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What We are Telling Users



Our message to users:

Disruptive changes are coming!

● If you do nothing, your MPI-only code may 
run poorly on future machines

● Changes affect entire HPC community

● NERSC is here to help and here to lead



3 Important Areas of Change

● More cores (and/or hardware threads) per 
node

● Vectorization will become critical to 
performance.

● Hierarchical memory
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Our message to users:

3 Important Areas of Change

● More cores (and/or hardware threads) per 
node

● Vectorization will become critical to 
performance.

● Hierarchical memory is coming.
The App-readiness has been focused on these two changes in phase 1, since 
these affect all architectures. 

The nature of memory hierarchies is architecture dependent.



The Future Will Have Many-Cores

Memory

… Compute Units

No matter what chip architecture is in NERSC’s 2017 
machines, compute nodes will have many compute 
units with shared memory. 

Memory per compute-unit is not expected to rise. 

The only way that NERSC can continue to provide 
compute speed improvements that meet user need is 
by moving to “energy-efficient” architectures; tend 
to have lower clock-speeds, rely heavily on 
vectorization/SIMD.

For the last decade: we’ve enjoyed massively parallel machines with MPI as the standard 
programming method 

Due primarily to power constraints, chip vendors are moving to “many-core” 
architectures:

Consumer/Server CPUs: 10’s of Threads per Socket 
Intel Xeon-Phi: 100’s of Threads per Socket
NVIDIA GPUs: 1000’s of Threads per Socket



Vectorization

There is a another important form of on-node parallelism

Vectorization: CPU does identical operations on different data; e.g., multiple iterations of the 
above loop can be done concurrently.

  do i = 1, n
      a(i) = b(i) + c(i) 
  enddo

Intel Xeon Sandy-Bridge/Ivy-Bridge: 4 Double Precision Ops Concurrently

Intel Xeon Phi: 8 Double Precision Ops Concurrently

NVIDIA Kepler GPUs: 32 SIMT threads
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NERSC is committed to helping our users

Help transition the NERSC workload to future architectures by 
exploring and improving application performance on manycore 
architectures.

Phase 1:
➔ Identify major algorithms in the NERSC workload. Assigned 

14 codes to represent class. 
● 1 team member per code

➔ Code status discovery
● What has been done at other centers
● How are various code teams preparing

➔ Profile OpenMP/MPI scaling and vectorization in key kernels 
on GPU testbed (dirac) and Xeon-Phi testbed (babbage).

Phase 2:
➔ Organize user training around node-parallelism, 

vectorization and other architecture specific details.
➔ Meet with key application developers / workshops at 

NERSC. Leverage/lead community efforts.
➔ Application deep dives.
➔ User accessible test-bed systems.

Lattice QCD

Density 
Functional 
Theory

Fusion 
PIC

ClimateQuantum Chemistry
QMC

Fast Math
CMB

Bioinformatics

Molecular 
DynamicsFusion 

Continuum

Other 
codes

Accelerator PIC

NERSC Workload 
By Algorithm



NERSC App Readiness Team

Nick Wright  (Co-
Lead)
Amber (Proxy for 
NAMD, LAMMPS)

Katerina Antypas
(Co-Lead)

Harvey Wasserman
SNAP (SN transport 
proxy)

Brian Austin
Zori (Proxy for 
QWalk etc.)

Hongzhang Shan
NWChem (Proxy for 
qchem, GAMESS)

Jack Deslippe
Quantum ESPRESSO 
/ BerkeleyGW (Proxy 
for VASP, Abinit)

NERSC is kicking off an “Application Readiness” effort. Devoting significant staff effort to help users 
and developers port their codes to many-core architectures

Woo-Sun Yang
CAM (Proxy for 
CESM)

Helen He
WRF

Matt Cordery
MPAS

Kirsten Fagnan
Bio-Informatics

Aaron Collier
Madam-Toast / 
Gyro

Christopher Daley
FLASH



BerkeleyGW Case Study



Case Study: BerkeleyGW

Description:

A material science code to compute 
excited state properties of materials. 
Works with many common DFT 
packages.

