
Jack Deslippe
NERSC User Services

Preparing
Applications for
Future NERSC
Architectures

What We are Telling Users

Our message to users:

Disruptive changes are coming!

● If you do nothing, your MPI-only code may
run poorly on future machines

● Changes affect entire HPC community

● NERSC is here to help and here to lead

3 Important Areas of Change

● More cores (and/or hardware threads) per
node

● Vectorization will become critical to
performance.

● Hierarchical memory

Our message to users:

Our message to users:

3 Important Areas of Change

● More cores (and/or hardware threads) per
node

● Vectorization will become critical to
performance.

● Hierarchical memory is coming.
The App-readiness has been focused on these two changes in phase 1, since
these affect all architectures.

The nature of memory hierarchies is architecture dependent.

The Future Will Have Many-Cores

Memory

… Compute Units

No matter what chip architecture is in NERSC’s 2017
machines, compute nodes will have many compute
units with shared memory.

Memory per compute-unit is not expected to rise.

The only way that NERSC can continue to provide
compute speed improvements that meet user need is
by moving to “energy-efficient” architectures; tend
to have lower clock-speeds, rely heavily on
vectorization/SIMD.

For the last decade: we’ve enjoyed massively parallel machines with MPI as the standard
programming method

Due primarily to power constraints, chip vendors are moving to “many-core”
architectures:

Consumer/Server CPUs: 10’s of Threads per Socket
Intel Xeon-Phi: 100’s of Threads per Socket
NVIDIA GPUs: 1000’s of Threads per Socket

Vectorization

There is a another important form of on-node parallelism

Vectorization: CPU does identical operations on different data; e.g., multiple iterations of the
above loop can be done concurrently.

 do i = 1, n
 a(i) = b(i) + c(i)
 enddo

Intel Xeon Sandy-Bridge/Ivy-Bridge: 4 Double Precision Ops Concurrently

Intel Xeon Phi: 8 Double Precision Ops Concurrently

NVIDIA Kepler GPUs: 32 SIMT threads

NERSC Roadmap

Fl
op

s/
se

c

NERSC is committed to helping our users

Help transition the NERSC workload to future architectures by
exploring and improving application performance on manycore
architectures.

Phase 1:
➔ Identify major algorithms in the NERSC workload. Assigned

14 codes to represent class.
● 1 team member per code

➔ Code status discovery
● What has been done at other centers
● How are various code teams preparing

➔ Profile OpenMP/MPI scaling and vectorization in key kernels
on GPU testbed (dirac) and Xeon-Phi testbed (babbage).

Phase 2:
➔ Organize user training around node-parallelism,

vectorization and other architecture specific details.
➔ Meet with key application developers / workshops at

NERSC. Leverage/lead community efforts.
➔ Application deep dives.
➔ User accessible test-bed systems.

Lattice QCD

Density
Functional
Theory

Fusion
PIC

ClimateQuantum Chemistry
QMC

Fast Math
CMB

Bioinformatics

Molecular
DynamicsFusion

Continuum

Other
codes

Accelerator PIC

NERSC Workload
By Algorithm

NERSC App Readiness Team

Nick Wright (Co-
Lead)
Amber (Proxy for
NAMD, LAMMPS)

Katerina Antypas
(Co-Lead)

Harvey Wasserman
SNAP (SN transport
proxy)

Brian Austin
Zori (Proxy for
QWalk etc.)

Hongzhang Shan
NWChem (Proxy for
qchem, GAMESS)

Jack Deslippe
Quantum ESPRESSO
/ BerkeleyGW (Proxy
for VASP, Abinit)

NERSC is kicking off an “Application Readiness” effort. Devoting significant staff effort to help users
and developers port their codes to many-core architectures

Woo-Sun Yang
CAM (Proxy for
CESM)

Helen He
WRF

Matt Cordery
MPAS

Kirsten Fagnan
Bio-Informatics

Aaron Collier
Madam-Toast /
Gyro

Christopher Daley
FLASH

BerkeleyGW Case Study

Case Study: BerkeleyGW

Description:

A material science code to compute
excited state properties of materials.
Works with many common DFT
packages.

