

Workshop Goals & Process

Large Scale Computing and Storage Requirements for Biological and Environmental Research Joint BER / ASCR / NERSC Workshop

Harvey Wasserman NERSC Science Driven System Architecture Group

Lawrence Berkeley National Laboratory

May 7-8, 2009

Logistics: Schedule

- Agenda on workshop web page
 - http://www.nersc.gov/projects/science_requirements/BER/agenda.php
- Mid-morning / afternoon break, lunch
- Self-organization for dinner
- 3 science areas, one workshop
 - Science-focused but cross-science discussion
 - Explore areas of common need (within BER)
- Breakout sessions Friday AM in one room

Logistics: Case Studies

- Two co-leads (for each science area)
 - help roll up discussions into major case studies
- Case Studies:

Science

- Narrative describing science & NERSC reqmts
- Initial set based on discussions with co-leads
 - Minimum set to capture BER mission and unique NERSC requirements
 - Actual number may vary
- Co-leads suggested discussion leader

- Encourage participation by all; roundtable

Logistics: Templates

- Web templates: web "Reference Material"
 - Based on NERSC info
 - Summary of projects as we know them
 - Good point of departure
 - A framework for discussion
 - But not necessarily the entire story

Logistics: Final Report Content

- Format similar to ESnet
 - But NERSC requirement space much broader than Esnet
 - See "Reference Material" on web site
 - Contents
 - Executive summary,
 - ~2-page case study reports,
 - NERSC synthesis of all results

Logistics: Final Report Schedule

- Revised case studies due to NERSC .. May 21
- NERSC draft report June 21
- Participants review period July 7
- NERSC Near final July 21
- BER AD approval August 4
- NERSC Revisions August 15
- Final Report posted on Workshop Webpage
 August 16

Why is NERSC Collecting Computational Requirements?

- Help ASCR and NERSC make informed decisions for technology and services.
- Input is used to guide procurements, staffing, and to improve the effectiveness of NERSC services.
 - Includes hardware, software, support, data, storage, analysis, work flow
- Result: NERSC can better provide what you need for your work.

Examples of Information Sought

- Type of simulation, #, reason for #, algorithms, solver
- Parallelism: method, weak or strong scaling, implementation, concurrency, limits
- Key physical parameters and their limits:
 - spatial resolution, # of atoms/energy levels, integration range, …
- Representative code
- Key science result metrics and goals

Examples of Information Sought

- Typical science process (workflow)
- Data: amount stored / transferred for input, results, and fault mitigation
- How all of this is
 - Driven by the science
 - Likely to change and why

Climate Science

- Lawrence Buja (NCAR), David Randall (Colo. State)
- Role of Eddies in Meridional Overturning Circulation
 - Christopher Wolfe (Scripps/UCSD)
- Coupled High-Res Modeling of the Earth System
 - Christopher Kerr (GFDL)
- km-scale cloud resolving model
 - Dave Randall
- CCSM moderate/high-res studies
 - L. Buja
- Vegetation-air exchanges / regional climate models
 - Ned Patton (NCAR)

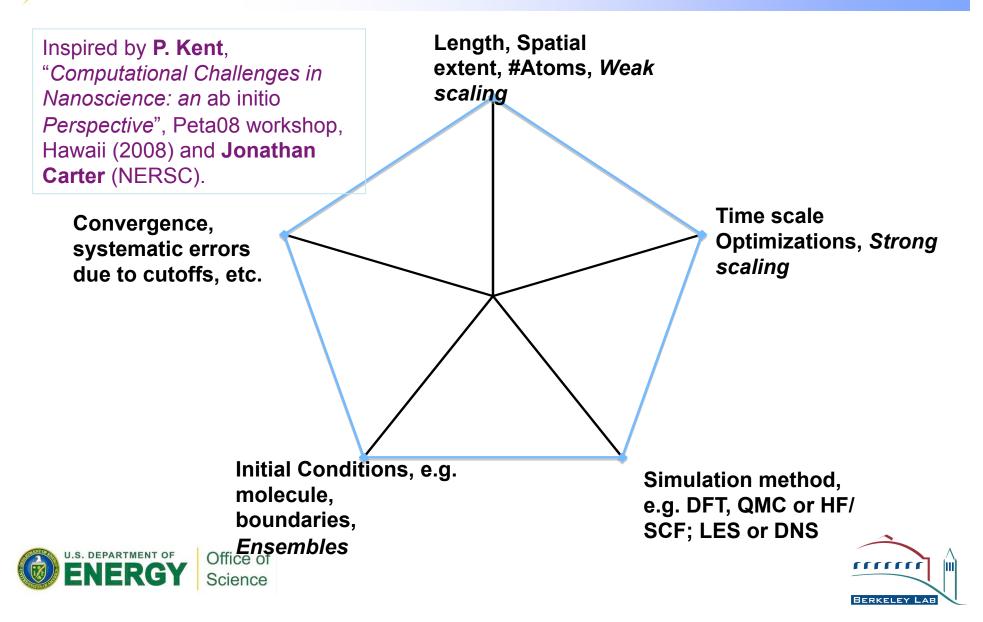
Environmental Science

- Timothy Scheibe, Bruce Palmer (PNNL)
- Subsurface science / biogeochemistry
- Climate science
 - Ned Patton (NCAR)

Biological Science

- Teresa Head-Gordon, Victor Markowitz (LBNL)
- Biological pathways and networks:
 - Costas Maranas (Penn State):
- Molecular dynamics:
 - Teresa
- Bioinformatics, database, data management, JGI, JBEI:
 - Victor Markowitz, (LBNL)
- Proteomics, clustering, Metabolomics
 - Lee Ann McCue (PNNL)

Final Thoughts


- LBNL will try to record could use help
- Requirements characterization process is not complicated.
- Mutually beneficial.