Algorithms:

- FFTs (FFTW)

- Dense Linear Algebra (BLAS / LAPACK 
/ SCALAPACK / ELPA) 

- Large Reduction Loops.

Silicon Light Absorption vs. Photon Energy 
as Computed in BerkeleyGW



Failure of the MPI-Only Programming Model in BerkeleyGW 

★ Big systems require more memory. Cost scales as Natm^2 to store the data.

★ In an MPI GW implementation, in practice, to avoid communication, data is duplicated and 
each MPI task has a memory overhead.

★ On Hopper, users often forced to use 1 of 24 available cores, in order to provide MPI tasks 
with enough memory.  90% of the computing capability is lost.

Distributed Data

Overhead Data

MPI Task 1

Distributed Data

Overhead Data

MPI Task 2

Distributed Data

Overhead Data

MPI Task 3

…



Steps to Optimize BerkeleyGW on Xeon-Phi Testbed

Time/Code-Revision

(2 Sandy Bridge)

(1 Xeon-Phi)

*
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1. Refactor to create hierarchical set of loops to be parallelized via MPI, OpenMP and 
Vectorization and to improve memory locality.

2. Add OpenMP at as high a level as possible.
3. Make sure large innermost, flop intensive, loops are vectorized 

  * - eliminate spurious logic, some code restructuring simplification and other optimization



Steps to Optimize BerkeleyGW on Xeon-Phi Testbed

Time/Code-Revision

1. Refactor to create hierarchical set of loops to be parallelized via MPI, OpenMP and 
Vectorization and to improve memory locality.

2. Add OpenMP at as high a level as possible.
3. Make sure large innermost, flop intensive, loops are vectorized 

  * - eliminate spurious logic, some code restructuring simplification and other optimization

(2 Sandy Bridge)

After optimization, 4 
early Intel Xeon-Phi 
cards with 
MPI/OpenMP is ~1.5X 
faster than 32 cores of 
Intel Sandy Bridge on 
test problem.

(1 Xeon-Phi)

*
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Simplified Final Loop Structure
!$OMP DO reduction(+:achtemp)
  do my_igp = 1, ngpown

    ...

    do iw=1,3

      scht=0D0
      wxt = wx_array(iw)

      do ig = 1, ncouls

        !if (abs(wtilde_array(ig,my_igp) * eps(ig,my_igp)) .lt. TOL) cycle

        wdiff = wxt - wtilde_array(ig,my_igp)
        delw = wtilde_array(ig,my_igp) / wdiff

        ...

        scha(ig) = mygpvar1 * aqsntemp(ig) * delw * eps(ig,my_igp)

        scht = scht + scha(ig)

      enddo ! loop over g

      sch_array(iw) = sch_array(iw) + 0.5D0*scht

    enddo
    
    achtemp(:) = achtemp(:) + sch_array(:) * vcoul(my_igp)

  enddo



!$OMP DO reduction(+:achtemp)
  do my_igp = 1, ngpown

    ...

    do iw=1,3

      scht=0D0
      wxt = wx_array(iw)

      do ig = 1, ncouls

        !if (abs(wtilde_array(ig,my_igp) * eps(ig,my_igp)) .lt. TOL) cycle

        wdiff = wxt - wtilde_array(ig,my_igp)
        delw = wtilde_array(ig,my_igp) / wdiff

        ...

        scha(ig) = mygpvar1 * aqsntemp(ig) * delw * eps(ig,my_igp)

        scht = scht + scha(ig)

      enddo ! loop over g

      sch_array(iw) = sch_array(iw) + 0.5D0*scht

    enddo
    
    achtemp(:) = achtemp(:) + sch_array(:) * vcoul(my_igp)

  enddo

Simplified Final Loop Structure

ngpown typically in 
100’s to 1000s. Good 
for many threads.

ncouls typically in 
1000s - 10,000s. 
Good for vectorization. 
Don’t have to worry 
much about memory. 
alignment.