Algorithms:

- FFTs (FFTW)

- Dense Linear Algebra (BLAS / LAPACK
/ SCALAPACK / ELPA)

- Large Reduction Loops.

Silicon Light Absorption vs. Photon Energy
as Computed in BerkeleyGW

Failure of the MPI-Only Programming Model in BerkeleyGW

★ Big systems require more memory. Cost scales as Natm^2 to store the data.

★ In an MPI GW implementation, in practice, to avoid communication, data is duplicated and
each MPI task has a memory overhead.

★ On Hopper, users often forced to use 1 of 24 available cores, in order to provide MPI tasks
with enough memory. 90% of the computing capability is lost.

Distributed Data

Overhead Data

MPI Task 1

Distributed Data

Overhead Data

MPI Task 2

Distributed Data

Overhead Data

MPI Task 3

…

Steps to Optimize BerkeleyGW on Xeon-Phi Testbed

Time/Code-Revision

(2 Sandy Bridge)

(1 Xeon-Phi)

*

Low
er is B

etter

1. Refactor to create hierarchical set of loops to be parallelized via MPI, OpenMP and
Vectorization and to improve memory locality.

2. Add OpenMP at as high a level as possible.
3. Make sure large innermost, flop intensive, loops are vectorized

 * - eliminate spurious logic, some code restructuring simplification and other optimization

Steps to Optimize BerkeleyGW on Xeon-Phi Testbed

Time/Code-Revision

1. Refactor to create hierarchical set of loops to be parallelized via MPI, OpenMP and
Vectorization and to improve memory locality.

2. Add OpenMP at as high a level as possible.
3. Make sure large innermost, flop intensive, loops are vectorized

 * - eliminate spurious logic, some code restructuring simplification and other optimization

(2 Sandy Bridge)

After optimization, 4
early Intel Xeon-Phi
cards with
MPI/OpenMP is ~1.5X
faster than 32 cores of
Intel Sandy Bridge on
test problem.

(1 Xeon-Phi)

*

Low
er is B

etter

Simplified Final Loop Structure
!$OMP DO reduction(+:achtemp)
 do my_igp = 1, ngpown

 ...

 do iw=1,3

 scht=0D0
 wxt = wx_array(iw)

 do ig = 1, ncouls

 !if (abs(wtilde_array(ig,my_igp) * eps(ig,my_igp)) .lt. TOL) cycle

 wdiff = wxt - wtilde_array(ig,my_igp)
 delw = wtilde_array(ig,my_igp) / wdiff

 ...

 scha(ig) = mygpvar1 * aqsntemp(ig) * delw * eps(ig,my_igp)

 scht = scht + scha(ig)

 enddo ! loop over g

 sch_array(iw) = sch_array(iw) + 0.5D0*scht

 enddo

 achtemp(:) = achtemp(:) + sch_array(:) * vcoul(my_igp)

 enddo

!$OMP DO reduction(+:achtemp)
 do my_igp = 1, ngpown

 ...

 do iw=1,3

 scht=0D0
 wxt = wx_array(iw)

 do ig = 1, ncouls

 !if (abs(wtilde_array(ig,my_igp) * eps(ig,my_igp)) .lt. TOL) cycle

 wdiff = wxt - wtilde_array(ig,my_igp)
 delw = wtilde_array(ig,my_igp) / wdiff

 ...

 scha(ig) = mygpvar1 * aqsntemp(ig) * delw * eps(ig,my_igp)

 scht = scht + scha(ig)

 enddo ! loop over g

 sch_array(iw) = sch_array(iw) + 0.5D0*scht

 enddo

 achtemp(:) = achtemp(:) + sch_array(:) * vcoul(my_igp)

 enddo

Simplified Final Loop Structure

ngpown typically in
100’s to 1000s. Good
for many threads.

ncouls typically in
1000s - 10,000s.
Good for vectorization.
Don’t have to worry
much about memory.
alignment.

