative codes in detail 

• See how the code stresses the machine 
– Help evaluate architectural trade-offs 

*Science Driven System Architecture Team, 
http://www.nersc.gov/projects/SDSA/ 



Workload-Driven Characteristics  

•  Memory requirements as f(algorithm, inputs) 
•  Memory-to-floating-point operation ratio 
•  Memory access pattern 
•  Interprocessor communication pattern, size, frequency  
•  Parallelism type, granularity, scaling characteristics, load 

balance 
•  I/O volume, frequency, pattern, method, desired percent 

of total runtime 
•  How science drives workload scaling: problem size, data 

set size, memory size 
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Example: Climate Modeling 

•  CAM dominates CCSM3 
computational requirements. 

•  FV-CAM increasingly replacing  
Spectral-CAM in future CCSM runs. 

•   Drivers:  
–   Critical support of U.S. submission 

to the Intergovernmental Panel on 
Climate Change (IPCC). 

–  V & V for CCSM-4 
•  0.5 deg resolution tending to 0.25 

18 

Climate Without INCITE 

•  Focus on ensemble runs - 10 simulations per 
ensemble, 5-25 ensembles per scenario, relatively 
small concurrencies. 



•  Unusual interprocessor 
communication topology – 
stresses interconnect. 

•  Relatively low computational 
intensity – stresses memory 
subsystem. 

•  MPI messages in  bandwidth-
limited regime. 

•  Limited parallelism. 
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FV-CAM Characteristics 
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1km-Scale Global Climate Model Requirements 

1km-Scale required to resolve 
clouds 

•  Simulate climate 1000x faster than real time  
•  10 Petaflops sustained per simulation  

(~200 Pflops peak) 
•  10-100 simulations (~20 Exaflops peak) 
•  DOE E3SGS report suggests exaflop 

requires 180MW 

Computational Requirements: 
•  Advanced dynamics algorithms: icosahedral, 

cubed sphere, reduced mesh, etc. 
•  ~20 billion cells  100 Terabytes of Memory 
•  Decomposed into ~20 million total 

subdomains  massive parallelism 

200km

(now)


1km



