
NERSC8 CoE
Key Actions when optimizing for

KNL
Nathan Wichmann

wichmann@cray.com

Outline

2/24/2014 Cray Private
2

● Characterization and Multi-node Considerations
●  Target Science
●  Profiles and Hotspots
●  Scaling and Communication

● Single node optimizations
●  Memory and cache footprint analysis
●  Memory bandwidth requirements
●  Vectorization
●  Creating a kernel to aid in further analysis and testing

● Example: BerkeleyGW - FF kernel

What Science do you want to run on Cori

3

●  Identify 1 or a few science problems that you anticipate
running on Cori
●  Identifying the science problems will help focus efforts on what routines

and issues are important

● Estimate how many nodes you will use during the run
●  Does the code already scale this high?
●  What can we say about communication

●  The combination of science problem and number of nodes
will allow one to estimate memory footprints, array sizes,
and trip count sizes
●  This information is critical

Scaling and communication

4

● How high does the code scale

● Does your code use both OpenMP and MPI?
●  How many OpenMP threads can you utilize

● What is limiting your scaling?
●  Communication overhead?
●  Lack of parallelism on a given science problem

● Understand and optimizing scaling is critical
●  KNL requires scaling to higher numbers of cores to achieve the same

level of performance
●  Scaling impacts loop trip counts, memory footprints, and more

Where is the time being spent

5

● Are you sure? Verify
● Use statistical profilers to determine where the time is

being spent
●  Are there obvious key routines that time up a significant percentage of

time?
●  Are there key loops or code sections?
●  How many routines before you hit 80% of the run time

●  Is the profile different for different science problems?

Understanding your memory footprint is critical

6

● Do you expect to your problem to consume a significant
amount of main memory?
●  Main memory is about 96 Gbytes

●  Is it possible that your problem will fit into fast memory
●  Fast memory is 16 Gbytes per node

●  Can be configured as a “memory cache”
●  Can be configured 50% cache and 50% explicitly managed
●  Can be configured 25% cache and 75% explicitly managed
●  Can be configured at 100% explicitly managed

● What is the memory access pattern for the routines and
loops identified as important
●  What are the trip counts in that loop nest?
●  How much data is accessed?
●  How much is reused more than once?

Vectorization

7

● Do the loops vectorize?

● Vectorization is very important to achieving high

performance rates
●  Edison vectors are 4 DP words, Cori is longer
●  Cannot take full advantage of functional units without vectorization
●  Unlikely to take full advantage of memory bandwidth
●  Scalar performance on Cori

● Common inhibitors
●  Dependencies
●  Indirect addressing may prevent vectorization or make is less efficient

●  e.g. A(indx(i)) =
●  Function / subroutine calls
●  If tests inside of inner loops may slow execution and prevent vectorization
●  More…

Are your kernels memory bandwidth bound

8

● Do you expect to your problem to consume a significant
amount of main memory?
●  Main memory is about 96 Gbytes

●  Is it possible that your problem will fit into fast memory
●  Fast memory is 16 Gbytes per node

●  Can be configured as a “memory cache”
●  Can be configured 50% cache and 50% explicitly managed
●  Can be configured at 100% explicitly managed

● What is the memory access pattern for the routines and
loops identified as important
●  What are the trip counts in that loop nest?
●  How much data is accessed?
●  How much is reused more than once?

How can you tell if you are memory bandwidth
bound?

9

● Sometimes it is easy
●  One or more loop nests are streaming through a huge amount of data
●  Little to no reuse
●  Easy to determine the

● Sometimes it is difficult
●  Some trip counts are large
●  But some data are reused
●  Not obvious what the compiler did
●  Not obvious if the data remains in cache

● Counters can be difficult to interpret
●  Difficult to keep track of different levels of cache

●  Try to run kernel using 1 or 2 fewer cores
●  Adjust the number of OMP threads
●  Use aprun –S option to spread mpi ranks across more sockets
●  If performance per socket does not change, kernel may be bandwidth

bound
●  Try and examine trip counts and reference patterns

Create kernel that are representative of critical
loops

10

● Use all of the information previously discussed to create
kernels to be used for further investigation

●  Trip counts and array sizes per node should be as accurate
as possible
●  Goal is to reflect what are real science problem running on a significant

portion of the machine would look like on a single socket

● Kernel should use all of the cores of a single socket on
Edison
●  Kernels that only run on a single core will not capture the full memory

footprint and bandwidth characteristics of the real code

Why do we need a kernel?