Original inner loop.
Too small to vectorize!

Attempt to save work
breaks vectorization
and makes code
slower.

Running on Many-Core Xeon-Phi Requires OpenMP Simply
To Fit Problem in Memory

See poster for details.

#MPI-Tasks x
#OMP Threads
= 120, 16

Low
er is B

etter

Running on Many-Core Xeon-Phi Requires OpenMP Simply
To Fit Problem in Memory

★ Example problem cannot fit into memory when using less than 5 OpenMP
threads per MPI task.

★ Conclusion: you need OpenMP to perform well on Xeon-Phi in practice

See poster for details.

Low
er is B

etter

FLASH Case Study
Christopher Daley

FLASH application readiness

• FLASH is an Adaptive Mesh Refinement (AMR) code with
explicit solvers for hydrodynamics and magneto-
hydrodynamics

• Parallelized using
– MPI domain decomposition AND

– OpenMP multithreading over either local domains or over cells in each local
domain

• Target application is a 3D Sedov explosion problem
– A spherical blast wave is evolved over multiple time steps

– We test a configuration with a uniform resolution grid (and not AMR) and use
1003 global cells

• The hydrodynamics solvers perform large stencil
computations: 4 guard cells are needed for the default 3rd
order solver; 6 guard cells for the 5th order solver

- -

Best MIC performance vs host

- -

Low
er is B

etter

Best configuration on 1 MIC card

- -

Low
er is B

etter

MIC performance study 1: thread speedup

- -

H
igher is B

etter

• 1 MPI rank per MIC
card and various
numbers of
OpenMP threads

• Each OpenMP
thread is placed on a
separate core

• 10x thread count
ideally gives a 10x
speedup • Speedup is not ideal

– But it is not the main cause of the poor MIC performance

– ~70% efficiency @ 12 threads (as would be used with 10 MPI ranks per card)

– The data for 1 grid point is laid out as a structure of fluid fields, e.g. density,
pressure, …, temperature next to each other: A(HY_DENS:HY_TEMP)

– Vectorization can only happen when the same operation is performed on
multiple fluid fields of 1 grid point!

- -

No vectorization gain!

Low
er is B

etter

MIC performance study 2: vectorization

• We find that most
time is spent in
subroutines which
update fluid state 1
grid point at a time

• Must restructure the code
- The fluid fields should no longer be next to each other in memory

- A(HY_DENS:HY_TEMP) should become A_dens(1:N), …, A_temp(1:N)
- The 1:N indicates the kernels now operate on N grid points at a time

• We tested these changes on part of a data reconstruction kernel

- -

• The new code
compiled with
vectorization
options gives the
best
performance on
3 different
platforms

H
igher is B

etter

Enabling vectorization

• FLASH on MIC
– MPI+OpenMP parallel efficiency – OK
– Vectorization – zero / negative gain …must restructure!

• Compiler auto-vectorization / vectorization directives do not help the current code

• Changes needed to enable vectorization

– Make the kernel subroutines operate on multiple grid points at a time

– Change the data layout by using a separate array for each fluid field

• Effectively a change from array of structures (AofS) to structure of arrays (SofA)

• Tested these proof-of-concept changes on a reduced hydro kernel

– Demonstrated improved performance on Ivy-Bridge, BG/Q and Xeon-Phi platforms

- -

Good Parallel Efficiency AND Vectorization = Good MIC Performance

Summary

Conclusions and Lessons
Learned

Summary

➔ Disruptive Change is Coming!

➔ NERSC is Here to Help Our Users

➔ Good performance will require code changes
◆ Identify more on-node parallelism
◆ Ensure vectorization for critical loops

➔ Need to leverage community. Other centers, NERSC users, 3rd Part
Developers

➔ The code changes you make for many-core architectures will improve
performance on all architectures.