Scaling Science

BACKUP SLIDES

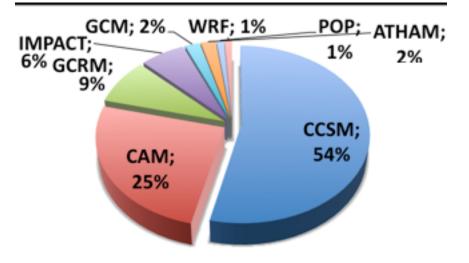
Workload Analysis

- Ongoing activity within NERSC SDSA*
- Effort to drill deeper than this workshop
 - Study representative codes in detail
- See how the code stresses the machine
 Help evaluate architectural trade-offs

*Science Driven System Architecture Team, http://www.nersc.gov/projects/SDSA/

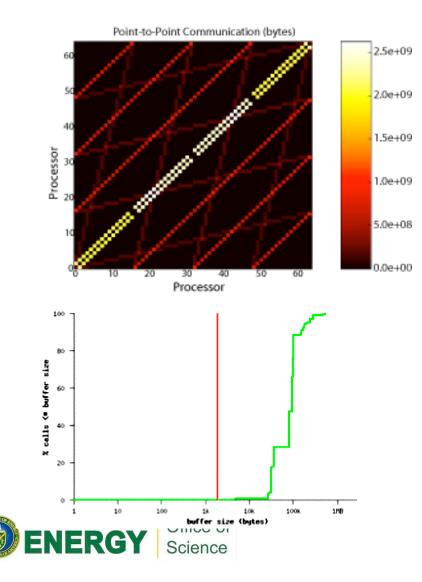
Workload-Driven Characteristics

- Memory requirements as *f*(algorithm, inputs)
- Memory-to-floating-point operation ratio
- Memory access pattern
- Interprocessor communication pattern, size, frequency
- Parallelism type, granularity, scaling characteristics, load balance
- I/O volume, frequency, pattern, method, desired percent of total runtime
- How science drives workload scaling: problem size, data set size, memory size



Example: Climate Modeling

- CAM dominates CCSM3 computational requirements.
- FV-CAM increasingly replacing Spectral-CAM in future CCSM runs.
- Drivers:
 - Critical support of U.S. submission to the Intergovernmental Panel on Climate Change (IPCC).
 - V & V for CCSM-4
- 0.5 deg resolution tending to 0.25
- Focus on ensemble runs 10 simulations per ensemble, 5-25 ensembles per scenario, relatively small concurrencies.



Climate Without INCITE

FV-CAM Characteristics

- Unusual interprocessor communication topology – stresses interconnect.
- Relatively low computational intensity – stresses memory subsystem.
- MPI messages in bandwidthlimited regime.
- Limited parallelism.

How Science Drives Architecture

SCIENTIFIC COMPUTING CENTER

Algorithm Science areas	Dense linear algebra	Sparse linear algebra	Spectral Methods (FFTs)	Particle Methods	Structured Grids	Unstructured or AMR Grids	Data Intensive
Accelerator Science		Х	X	Х	Х	X	
Astrophysics	X	X	X	X	X	X	X
Chemistry	X	X	X	X			X
Climate			X		X	X	X
Combustion					Х	Х	X
Fusion	X	X		X	X	X	X
Lattice Gauge		X	X	X	X		
Material Science	X		X	Х	X		
BioScience			X	X			X

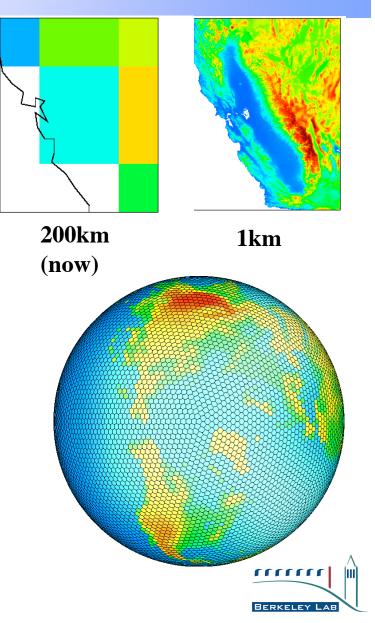
Machine Requirements

Algorithm Science areas	Dense linear algebra	Sparse linear algebra	Spectral Methods (FFT)s	Particle Methods	Structured Grids	Unstructured or AMR Grids	Data Intensive
Accelerator						I	
Astrophysics	H	H		F		0	Sto
Chemistry		B		m gig		8	age,
Climate	6	h		h lei	P O	lai	Z
Combustion	F	pe 10	n b	po	h 1	ter he	etw
Fusion		rf ry	is Iw	erf	lo	lC r/	ork
Lattice Gauge	s/d	ori Sv	ect	for V S	s/d	y, e sca	Infr
MatSci	rat	mar stei	ion th	mai vste	ra	ffi	astruc
BioScience	e	nce		nce	e	cient pr	ture

Im BERKELEY LAB

1km-Scale Global Climate Model Requirements

1km-Scale required to resolve clouds


- Simulate climate 1000x faster than real time
- 10 Petaflops sustained per simulation (~200 Pflops peak)
- 10-100 simulations (~20 Exaflops peak)
- DOE E3SGS report suggests exallop • requires 180MW

Computational Requirements:

- Advanced dynamics algorithms: icosahedral, cubed sphere, reduced mesh, etc.
- ~20 billion cells \rightarrow 100 Terabytes of Memory
- Decomposed into ~20 million total subdomains \rightarrow massive parallelism

Office of Science