11

● Extreme flexibility and portability
●  Cannot assume we will always run on a multi-node supercomputer
●  Might not even run it “directly” on a computer

● Run on many different platforms
●  Single socket of edison
●  KNC whitebox
●  KNL simulator or emulator
●  Early KNL hardware
●  KNL whitebox

●  Focused analysis
●  Some tools may not be able to run a full program
●  Want to focus on a particularly important area

●  Flexible experimentation
●  Try different compilers and options without porting entire code
●  May want to try different “decompositions” and optimizations that would

(temporarily) break the larger code

Example Analysis and Optimizations:

BerkeleyGW

 BerkeleyGW

13

● Identified 4-6 kernels
●  GPP
●  FF
●  BSE
●  Chi Summation
●  FFT (library not analyzed by Cray)
●  Scalapack (library not analyzed by Cray)

● Cray analyzed and provided potential optimizations GPP,
FF, BSE, and Chi Summation for:
●  Vectorization
●  Memory footprint requirements
●  Memory bandwidth requirements
●  OpenMP effectiveness
●  Cray and Intel compiler

● Next few slides review some of the work done for FF

 BerkeleyGW kernels: FF

14

● Excellent vectorization and OpenMP
● Used craypat to examine where time was being spent

module unload darshan # darshan does not seem to play well with craypat
module load perftools
ftn -rm -o ffkernel.x ffkernel.f90
pat_build ffkernel.x
run
pat_report ffkernel.x+pat+36422-5701s.xf > ffkernel.manyfreq.patreport

●  Generates both a routine level…
 100.0% | 585.0 | -- | -- |Total
|--
| 81.9% | 479.0 | -- | -- |USER
||---
|| 64.4% | 377.0 | 10.8 | 3.1% |ffkernel_.LOOP@li.388
|| 12.6% | 74.0 | -- | -- |ffkernel_
|| 3.8% | 22.0 | 4.2 | 19.3% |ffkernel_.LOOP@li.517
● … and a line level statistical profile report
|| 64.4% | 377.0 | -- | -- |ffkernel_.LOOP@li.388
||||--
4||| 25.6% | 150.0 | 29.6 | 18.8% |line.406
4||| 12.5% | 73.0 | 11.2 | 12.7% |line.408
4||| 25.1% | 147.0 | 14.0 | 10.1% |line.414

 BerkeleyGW kernels: FF

15

●  Line level statistical profile report
|| 64.4% | 377.0 | -- | -- |ffkernel_.LOOP@li.388
||||--
4||| 25.6% | 150.0 | 29.6 | 18.8% |line.406
4||| 12.5% | 73.0 | 11.2 | 12.7% |line.408
4||| 25.1% | 147.0 | 14.0 | 10.1% |line.414

!$OMP PARALLEL do private (my_igp,igp,indigp,igmax,ig,schDtt,I_epsRggp_int, &
!$OMP I_epsAggp_int,schD,schDt,ifreq) reduction(+:schdt_array) !This was line 388 in the source
do ifreq=1,nFreq
 do my_igp = 1, ngpown
 do ig = 1, igmax
 I_epsRggp_int = I_epsR(ig,my_igp,ifreq) !This was line 406 in the source
 I_epsAggp_int = I_epsA(ig,my_igp,ifreq) !This was line 408 in the source
 schD=I_epsRggp_int-I_epsAggp_int
 schDtt = schDtt + matngmat(ig,my_igp)*schD !This was line 414 in the source
 enddo
 enddo
enddo

●  Don’t focus too much on the time spent in one line vs another…
●  …The point is that it is clear that a very significant amount of time is being spent in this loop

nest / region

 BerkeleyGW kernels: FF

16

● Examined trip counts and declarations to calculate memory
footprint and reuse
●  nFreq = 20000
●  Ngpown = 20
●  Igmax = 1000

!$OMP PARALLEL do private (… &
!$OMP …) reduction(+:schdt_array)
do ifreq=1,nFreq
 do my_igp = 1, ngpown
 do ig = 1, igmax
 I_epsRggp_int = I_epsR(ig,my_igp,ifreq)
 I_epsAggp_int = I_epsA(ig,my_igp,ifreq)
 schD=I_epsRggp_int-I_epsAggp_int
 schDtt = schDtt + matngmat(ig,my_igp)*schD
 enddo
 enddo
enddo