Original inner loop. 
Too small to vectorize!

Attempt to save work 
breaks vectorization 
and makes code 
slower.



Running on Many-Core Xeon-Phi Requires OpenMP Simply
To Fit Problem in Memory

See poster for details.

#MPI-Tasks x
#OMP Threads 
= 120, 16
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Running on Many-Core Xeon-Phi Requires OpenMP Simply
To Fit Problem in Memory

★ Example problem cannot fit into memory when using less than 5 OpenMP 
threads per MPI task.

★ Conclusion: you need OpenMP to perform well on Xeon-Phi in practice

See poster for details.
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FLASH Case Study
Christopher Daley



FLASH application readiness

• FLASH is an Adaptive Mesh Refinement (AMR) code with 
explicit solvers for hydrodynamics and magneto-
hydrodynamics

• Parallelized using
– MPI domain decomposition AND

– OpenMP multithreading over either local domains or over cells in each local 
domain

• Target application is a 3D Sedov explosion problem
– A spherical blast wave is evolved over multiple time steps

– We test a configuration with a uniform resolution grid (and not AMR) and use 
1003 global cells

• The hydrodynamics solvers perform large stencil 
computations: 4 guard cells are needed for the default 3rd 
order solver; 6 guard cells for the 5th order solver

-   -



Best MIC performance vs host

-   -
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Best configuration on 1 MIC card

-   -
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MIC performance study 1: thread speedup

-   -
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• 1 MPI rank per MIC 
card and various 
numbers of   
OpenMP threads

• Each OpenMP 
thread is placed on a 
separate core

• 10x thread count 
ideally gives a 10x 
speedup • Speedup is not ideal

– But it is not the main cause of the poor MIC performance

– ~70% efficiency @ 12 threads (as would be used with 10 MPI ranks per card)



– The data for 1 grid point is laid out as a structure of fluid fields, e.g. density, 
pressure, …, temperature next to each other: A(HY_DENS:HY_TEMP)

– Vectorization can only happen when the same operation is performed on 
multiple fluid fields of 1 grid point!

-   -

No vectorization gain!

Low
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MIC performance study 2: vectorization

• We find that most 
time is spent in 
subroutines which 
update fluid state 1 
grid point at a time



• Must restructure the code
- The fluid fields should no longer be next to each other in memory

- A(HY_DENS:HY_TEMP) should become A_dens(1:N), …, A_temp(1:N)
- The 1:N indicates the kernels now operate on N grid points at a time

• We tested these changes on part of a data reconstruction kernel

-   -

• The new code 
compiled with 
vectorization 
options gives the 
best 
performance on 
3 different 
platforms

H
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Enabling vectorization



• FLASH on MIC
– MPI+OpenMP parallel efficiency – OK
– Vectorization – zero / negative gain …must restructure!

• Compiler auto-vectorization / vectorization directives do not help the current code

• Changes needed to enable vectorization

– Make the kernel subroutines operate on multiple grid points at a time

– Change the data layout by using a separate array for each fluid field

• Effectively a change from array of structures (AofS) to structure of arrays (SofA)

• Tested these proof-of-concept changes on a reduced hydro kernel

– Demonstrated improved performance on Ivy-Bridge, BG/Q and Xeon-Phi platforms

-   -

Good Parallel Efficiency AND Vectorization = Good MIC Performance

Summary



Conclusions and Lessons 
Learned



Summary

➔ Disruptive Change is Coming!

➔ NERSC is Here to Help Our Users

➔ Good performance will require code changes
◆ Identify more on-node parallelism
◆ Ensure vectorization for critical loops

➔ Need to leverage community. Other centers, NERSC users, 3rd Part 
Developers

➔ The code changes you make for many-core architectures will improve 
performance on all architectures.


