Present and Future Computing Requirements for
Sampling diffusive dynamics on long timescales,
and simulating the coupled
dynamics of electrons and nuclei

Thomas Miller
Caltech

NERSC BES Requirements for 2017
October 8-9, 2013
Gaithersburg, MD
1. Project Description
 Thomas F. Miller / Caltech

• Summarize your project(s) and its scientific objectives through 2017

• Our present focus is:
 • To understand reactive tunneling in enzyme-catalyzed hydrogen-transfer, electron-transfer, and proton-coupled electron transfer reactions.
 • To understanding and controlling protein targeting and protein expression in cells, at the amino acid level.

• By 2017 we expect to develop and utilize new methods to achieve these focuses.
2. Computational Strategies

• We approach this problem computationally at a high level by utilizing quantized molecular dynamics (MD), classical MD, and coarse-grained simulation methods.

• The codes we use are either developed in-house or modified versions of existing programs, such as NAMD, GROMACS, DL_POLY, or AMBER.

• These codes are characterized by these algorithms: molecular dynamics (ODE) integration, FFT

• Our biggest computational challenges are: FLOP availability, queue times.
2. Computational Strategies

• Our parallel scaling is limited by: potential energy surface evaluation, number of DOFs, number of weakly coupled trajectories

• We expect our computational approach and/or codes to change (or not) by 2017 in this way:
 • Increased use of GPUs
 • Increased computational cost (and parallel scalability) of potential energy surface evaluations.
 • Increased system sizes and desired timescales of simulation
3. Current HPC Usage (see slide notes)

- Machines currently using: Edison, Hopper, Carver

- Hours used in 2012-2013 (list different facilities):
 - NERSC: 13 M in 2013 cycle (22M in 2012 cycle)
 - OLCF (Jaguar): 9 M
 - ALCF (Intrepid, Vesta): 8M

- Typical parallel concurrency and run time, number of runs per year:
 - 500-2000 processors per set of jobs (tight parallelization w/i trajectories, weak among)
 - 6-12 hours per trajectory
 - Hundreds of runs per year

- Data read/written per run:
 - Modest: 1-5 GB
3. Current HPC Usage (see slide notes)

- Memory used per (node | core | globally)
 - 50-100 MB per core

- Necessary software, services or infrastructure
 - MD packages, FFT packages, electronic structure packages (Molpro, Gaussian)

- Data resources used (/scratch, HPSS, NERSC Global File System, etc.) and amount of data stored
 - Low storage requirements (<1 TB), only 167K SRUs used in 2013 for HPSS
4. HPC Requirements for 2017
(Key point is to directly link NERSC requirements to science goals)

• Compute hours needed (in units of Hopper hours)
 • 50-100 M (increasing demands of potential energy surface (PES) evaluations)

• Changes to parallel concurrency, run time, number of runs per year
 • Greater PES parallelizability (10-20x increase), no other major changes

• Changes to data read/written
 • No major changes expected

• Changes to memory needed per (core | node | globally)
 • Greater memory requirements (1 GB per core)

• Changes to necessary software, services or infrastructure
 • None anticipated
5. Strategies for New Architectures

• Our strategy for running on new many-core technologies (GPUs or MIC) is:
 – Expanded utilization of GPUs in many/most simulation studies

• To date we have prepared for many core by:
 – Utilization of local (Caltech-based) GPU machines
 – Utilization of GPU implementations of classical MD packages
 – Working with CS groups at Caltech and Pomona Colleges to develop efficient GPU versions of the coarse-grained simulations

• We are already planning to do:
 – Develop and implement GPU versions of existing codes

• To be successful on many-core systems we will need help with:
 – Efficient implementation, scaling tests
5. Summary

- What new science results might be afforded by improvements in NERSC computing hardware, software and services?
 - All aspects of our work utilize NERSC resources – a critical resource for our progress
 - Many applications are limited by available computational resources: More hardware access, more progress. Also, NERSC support is important for efforts.
 - Public software is a less critical bottlenecks for us at this time, but the currently available codes are essential to our work.

- Recommendations on NERSC architecture, system configuration and the associated service requirements needed for your science:
 - Don’t make queues too short.
 - Recognize the value of ensemble calculations, while encouraging efficient parallelization.
5. Summary

• NERSC generally refreshes systems to provide on average a 2X performance increase every year. What significant scientific progress could you achieve over the next 5 years with access to 32X your current NERSC allocation?
 • Quantitate prediction of biological and catalytic processes, design of new catalysts
 • Theory-guided enhancement of integral membrane protein expression.
 • Progress towards the computational design of electrolyte and electrode materials.

• What "expanded HPC resources" are important for your project?
 • Increased numbers of processors.
 • Increased processor speed.

• General discussion