●  Lots and lots of parallelism
●  I_epsR and I_epsA were each about 1.6 Gbytes with no

immediate reuse
● matngmat about 80 kbytes, and shared across threads

 BerkeleyGW kernels: FF

17

●  Let’s examine OpenMP scaling for a moment

● Virtually no improvement in performance after 8 threads
● Yet we know there is lots and lots of parallelism

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12

Ti
m

e
in

 S
ec

on
ds

Number of Threads

Time Spent in Loop 388

 BerkeleyGW kernels: FF

18

● Streaming data arrays that are more than 3 Gbytes in size
●  Lots of parallelism, but performance stops improving

● Conclusion: Loop was memory bandwidth bound

● On Cori I_epsR might fit into fast memory
●  But then we would still just be limited by the bandwidth of fast memory

● Only way to go faster is to find more data reuse

do ifreq=1,nFreq
 do my_igp = 1, ngpown
 do ig = 1, igmax
 I_epsRggp_int = I_epsR(ig,my_igp,ifreq)
 I_epsAggp_int = I_epsA(ig,my_igp,ifreq)
 schD=I_epsRggp_int-I_epsAggp_int
 schDtt = schDtt + matngmat(ig,my_igp)*schD
 enddo
 enddo
enddo

 BerkeleyGW kernels: FF

19

●  Realized there was a “nbands” loop at a relatively high level that reused the I_eps* variables
●  Worked to effectively cache block main loops

do ifreq=1,nFreq
 do igbeg = 1,igmax,igblk
 igend = min(igbeg+igblk-1,igmax)
 do my_igp_beg = 1, ngpown,cblk
 my_igp_end = min(my_igp_beg+cblk-1,ngpown)
 do n1_beg=1,number_bands,cblk
 n1_end = min(n1_beg+cblk-1,number_bands)
 do my_igp = my_igp_beg,my_igp_end
 do n1=n1_beg,n1_end
 …
 do ig = igbeg, igend
 I_epsRggp_int = I_epsR(ig,my_igp,ifreq)
 I_epsAggp_int = I_epsA(ig,my_igp,ifreq)
 schD=I_epsRggp_int-I_epsAggp_int
 schDtt=schDtt+aqsntemp(ig,n1) *CONJG(aqsmtemp(igp,n1))*schD
 enddo
 schdt_matrix(ifreq,n1) = schdt_matrix(ifreq,n1) + schDtt
 enddo
 enddo
 enddo
 enddo
 enddo
enddo

●  Resulted in a 4X improvement in wall-clock time on XEON

I_eps arrays do not change
with n1

 BerkeleyGW kernels: FF

20

●  Realized there was a “nbands” loop at a relatively high level that reused the I_eps* variables
●  Worked to effectively cache block main loops

do ifreq=1,nFreq
 do igbeg = 1,igmax,igblk
 igend = min(igbeg+igblk-1,igmax)
 do my_igp_beg = 1, ngpown,cblk
 my_igp_end = min(my_igp_beg+cblk-1,ngpown)
 do n1_beg=1,number_bands,cblk
 n1_end = min(n1_beg+cblk-1,number_bands)
 do my_igp = my_igp_beg,my_igp_end
 do n1=n1_beg,n1_end
 …
 do ig = igbeg, igend
 I_epsRggp_int = I_epsR(ig,my_igp,ifreq)
 I_epsAggp_int = I_epsA(ig,my_igp,ifreq)
 schD=I_epsRggp_int-I_epsAggp_int
 schDtt=schDtt+aqsntemp(ig,n1) *CONJG(aqsmtemp(igp,n1))*schD
 enddo
 schdt_matrix(ifreq,n1) = schdt_matrix(ifreq,n1) + schDtt
 enddo
 enddo
 enddo
 enddo
 enddo
enddo

●  Resulted in a 4X improvement in wall-clock time on XEON

aqsntemp array does not
change with my_igp

 Data Reuse will be important

21

● Data reuse will be critical to performance

● Reuse out of HBM will reduce requirements on main memory

● Reuse out of lower levels of cache will lower requirements
on HBM

●  In order to know how to cache block properly we need to
know the trip counts of loops and the sizes of various arrays
as accurately as possible

Summary

22

● Code Characterization will be an important first step in
preparing for Cori
●  Target Science
●  Target Scaling
●  Hotspot identification

● Cori node is different from Edison node
●  Single node optimizations will be an early focus
●  A properly designed kernel will help with optimization efforts
●  Vectorization will be more important in the future

● Data reuse will be important, but how important will depend
on memory footprints and access patterns

